Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Bio Protoc ; 14(8): e4980, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38686349

RESUMEN

Precision-cut lung slices (PCLS), ex vivo 3D lung tissue models, have been widely used for various applications in lung research. PCLS serve as an excellent intermediary between in vitro and in vivo models because they retain all resident cell types within their natural niche while preserving the extracellular matrix environment. This protocol describes the TReATS (TAT-Cre recombinase-mediated floxed allele modification in tissue slices) method that enables rapid and efficient gene modification in PCLS derived from adult floxed animals. Here, we present detailed protocols for the TReATS method, consisting of two simple steps: PCLS generation and incubation in a TAT-Cre recombinase solution. Subsequent validation of gene modification involves live staining and imaging of PCLS, quantitative real-time PCR, and cell viability assessment. This four-day protocol eliminates the need for complex Cre-breeding, circumvents issues with premature lethality related to gene mutation, and significantly reduces the use of animals. The TReATS method offers a simple and reproducible solution for gene modification in complex ex vivo tissue-based models, accelerating the study of gene function, disease mechanisms, and the discovery of drug targets. Key features • Achieve permanent ex vivo gene modifications in complex tissue-based models within four days. • Highly adaptable gene modification method that can be applied to induce gene deletion or activation. • Allows simple Cre dosage testing in a controlled ex vivo setting with the advantage of using PCLS generated from the same animal as true controls. • With optimisation, this method can be applied to precision-cut tissue slices of other organs.

2.
Front Cell Dev Biol ; 12: 1349312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476262

RESUMEN

Many adult lung diseases involve dysregulated lung repair. Deciphering the molecular and cellular mechanisms that govern intrinsic lung repair is essential to develop new treatments to repair/regenerate the lungs. Aberrant Wnt signalling is associated with lung diseases including emphysema, idiopathic pulmonary fibrosis and pulmonary arterial hypertension but how Wnt signalling contributes to these diseases is still unclear. There are several alternative pathways that can be stimulated upon Wnt ligand binding, one of these is the Planar Cell Polarity (PCP) pathway which induces actin cytoskeleton remodelling. Wnt5a is known to stimulate the PCP pathway and this ligand is of particular interest in regenerative lung biology because of its association with lung diseases and its role in the alveolar stem cell niche. To decipher the cellular mechanisms through which Wnt5a and the PCP pathway affect alveolar repair we utilised a 3-D ex-vivo model of lung injury and repair, the AIR model. Our results show that Wnt5a specifically enhances the alveolar epithelial progenitor cell population following injury and surprisingly, this function is attenuated but not abolished in Looptail (Lp) mouse lungs in which the PCP pathway is dysfunctional. However, Lp tracheal epithelial cells show reduced stiffness and Lp alveolar epithelial cells are less migratory than wildtype (WT), indicating that Lp lung epithelial cells have a reduced capacity for repair. These findings provide important mechanistic insight into how Wnt5a and the PCP pathway contribute to lung repair and indicate that these components of Wnt signalling may be viable targets for the development of pro-repair treatments.

3.
PeerJ ; 12: e16994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426134

RESUMEN

Background: Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective: The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods: Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results: During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion: The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.


Asunto(s)
Hígado , Ratas , Animales , Ratas Wistar , Imagen de Lapso de Tiempo , Hígado/diagnóstico por imagen , Ósmosis , Presión Osmótica
4.
Toxicol Lett ; 392: 75-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160862

