RESUMEN
Prostate cancer (PCa) is an extremely common malignant tumor of the male genitourinary system, originating from the prostate gland epithelium. Male patients are prone to relapse after treatment, which seriously threatens their health. Phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as Akt) plays an important role in the growth, invasion, and metastasis of PCa. This review aimed to present an overview of the mechanism of action of the PI3K/AKT signaling pathway in PCa and discuss the application prospects of inhibitors of this pathway in treating PCa, providing a theoretical basis and reference for its clinical treatment targets.
Asunto(s)
Progresión de la Enfermedad , Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , AnimalesRESUMEN
BACKGROUND: The aim of this study was to investigate the therapeutic effects and mechanisms of PRP-exos combined with cyclic peptide-modified ß-TCP scaffold in the treatment of rabbit knee cartilage defect. METHODS: PRP-exos were extracted and characterized by TEM, NTA and WB. The therapeutic effects were evaluated by ICRS score, HE staining, Immunohistochemistry, qRT-PCR and ELISA. The repair mechanism of PRP-exos was estimated and predicted by miRNA sequencing analysis and protein-protein interaction network analysis. RESULTS: The results showed that PRP-exos had a reasonable size distribution and exhibited typical exosome morphology. The combination of PRP-exos and cyclic peptide-modified ß-TCP scaffold improved ICRS score and the expression level of COL-2, RUNX2, and SOX9. Moreover, this combination therapy reduced the level of MMP-3, TNF-α, IL-1ß, and IL-6, while increasing the level of TIMP-1. In PRP-exos miRNA sequencing analysis, the total number of known miRNAs aligned across all samples was 252, and a total of 91 differentially expressed miRNAs were detected. The results of KEGG enrichment analysis and the protein-protein interaction network analysis indicated that the PI3K/AKT signaling pathway could impact the function of chondrocytes by regulating key transcription factors to repair cartilage defect. CONCLUSION: PRP-exos combined with cyclic peptide-modified ß-TCP scaffold effectively promoted cartilage repair and improved chondrocyte function in rabbit knee cartilage defect. Based on the analysis and prediction of PRP-exos miRNAs sequencing, PI3K/AKT signaling pathway may contribute to the therapeutic effect. These findings provide experimental evidence for the application of PRP-exos in the treatment of cartilage defect.
Asunto(s)
Cartílago Articular , Exosomas , Péptidos Cíclicos , Plasma Rico en Plaquetas , Andamios del Tejido , Animales , Conejos , Cartílago Articular/metabolismo , Fosfatos de Calcio , Articulación de la Rodilla , Masculino , MicroARNsRESUMEN
Our previous research has demonstrated that P2RY6 functions as an oncogene in DMBA/TPA-induced two-stage chemical skin carcinogenesis in mice. However, considering that human skin cancer is predominantly attributed to UV radiation from sunlight, additional investigations are needed to elucidate the role of P2RY6 in UVB-induced skin carcinogenesis. Surprisingly, we found that P2ry6-deficient mice exhibited marked promotion to UVB-induced skin papilloma formation compared with wild-type mice, suggesting its tumor-suppressive role in UVB-induced skin cancer. Additionally, a P2ry6 gene knockout promoted skin hyperplasia induced by short-term UVB irradiation, while UDP, the ligand of P2RY6, could inhibit the short-term UVB-induced increase of epiderma thickness in mouse skin. Furthermore, UVB irradiation could significantly upregulate P2RY6 expression in human and mouse skin cells. These results indicated that P2RY6 may play a crucial protective role in resisting the UVB-induced formation of skin tumors. At the molecular level, the loss of the P2RY6 gene inhibits the ubiquitination modification and expression of XPC after UVB irradiation in skin keratinocytes, resulting in the accumulation of CPDs (cyclobutane pyrimidine dimers). We have also demonstrated that P2RY6 deletion activates the PI3K/AKT signaling pathway both in vitro and in vivo. The CPD accumulation and acute inflammatory response enhanced by the loss of the P2RY6 gene can be reversed by an AKT inhibitor. These findings suggest that P2RY6 may act as a tumor suppressor in UVB-induced skin cancer by regulating the PI3K/AKT signaling pathway.