RESUMEN

Precision-cut lung slices (PCLS) are a suitable model for analyzing the acetylcholinesterase (AChE) activity and subsequent effects after exposure to organophosphorus (OP) compounds. In this study, the AChE activity was determined in intact PCLS for the first time. Since the current standard therapy for OP poisoning (atropine + oxime + benzodiazepine) lacks efficiency, reliable models to study novel therapeutic substances are needed. Models should depict pathophysiological mechanisms and help to evaluate the beneficial effects of new therapeutics. Here PCLS were exposed to three organophosphorus nerve agents (OPNAs): sarin (GB), cyclosarin (GF), and VX. They were then treated with three reactivators: HI-6, obidoxime (OBI), and a non-oxime (NOX-6). The endpoints investigated in this study were the AChE activity and the airway area (AA) change. OPNA exposure led to very low residual AChE activities. Depending on the reactivator properties different AChE reactivation results were measured. GB-inhibited PCLS-AChE was reactivated best, followed by VX and GF. To substantiate these findings and to understand the connection between the molecular and the functional levels in a more profound way the results were correlated to the AA changes. These investigations underline the importance of reactivator use and point to the possibilities for future improvements in the treatment of OPNA-exposed victims.


Asunto(s)
Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Compuestos Organotiofosforados , Humanos , Acetilcolinesterasa , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa , Compuestos Organofosforados/toxicidad , Oximas/farmacología , Oximas/uso terapéutico , Intoxicación por Organofosfatos/tratamiento farmacológico , Pulmón
5.
mBio ; 15(1): e0146423, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38117035

RESUMEN

IMPORTANCE: Our study reveals the potential of precision-cut lung slices as an ex vivo platform to study the growth/survival of Pneumocystis spp. that can facilitate the development of new anti-fungal drugs.


Asunto(s)
Antiinfecciosos , Pneumocystis , Neumonía por Pneumocystis , Pulmón/microbiología , Neumonía por Pneumocystis/microbiología
6.
Infect Immun ; 91(12): e0027323, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37929972

RESUMEN

Trueperella pyogenes can cause severe pulmonary disease in swine, but the mechanism of pathogenesis is not well defined. T. pyogenes-induced damage to porcine bronchial epithelial cells (PBECs), porcine precision-cut lung slices (PCLS), and respiratory epithelium of mice remains unknown. In this study, we used T. pyogenes 20121 to infect PBECs in air-liquid interface conditions and porcine PCLS. T. pyogenes could adhere to, colonize, and induce cytotoxic effect on PBECs and the luminal surface of bronchi in PCLS, which damaged the bronchiolar epithelium. Moreover, bronchiolar epithelial cells showed extensive degeneration in the lungs of infected mice. Furthermore, western blot showed that the NOD-like receptor (NLR)/C-terminal caspase recruitment domain (ASC)/caspase-1 axis and nuclear factor-kappa B pathway were involved in inflammation in PCLS and lungs of mice, which also confirms that porcine PCLS provide a platform to analyze the pulmonary immune response. Meanwhile, the levels of p-c-Jun N-terminal kinase, p-extracellular signal-regulated kinase, and p-protein kinase B (AKT) were increased significantly, which indicated the mitogen-activated protein kinase and Akt pathways were also involved in inflammation in T. pyogenes-infected mice. In addition, we used T. pyogenes 20121 to infect tumor necrosis factor-alpha (tnf-α-/-) mice, and the results indicated that apoptosis and injury in respiratory epithelium of infected tnf-α-/- mice were alleviated. Thus, the pro-inflammatory cytokine TNF-α played a role in apoptosis and the respiratory epithelium injury in mouse lungs. Collectively, our study provides insight into the inflammatory injury induced by T. pyogenes and suggests that blocking NLR may be a potential therapeutic strategy against T. pyogenes infection.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factor de Necrosis Tumoral alfa , Animales , Ratones , Porcinos , Inflamación , Epitelio/patología , Citocinas
7.
Respir Res ; 24(1): 262, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907918

RESUMEN

INTRODUCTION: The standard therapy for bronchial asthma consists of combinations of acute (short-acting ß2-sympathomimetics) and, depending on the severity of disease, additional long-term treatment (including inhaled glucocorticoids, long-acting ß2-sympathomimetics, anticholinergics, anti-IL-4R antibodies). The antidepressant amitriptyline has been identified as a relevant down-regulator of immunological TH2-phenotype in asthma, acting-at least partially-through inhibition of acid sphingomyelinase (ASM), an enzyme involved in sphingolipid metabolism. Here, we investigated the non-immunological role of amitriptyline on acute bronchoconstriction, a main feature of airway hyperresponsiveness in asthmatic disease. METHODS: After stimulation of precision cut lung slices (PCLS) from mice (wildtype and ASM-knockout), rats, guinea pigs and human lungs with mediators of bronchoconstriction (endogenous and exogenous acetylcholine, methacholine, serotonin, endothelin, histamine, thromboxane-receptor agonist U46619 and leukotriene LTD4, airway area was monitored in the absence of or with rising concentrations of amitriptyline. Airway dilatation was also investigated in rat PCLS by prior contraction induced by methacholine. As bronchodilators for maximal relaxation, we used IBMX (PDE inhibitor) and salbutamol (ß2-adrenergic agonist) and compared these effects with the impact of amitriptyline treatment. Isolated perfused lungs (IPL) of wildtype mice were treated with amitriptyline, administered via the vascular system (perfusate) or intratracheally as an inhalation. To this end, amitriptyline was nebulized via pariboy in-vivo and mice were ventilated with the flexiVent setup immediately after inhalation of amitriptyline with monitoring of lung function. RESULTS: Our results show amitriptyline to be a potential inhibitor of bronchoconstriction, induced by exogenous or endogenous (EFS) acetylcholine, serotonin and histamine, in PCLS from various species. The effects of endothelin, thromboxane and leukotrienes could not be blocked. In acute bronchoconstriction, amitriptyline seems to act ASM-independent, because ASM-deficiency (Smdp1-/-) did not change the effect of acetylcholine on airway contraction. Systemic as well as inhaled amitriptyline ameliorated the resistance of IPL after acetylcholine provocation. With the flexiVent setup, we demonstrated that the acetylcholine-induced rise in central and tissue resistance was much more marked in untreated animals than in amitriptyline-treated ones. Additionally, we provide clear evidence that amitriptyline dilatates pre-contracted airways as effectively as a combination of typical bronchodilators such as IBMX and salbutamol. CONCLUSION: Amitriptyline is a drug of high potential, which inhibits acute bronchoconstriction and induces bronchodilatation in pre-contracted airways. It could be one of the first therapeutic agents in asthmatic disease to have powerful effects on the TH2-allergic phenotype and on acute airway hyperresponsiveness with bronchoconstriction, especially when inhaled.


Asunto(s)
Asma , Broncoconstricción , Ratones , Ratas , Humanos , Animales , Cobayas , Cloruro de Metacolina/farmacología , Amitriptilina/farmacología , Amitriptilina/uso terapéutico , Histamina/farmacología , Broncodilatadores/farmacología , Broncodilatadores/uso terapéutico , Serotonina/farmacología , Serotonina/uso terapéutico , Acetilcolina/farmacología , Simpatomiméticos/farmacología , Simpatomiméticos/uso terapéutico , 1-Metil-3-Isobutilxantina/farmacología , 1-Metil-3-Isobutilxantina/uso terapéutico , Dilatación , Pulmón , Asma/tratamiento farmacológico , Albuterol , Endotelinas/farmacología , Endotelinas/uso terapéutico , Tromboxanos/farmacología , Tromboxanos/uso terapéutico
8.
Toxicol Appl Pharmacol ; 479: 116714, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820773