RESUMEN
Diacetylmorphine (DA) abuse can result in severe arrhythmias and even sudden death. Although previous research has connected ion channel proteins to arrhythmia occurrences, the precise mechanism underlying DA-induced arrhythmias remains poorly understood. This study conducted a comprehensive analysis of the myocardial toxicity of DA by applying proteomic and histopathological approaches and investigated the underlying mechanisms using in vitro experiments. In vivo experiments confirmed that DA induces cardiac arrhythmias, as evidenced by electrocardiographic analyses of rats. Additionally, Masson staining, wheat germ agglutinin staining (WGA) staining, and western blotting of myocardial tissues revealed significant myocardial damage. Tandem mass tag proteomics analysis identified syntrophin alpha 1 (SNTA1) as a pivotal target molecule linked to myocardial toxicity. Ex vivo experiments showed specific upregulation of SNTA1 in rat cardiomyocytes following DA exposure. Furthermore, in vitro experiments indicated that DA caused disruption of potassium channels and activated the arrhythmia-related PI3K/AKT signaling pathway. Silencing and overexpression studies of SNTA1 highlighted its role in ion channel abnormalities and that of the PI3K/AKT signaling pathway expression in cardiomyocytes, underscoring the crucial role of mitochondrial function in cardiac arrhythmias. This research indicates that SNTA1 is integral to arrhythmia development by influencing the PI3K/AKT signaling pathway, leading to mitochondrial dysfunction and ion channel irregularities. SNTA1 is a potential therapeutic target for DA-induced arrhythmias. This study enhances our understanding of DA-induced myocardial toxicity and offers valuable insights for assessing the risks of DA exposure in humans.
RESUMEN
BACKGROUND: Vascular calcification (VC) significantly raises cardiovascular mortality in chronic kidney disease (CKD) patients. VC is characterized by the phenotypic transformation of vascular smooth muscle cells (VSMCs) to osteoblast-like cells, mediated by exosomes derived from calcified VSMCs and the exosomal microRNAs (miRNA) which may trigger some signals to recipient VSMCs. Bushen Huoxue (BSHX) formula has demonstrated its clinical efficacy in CKD and its protective role in CKD-VC rats has also been observed. However, little is known about its underlying mechanism. METHODS: To establish a VC model, aortic VSMCs from rats were induced to osteogenic differentiation by high-level phosphate (HP) in vitro. The expression of exosome and calcification makers were analyzed by western blot, including CD9, CD63, α-SMA, BMP-2, and Runx2, respectively. Differential expression of exosomal miRNAs in normal and HP-induced VSMCs were identified by using whole miRNA microarray technology. GO and KEGG analyses were performed to determine the significant enrichment of functions and signaling pathways in the target genes. In vivo, the CKD-VC rat model was established by administering adenine gavage combined with a high phosphorus diet. The rats were divided into normal control, model, low-dose BSHX, medium-dose BSHX, high-dose BSHX groups, and sevelamer groups. The blood biochemical parameters were measured. Renal histopathology and aortic calcification were observed. Western blot detected the levels of the calcification markers. Quantitative real-time PCR (qPCR) assay detected exosomal microRNA-32 (miR-32) mRNA expression in the aorta, the most differentially expressed exosomal miRNA previously identified. Phosphatase and tensin homolog located on chromosome ten (PTEN)/phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway components were also tested by western blot. RESULTS: Exosomal miRNA-32 and PI3K/AKT signaling pathways were highly differentially expressed between normal and HP-induced VSMCs. In vivo, BSHX improved blood biochemical parameters, renal histopathology, and aortic calcification in CKD-VC rats. BSHX increased the expression level of α-SMA and decreased the level of BMP-2 and Runx2. BSHX also lowered the expression level of exosomal miR-32 mRNA, enhanced PTEN expression, therefore, reduced p-PI3K and p-AKT levels in the aorta. CONCLUSION: BSHX alleviated VC in CKD rats by downregulating exosomal miR-32 expression in the aorta, thereby promoting PTEN expression and inhibiting the PI3K/AKT signaling pathway.