RESUMEN

The objective of this study was to explore the effects of antioxidant treatments, specifically N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA), in a mouse model of chlorine (Cl2)-induced lung injury. Additionally, the study aimed to investigate the utility of pig precision-cut lung slices (PCLS) as an ex vivo alternative for studying the short-term effects of Cl2 exposure and evaluating antioxidant treatments. The toxicological responses were analyzed in Cl2-exposed mice (inflammation, airway hyperresponsiveness (AHR)) and PCLS (viability, cytotoxicity, inflammatory mediators). Airways contractions were assessed using a small ventilator for mice and electric-field stimulation (EFS) for PCLS. Antioxidant treatments were administered to evaluate their effects. In Cl2-exposed mice, NAC treatment did not alleviate AHR, but it did reduce the number of neutrophils in bronchoalveolar lavage fluid and inflammatory mediators in lung tissue. In PCLS, exposure to Cl2 resulted in concentration-dependent toxicity, impairing the lung tissue's ability to respond to EFS-stimulation. NAC treatment increased viability, mitigated the toxic responses caused by Cl2 exposure, and maintained contractility comparable to unexposed controls. Interestingly, NACA did not provide any additional treatment effect beyond NAC in both models. In conclusion, the establishment of a pig model for Cl2-induced lung damage supports further investigation of NAC as a potential treatment. However, the lack of protective effects on AHR after NAC treatment in mice suggests that NAC alone may not be sufficient as a complete treatment for Cl2 injuries. Optimization of existing medications with a polypharmacy approach may be more successful in addressing the complex sequelae of Cl2-induced lung injury.


Asunto(s)
Acetilcisteína , Lesión Pulmonar , Ratones , Animales , Porcinos , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Cloro/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/prevención & control , Antioxidantes/farmacología , Pulmón , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Mediadores de Inflamación
9.
Adv Biol (Weinh) ; : e2300165, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37840439

RESUMEN

The interactions between immune cells and epithelial cells influence the progression of many respiratory diseases, such as chronic obstructive pulmonary disease (COPD). In vitro models allow for the examination of cells in controlled environments. However, these models lack the complex 3D architecture and vast multicellular interactions between the lung resident cells and infiltrating immune cells that can mediate cellular response to insults. In this study, three complementary microphysiological systems are presented to delineate the effects of cigarette smoke and respiratory disease on the lung epithelium. First, the Transwell system allows the co-culture of pulmonary immune and epithelial cells to evaluate cellular and monolayer phenotypic changes in response to cigarette smoke exposure. Next, the human and mouse precision-cut lung slices system provides a physiologically relevant model to study the effects of chronic insults like cigarette smoke with the dissection of specific interaction of immune cell subtypes within the structurally complex tissue environment. Finally, the lung-on-a-chip model provides an adaptable system for live imaging of polarized epithelial tissues that mimic the in vivo environment of the airways. Using a combination of these models, a complementary approach is provided to better address the intricate mechanisms of lung disease.

10.
Viruses ; 15(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37766253

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections in the elderly and in children, associated with pediatric hospitalizations. Recently, first vaccines have been approved for people over 60 years of age applied by intramuscular injection. However, a vaccination route via mucosal application holds great potential in the protection against respiratory pathogens like RSV. Mucosal vaccines induce local immune responses, resulting in a fast and efficient elimination of respiratory viruses after natural infection. Therefore, a low-energy electron irradiated RSV (LEEI-RSV) formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) was tested ex vivo in precision cut lung slices (PCLSs) for adverse effects. The immunogenicity and protective efficacy in vivo were analyzed in an RSV challenge model after intranasal vaccination using a homologous prime-boost immunization regimen. No side effects of PC-LEEI-RSV in PCLS and an efficient antibody induction in vivo could be observed. In contrast to unformulated LEEI-RSV, the mucosal vaccination of mice with PC formulated LEEI-RSV showed a statistically significant reduction in viral load after challenge. These results are a proof-of-principle for the use of LEEI-inactivated viruses formulated with liposomes to be administered intranasally to induce a mucosal immunity that could also be adapted for other respiratory viruses.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Niño , Ratones , Animales , Persona de Mediana Edad , Anciano , Liposomas , Electrones , Anticuerpos Antivirales , Pulmón , Inmunidad Mucosa , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
11.
JHEP Rep ; 5(10): 100845, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37663119

RESUMEN

Background & Aims: Oxidative stress triggers metabolic-associated fatty liver disease (MAFLD) and fibrosis. Previous animal studies demonstrated that the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2), the master regulator of antioxidant response, protects against MAFLD and fibrosis. S217879, a next generation NRF2 activator has been recently shown to trigger diet-induced steatohepatitis resolution and to reduce established fibrosis in rodents. Our aim was to evaluate the therapeutic potential of S217879 in human MAFLD and its underlying mechanisms using the relevant experimental 3D model of patient-derived precision cut liver slices (PCLS). Methods: We treated PCLS from 12 patients with varying stages of MAFLD with S217879 or elafibranor (peroxisome proliferator-activated receptor [PPAR]α/δ agonist used as a referent molecule) for 2 days. Safety and efficacy profiles, steatosis, liver injury, inflammation, and fibrosis were assessed as well as mechanisms involved in MAFLD pathophysiology, namely antioxidant response, autophagy, and endoplasmic reticulum-stress. Results: Neither elafibranor nor S217879 had toxic effects at the tested concentrations on human PCLS with MAFLD. PPARα/δ and NRF2 target genes (pyruvate dehydrogenase kinase 4 [PDK4], fibroblast growth factor 21 [FGF21], and NAD(P)H quinone dehydrogenase 1 [NQO1], heme oxygenase 1 [HMOX1], respectively) were strongly upregulated in PCLS in response to elafibranor and S217879, respectively. Compared with untreated PCLS, elafibranor and S217879-treated slices displayed lower triglycerides and reduced inflammation (IL-1ß, IL-6, chemokine (C-C motif) ligand 2 [CCL2]). Additional inflammatory markers (chemokine (C-C motif) ligand 5 [CCL5], stimulator of interferon genes [STING], intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) were downregulated by S217879. S217879 but not elafibranor lowered DNA damage (phospho-Histone H2A.X [p-H2A.X], RAD51, X-ray repair cross complementing 1 [XRCC1]) and apoptosis (cleaved caspase-3), and inhibited fibrogenesis markers expression (alpha smooth muscle actin [α-SMA], collagen 1 alpha 1 [COL1A1], collagen 1 alpha 2 [COL1A2]). Such effects were mediated through an improvement of lipid metabolism, activated antioxidant response and enhanced autophagy, without effect on endoplasmic reticulum-stress. Conclusions: This study highlights the therapeutic potential of a new NRF2 activator for MAFLD using patient-derived PCLS supporting the evaluation of NRF2 activating strategies in clinical trials. Impact and implications: Oxidative stress is a major driver of metabolic-associated fatty liver disease (MAFLD) development and progression. Nuclear factor (erythroid-derived 2)-like 2, the master regulator of the antioxidative stress response, is an attractive therapeutic target for the treatment of MAFLD. This study demonstrates that S217879, a new potent and selective nuclear factor (erythroid-derived 2)-like 2 activator, displays antisteatotic effects, lowers DNA damage, apoptosis, and inflammation and inhibits fibrogenesis in human PCLS in patients with MAFLD.

12.
Front Cell Infect Microbiol ; 13: 1100028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637460

RESUMEN

Recently, Tummino et al. reported that 34 compounds, including Chloroquine and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis, although Chloroquine failed to suppress viral replication in Calu-3 cells and patients. In contrast, Fluoxetine represses viral replication in human precision-cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds have similar mechanisms of action. Here, we analysed a subset of these compounds in the viral replication and phospholipidosis assays using the Calu-3 cells and PCLS as the patient-near system. Trimipramine and Chloroquine induced phospholipidosis but failed to inhibit SARS-CoV-2 replication in Calu-3 cells, which contradicts the reported findings and the proposed mechanism. Fluoxetine, only slightly induced phospholipidosis in Calu-3 cells but reduced viral replication by 2.7 orders of magnitude. Tilorone suppressed viral replication by 1.9 orders of magnitude in Calu-3 cells without causing phospholipidosis. Thus, induction of phospholipidosis is not correlated with the inhibition of SARS-CoV-2, and the compounds act via other mechanisms. However, we show that compounds, such as Amiodarone, Tamoxifen and Tilorone, with antiviral activity on Calu-3 cells, also inhibited viral replication in human PCLS. Our results indicate that antiviral assays against SARS-CoV-2 are cell-line specific. Data from Vero E6 can lead to non-transferable results, underlining the importance of an appropriate cell system for analysing antiviral compounds against SARS-CoV-2. We observed a correlation between the active compounds in Calu-3 cells and PCLS.