RESUMEN
PCB126, a type of polychlorinated biphenyl (PCB), is a persistent pollutant found in both biotic and abiotic environments and poses significant public health risks due to its potential to cause cardiac damage with prolonged exposure. Hypoxia-inducible factor-2α (HIF-2α) is part of the hypoxia-inducible factor (HIF) transcription complex family. Previous studies have shown that knocking out or inhibiting HIF-2α expression can ameliorate pulmonary hypertension and right ventricular dysfunction. This study aimed to investigate whether cardiac-specific knockout of HIF-2α can alleviate the cardiotoxicity caused by PCB126. In this study, cardiac-specific knockout mice and wild-type mice were orally administered PCB126 or corn oil (50⯵g/kg/week) for eight weeks. Our findings indicated that PCB126 induces cardiotoxicity and myocardial injury, as evidenced by elevated cardiac enzyme levels and increased cardiac collagen fibers. RNA sequencing revealed that PCB126-induced cardiotoxicity involves the PI3K/Akt and p53 signaling pathways, which was confirmed by western blot analysis. Notably, cardiac-specific knockout of HIF-2α mitigated the damage caused by PCB126, reducing the expression of cardiac enzymes, inflammatory cytokines, and myocardial collagen fibers. Under normal conditions, conditional knockout (CKO) of the HIF-2α gene in cardiomyocytes did not affect the morphology or function of the mouse heart. However, HIF-2α CKO in the heart reduced the cardiotoxic effects of PCB126 by decreasing apoptosis through the PI3K/Akt and p53 signaling pathways. In conclusion, inhibiting HIF-2α expression in cardiomyocytes attenuated PCB126-induced cardiotoxicity by modulating apoptosis through these signaling pathways.
RESUMEN
BACKGROUND: Erxian decoction (EXD) is an empirical formula for treating cardiovascular disease, our previous work has shown that EXD could improve the cardiovascular structure and function in ovariectomized (OVX) rats, but its pharmacological mechanism is still unclear. MATERIALS AND METHODS: Network pharmacology was utilized to assess the key active components and central targets of EXD in treating postmenopausal cardiovascular disease. Then, an OVX rat model was established, HE staining and transmission electron microscope were utilized to observe myocardial tissue morphology, TUNEL staining was utilized to detect cardiomyocyte apoptosis, western blot, and ELISA were used to confirm efficacy and pathway of EXD. RESULTS: The network pharmacology prediction results showed that 129 common targets were identified by intersecting EXD targets and postmenopausal cardiovascular disease targets, including AKT1, TNF, IL-6, IL-1ß, PTGS2 and other core targets, apoptosis, PI3K/AKT, and other signaling pathways may be closely related to postmenopausal cardiovascular disease. After ovariectomy, the myocardial tissue of rats was damaged, the expression level of PI3K/AKT pathway-related molecules in the myocardial tissue were decreased, the apoptosis index of cardiomyocytes was increased, and the levels of inflammatory factors (TNF-α, IL-6, and IL-1ß) were enhanced. EXD intervention could improve myocardial tissue injury, EXD could up-regulate the protein expression of PI3K and p-AKT in myocardial tissue, and thereby prevent myocardial cell apoptosis. At the same time, EXD downregulated the levels of inflammatory factors in serum of ovariectomized rats. CONCLUSION: EXD may prevent myocardial tissue damage through induction of the PI3K/AKT signaling pathway, thereby reducing cardiomyocyte apoptosis and inflammation. EXD may be a potential drug for the treatment of postmenopausal cardiovascular disease.
Asunto(s)
Apoptosis , Medicamentos Herbarios Chinos , Miocardio , Miocitos Cardíacos , Ovariectomía , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Animales , Femenino , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Farmacología en Red , Modelos Animales de Enfermedad , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & controlRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Caulophyllumrobustum Maxim extract (CRME), as recorded in traditional Chinese medicine, has the function of dispelling Feng, regulating Qi and dredging collaterals, promoting blood circulation and regulating menstruation, gingering up and relieving pain, clearing heat simultaneously detoxifying, lowering blood pressure and hemostasis. CRME is often used as Chinese materia medica preparation for rheumatoid arthritis, traumatic injury, irregular menstruation, abdominal pain, and hypertension treatment. Since gastric cancer (GC) existed as a health problem of human over the years, we are committed to the development of potential components of Chinese herbal medicine curing cancer, and we found CRME is expected to be one of the effective anti-tumor traditional Chinese medicine preparations. AIMS OF THE STUDY: To investigate the molecular mechanisms of CRME anticancer effects and the potential links between CRME and FAK. MATERIALS AND METHODS: Caulophyllumrobustum Maxim was extracted to obtain CRME, high-performance liquid chromatography (HPLC) was used for qualitative analysis. Information about CRME was collected from traditional Chinese medicine records and local surveys unpublished internationally. Series of cellular function experiments were applied to detect cell proliferation, migration, apoptosis, autophagy, cell cycle, angiogenesis. The xenograft model is employed in vivo. RESULTS: CRME can significantly inhibit HGC-27 cells on proliferation, migration and angiogenic capacity. Xenograft model indicated CRME inhibited cell proliferation in vivo. Annexin V-FITC/PI double staining assay and PI single staining assay depicted that CRME induces cell apoptosis, and arrests cell cycle at G0/G1 phase. AO (acridine orange) staining assay showed that CRME promoted autophagosome formation and inhibited autophagic flow. HPLC indicated Cauloside A and Cauloside C are components of CRME. Western blot indicated that FAK/PI3K signaling pathway is critical in the inhibition of CRME on HGC-27 cells. CONCLUSIONS: The anti-tumor components of CRME, Cauloside A and Cauloside C, inhibited tumor progression in HGC-27 cells. This inhibition is achieved by decreasing the phosphorylation levels of FAK, thereby modulating PI3K/AKT signaling pathway.