Asunto(s)
COVID-19 , Tilorona , Humanos , Fluoxetina , SARS-CoV-2 , Antivirales/farmacología , Línea Celular , Cloroquina
13.
Artículo en Inglés | MEDLINE | ID: mdl-37341913

RESUMEN

BACKGROUND AND AIM: Endoscopic ultrasound-guided through-the-needle biopsy (EUS-TTNB) has been used over the past few years to increase diagnostic accuracy for pancreatic cystic lesions (PCLs). However, many concerns remain regarding its widespread use. This systematic review and meta-analysis aimed to pool the data from high-quality studies to evaluate the utility of EUS-TTNB in diagnosing PCLs. METHODS: Electronic databases (PubMed, Embase, and Cochrane Library) from January 2010 through October 2022 were searched for publications addressing the diagnostic performance of EUS-TTNB in the diagnosis of pancreatic cystic lesions. Pooled proportions were calculated using fixed (inverse variance) and random-effects (DerSimonian-Laird) models. RESULTS: The initial search identified 635 studies, of which 35 relevant articles were reviewed. We extracted data from 11 studies that met the inclusion criterion, comprising a total of 575 patients. Mean patient age was 62.25 years ± 6.12 with females constituting 61.39% of the study population. Pooled sensitivity of EUS-TTNB in differentiating a PCL as neoplastic or non-neoplastic was 76.60% (95% CI = 72.60-80. 30). For the same indication, EUS TTNB had a pooled specificity of 98.90% (95% CI = 93.80-100.00). The positive likelihood ratio was 10.28 (95% CI = 4.77-22.15), and the negative likelihood ratio was 0.26 (95% CI = 0.22-0.31). The pooled diagnostic odds ratio for EUS-TTNB in diagnosing PCLs as malignant/pre-malignant vs. non-malignant was 41.34 (95% CI = 17.42-98.08). Pooled adverse event rates were 3.04% (95% CI = 1.83-4.54) for pancreatitis, 4.02% (95% CI = 2.61-5.72) for intra-cystic bleeding, 0.94% (95% CI = 0.33-1.86) for fever, and 1.73% (95% CI = 0.85-2.91) for other minor events. CONCLUSIONS: EUS-TTNB has good sensitivity with excellent specificity in accurately classifying PCLs as neoplastic or non-neoplastic. Adding EUS-TTNB to EUS-FNA increases the accuracy of EUS-guided approach in diagnosing PCLs. However, it could significantly increase the risk of post-procedural pancreatitis.

14.
Front Pharmacol ; 14: 1162889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261291

RESUMEN

Precision cut lung slices (PCLS) have emerged as powerful experimental tools for respiratory research. Pioneering studies using mouse PCLS to visualize intrapulmonary airway contractility have been extended to pulmonary arteries and for assessment of novel bronchodilators and vasodilators as therapeutics. Additional disease-relevant outcomes, including inflammatory, fibrotic, and regenerative responses, are now routinely measured in PCLS from multiple species, including humans. This review provides an overview of established and innovative uses of PCLS as an intermediary between cellular and organ-based studies and focuses on opportunities to increase their application to investigate mechanisms and therapeutic targets to oppose excessive airway contraction and fibrosis in lung diseases.

15.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901724

RESUMEN

The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-ß and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Virus de la Influenza A , Gripe Humana , Adolescente , Humanos , Adulto Joven , Anticuerpos Neutralizantes/metabolismo , Virus de la Influenza A/fisiología , Pulmón/patología , Factor de Necrosis Tumoral alfa/metabolismo
16.
Life Sci ; 321: 121578, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958438

RESUMEN

AIMS: Lung squamous cell carcinoma (LUSC) causes over 400,000 deaths annually, yet it lacks targeted therapy. A major antagonist of Hedgehog pathway, HHIP (Hedgehog Interacting Protein) plays an important role in LUSC; however, the regulatory mechanism remains unclear. Long non-coding RNA HHIP-AS1 plays suppressive or promotive roles in different cancers, but its role in LUSC remains unknown. This manuscript is to investigate regulatory mechanism of HHIP and the role of HHIP-AS1 in LUSC. MAIN METHODS: Precision-cut lung slices (PCLS) from human LUSC samples are cultured to mimic LUSC growth. Overexpression and knockdown in multiple LUSC cell lines and PCLS are achieved by lentivirus infection. Transcriptome profile and lung cancer activity are evaluated by RNA-sequencing, immunostaining and CCK8 assay etc. KEY FINDINGS: HHIP is regulated independently of Hh pathway in LUSC. Additionally, downregulation of HHIP-AS1 is associated with poor prognosis. Consistently, HHIP-AS1 inhibits LUSC growth by suppressing cell proliferation and migration. Transcriptome profiling of HHIP-AS1 knockdown (KD) cells uncovered HHIP downregulation. Interestingly, a comparison between the transcriptomes of HHIP-AS1 KD or HHIP KD cells manifested high similarity. Subsequently it's confirmed that HHIP-AS1 regulates HHIP in LUSC cells. Notably, HHIP-AS1 regulation on LUSC growth is achieved through stabilizing HHIP mRNA rather than regulating MIR-153-3P/PCDHGA9 or MIR-425-5P/DNYC1I2. Finally, it's confirmed in PCLS from human LUSC samples that HHIP-AS1 suppresses LUSC via regulating HHIP mRNA. SIGNIFICANCE: This study uncovers HHIP-AS1 as a novel tumor suppressor in LUSC and provides new insights into the molecular regulation of LUSC, which will help developing new therapeutic strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Proteínas Hedgehog/genética , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proliferación Celular/genética , Pulmón/patología , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas Portadoras/genética , Glicoproteínas de Membrana/genética
17.
J Virol ; 97(2): e0142322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36692289

RESUMEN

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Asunto(s)
Enfermedades de los Bovinos , Interacciones Microbiota-Huesped , Infecciones por Mycoplasma , Infecciones por Orthomyxoviridae , Transducción de Señal , Thogotovirus , Animales , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/virología , Mycoplasma bovis/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Transducción de Señal/inmunología , Sobreinfección/inmunología , Sobreinfección/veterinaria , Receptor Toll-Like 2 , Interacciones Microbiota-Huesped/inmunología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/virología
18.
J Control Release ; 354: 305-315, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634709

RESUMEN

GATA3 gene silencing in activated T cells displays a promising option to early-on undermine pathological pathways in the disease formation of allergic asthma. The central transcription factor of T helper 2 (Th2) cell cytokines IL-4, IL-5, and IL-13 plays a major role in immune and inflammatory cascades underlying asthmatic processes in the airways. Pulmonary delivery of small interfering RNAs (siRNA) to induce GATA3 knockdown within disease related T cells of asthmatic lungs via RNA interference (RNAi) presents an auspicious base to realize this strategy, however, still faces some major hurdles. Main obstacles for successful siRNA delivery in general comprise stability and targeting issues, while in addition the transfection of T cells presents a particularly challenging task itself. In previous studies, we have developed and advanced an eligible siRNA delivery system composed of polyethylenimine (PEI) as polycationic carrier, transferrin (Tf) as targeting ligand and melittin (Mel) as endosomolytic agent. Resulting Tf-Mel-PEI polyplexes exhibited ideal characteristics for targeted siRNA delivery to activated T cells and achieved efficient and sequence-specific gene knockdown in vitro. In this work, the therapeutic potential of this carrier system was evaluated in an optimized cellular model displaying the activated status of asthmatic T cells. Moreover, a suitable siRNA sequence combination was found for effective gene silencing of GATA3. To confirm the translatability of our findings, Tf-Mel-PEI polyplexes were additionally tested ex vivo in activated human precision-cut lung slices (PCLS). Here, the formulation showed a safe profile as well as successful delivery to the lung epithelium with 88% GATA3 silencing in lung explants. These findings support the feasibility of Tf-Mel-PEI as siRNA delivery system for targeted gene knockdown in activated T cells as a potential novel therapy for allergic asthma.