RESUMEN
Background: We previously confirmed that mechanical stimulation is an important factor in the repair of tendon-bone insertion (TBI) injuries and that mechanoreceptors such as transient receptor potential ion-channel subfamily V member 4 (TRPV4; also known as transient receptor potential vanilloid 4) are key to transforming mechanical stimulation into intracellular biochemical signals. This study aims to elucidate the mechanism of mechanical stimulation regulating TRPV4. Methods: Immunohistochemical staining and western blotting were used to evaluate cartilage repair at the TBI after injury. The RNA expression and protein expression of mechanoreceptors and key pathway molecules regulating cartilage proliferation were analyzed. TBI samples were collected for transcriptome sequencing to detect gene expression. Calcium-ion imaging and flow cytometry were used to evaluate the function of TPRV4 and cellular communication network factor 2 (CCN2) after the administration of siRNA, recombinant adenovirus and agonists. Results: We found that treadmill training improved the quality of TBI healing and enhanced fibrochondrocyte proliferation. The transcriptome sequencing results suggested that the elevated expression of the mechanistically stimulated regulator CCN2 and the exogenous administration of recombinant human CCN2 significantly promoted TRPV4 protein expression and fibrochondrocyte proliferation. In vitro, under mechanical stimulation conditions, small interfering RNA (siRNA)-CCN2 not only inhibited the proliferation of primary fibrochondrocytes but also suppressed TRPV4 protein expression and activity. Subsequently, primary fibrochondrocytes were treated with the TRPV4 agonist GSK1016790A and the recombinant adenovirus TRPV4 (Ad-TRPV4), and GSK1016790A partially reversed the inhibitory effect of siRNA-CCN2. The phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) signaling pathway participated in the above process. Conclusions: Mechanical stimulation promoted fibrochondrocyte proliferation and TBI healing by activating TRPV4 channels and the PI3K/AKT signaling pathway, and CCN2 may be a key regulatory protein in maintaining TRPV4 activation.
RESUMEN
Introduction: To explore the effects of anaerobic glycolysis on Jurkat T cell proliferation and clarify the possible mechanism via transcriptomic analysis. Material and methods: The monocarboxylate transporter 1 inhibitor AZD3965 was used to target and block the transmembrane transport of lactate, thereby inhibiting anaerobic glycolysis in Jurkat T cells. Then, genes with differential expression between treated and untreated cells were detected by transcriptomic analysis, and constructs were generated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses as well as protein-protein interaction (PPI) network analysis were performed to explore the potential mechanism. Results: Inhibition of anaerobic glycolysis reduced Jurkat T-cell proliferation. RNA sequencing identified 1723 transcripts that were differentially expressed, including 1460 upregulated genes and 263 downregulated genes. GO functional enrichment analysis showed that the differentially expressed genes were mainly involved in the biological processes of response to unfolded protein, response to topologically incorrect protein, and protein folding. KEGG pathway analysis of differentially expressed genes or hub genes from the PPI network analysis revealed enrichment in the estrogen signaling and PI3K-Akt pathways. Conclusions: Anaerobic glycolysis contributes to the regulation of Jurkat T-cell proliferation. The underlying mechanism may involve the estrogen signaling pathway or PI3K-Akt signaling pathway as well as protein metabolism.