Asunto(s)
Asma , Pulmón , Humanos , ARN Interferente Pequeño , ARN Bicatenario , Interferencia de ARN , Polietileneimina , Transferrina , Factor de Transcripción GATA3/genética
19.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L345-L357, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692165

RESUMEN

E-cigarette consumption is under scrutiny by regulatory authorities due to concerns about product toxicity, lack of manufacturing standards, and increasing reports of e-cigarette- or vaping-associated acute lung injury. In vitro studies have demonstrated cytotoxicity, mitochondrial dysfunction, and oxidative stress induced by unflavored e-cigarette aerosols and flavoring additives. However, e-cigarette effects on the complex lung parenchyma remain unclear. Herein, the impact of e-cigarette condensates with or without menthol flavoring on functional, structural, and cellular responses was investigated using mouse precision cut lung slices (PCLS). PCLS were exposed to e-cigarette condensates prepared from aerosolized vehicle, nicotine, nicotine + menthol, and menthol e-fluids at doses from 50 to 500 mM. Doses were normalized to the glycerin content of vehicle. Video-microscopy of PCLS revealed impaired contractile responsiveness of airways to methacholine and dampened ciliary beating following exposure to menthol-containing condensates at concentrations greater than 300 mM. Following 500 mM menthol-containing condensate exposure, epithelial exfoliation in intrabronchial airways was identified in histological sections of PCLS. Measurement of lactate dehydrogenase release, mitochondrial water-soluble-tetrazolium salt-1 conversion, and glutathione content supported earlier findings of nicotine or nicotine + menthol e-cigarette-induced dose-dependent cytotoxicity and oxidative stress responses. Evaluation of PCLS metabolic activity revealed dose-related impairment of mitochondrial oxidative phosphorylation and glycolysis after exposure to menthol-containing condensates. Taken together, these data demonstrate prominent menthol-induced pulmonary toxicity and impairment of essential physiological functions in the lung, which warrants concerns about e-cigarette consumer safety and emphasizes the need for further investigations of molecular mechanisms of toxicity and menthol effects in an experimental model of disease.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Animales , Ratones , Nicotina/toxicidad , Mentol/toxicidad , Aerosoles y Gotitas Respiratorias , Pulmón , Aromatizantes/toxicidad
20.
Pathogens ; 13(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276150

RESUMEN

Streptococcus suis is a porcine and zoonotic pathogen in the upper respiratory tract, expressing different capsular serotypes and virulence-associated factors. Given its genomic and phenotypic diversity, the virulence potential of S. suis cannot be attributed to a single factor. Since strong inflammatory response is a hallmark of S. suis infection, the objective of this study was to investigate the differences in transcriptional host responses to two serotype 2 and one serotype 9 strains. Both serotypes are frequently found in clinical isolates. We infected porcine precision-cut lung slices (PCLSs) with two serotype 2 strains of high (strain S10) and low (strain T15) virulence, and a serotype 9 strain 8067 of moderate virulence. We observed higher expression of inflammation-related genes during early infection with strains T15 and 8067, in contrast to infection with strain 10, whose expression peaked late. In addition, bacterial gene expression from infected PCLSs revealed differences, mainly of metabolism-related and certain virulence-associated bacterial genes amongst these strains. We conclude that the strain- and time-dependent induction of genes involved in innate immune response might reflect clinical outcomes of infection in vivo, implying rapid control of infection with less virulent strains compared to the highly virulent strain S10.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...