RESUMEN
BACKGROUND: Patients diagnosed with post-traumatic stress disorder (PTSD) mainly exhibit enduring adverse emotions, heightening susceptibility to suicidal thoughts and behaviors. Notably, metabolites of ketamine, particularly (2R,6R)-hydroxyketamine (HNK), have demonstrated favorable antidepressant properties. However, the precise mechanism through which HNK exerts its therapeutic effects on negative emotional symptoms in PTSD patients should be fully elucidated. METHODS: In this investigation, a model involving a single prolonged stress and plantar shock (SPS&S) was utilized, followed by the administration of (2R, 6R)-HNK into the lateral ventricle subsequent to the recovery phase. The evaluation of PTSD-related behaviors was conducted through the open field test (OFT), elevated plus maze test (EMPT), and forced swim test (FST). The expression of phosphatidylinositol 3-kinase (PI3K)/phosphokinase B (AKT) signaling pathway in rat brain regions was analyzed using molecular biology experiments. RESULTS: SPS&S rats displayed adverse emotional behaviors characterized by depression and anxiety. Treatment with (2R, 6R)-HNK enhanced exploratory behavior and reversed negative emotional behaviors. This intervention mitigated disruptions in the expression levels of PI3K/AKT signaling pathway-associated proteins in the HIP and PFC, without influencing PI3K/AKT signaling in the AMY of SPS&S rats. CONCLUSION: Traumatic stress can trigger negative emotional reactions in rats, potentially involving the PI3K/AKT signaling pathway in the HIP, PFC, and AMY. The (2R, 6R)-HNK compounds have demonstrated the potential to mitigate adverse emotions in rats subjected to the SPS&S paradigm. This effect may be attributed to the modulation of the PI3K/AKT signaling pathway in the HIP, and PFC, with a particularly notable impact observed in the HIP region.
RESUMEN
Objective: To employee network pharmacology to predict the components and pathways of SanQi-DanShen (SQDS) in treating coronary heart disease, followed by in vitro experiments to validate the molecular mechanism of SQDS in treating coronary heart disease. Methods: We sourced the active ingredients and targets of Panax notoginseng and Danshen from the Traditional Chinese Medicine Systems Pharmacology database. Coronary heart disease related genes were retrieved from the OMIM, Genecards, and Therapeutic Target databases. Using Cytoscape 3.7.2 software, we constructed a network diagram illustrating the components and targets of SQDS. The associated targets were then imported into the STRING database to build a protein-protein interaction network. The Metascape database and WeChat software were utilized for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Lastly, we performed molecular docking between the key components and related targets using AutoDock Vina. To validate the potential mechanism of SQDS in treating coronary heart disease, we established an acute coronary heart disease rat model via tail vein injection of pituitrin. Results: Network pharmacology analysis revealed that 65 active ingredients and 167 targets of SQDS are implicated in the treatment of coronary heart disease. The key targets identified include AKT1, TNF, TP53, IL6, and VEGFA. Notably, the PI3K/AKT signaling pathway emerged as the primary pathway. Furthermore, animal experiments showed that, compared to the model group, SQDS significantly reduced levels of TNF-α, IL-6, Bax, and cardiac troponin I, while increasing Bcl-2 content. It also notably suppressed the expression of p-PI3K and p-AKT, thereby offering protection to myocardial tissue. Conclusion: Through the integrated approach of network pharmacology and molecular docking, we have established that SQDS exerts a multi-component, multi-target, and multi-pathway synergistic therapeutic effect on coronary heart disease. Its mechanism may involve the inhibition of the PI3K/AKT signaling pathway and the reduction of inflammatory factor expression.
Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Transducción de Señal/efectos de los fármacos , Ratas , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/metabolismo , Salvia miltiorrhiza/química , Ratas Sprague-Dawley , Masculino , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , HumanosRESUMEN
2-Ethylhexyl diphenyl phosphate (EHDPHP), a widely used organophosphorus flame retardant (OPFR), is ubiquitous in daily life because of its extensive application in plastic production. EHDPHPs, which are only superficially applied and not chemically bonded to products, are released into the environment, posing potential health risks. With increasing environmental concentrations, EHDPHP is a growing threat, particularly to individuals with preexisting health conditions who are more susceptible to environmental pollutants. This study examined the effects of EHDPHP exposure in a colitis model, reflecting a rising chronic health issue, by assessing changes in neuroinflammation and neurobehavioral abnormalities. Healthy and dextran sulfate sodium (DSS)-induced colitis C57BL/6â¯J mice were treated with either 0.2â¯% Tween or EHDPHP solution (10â¯mg/kg body weight/day) for 28 days. The study revealed significant increases in the serum and expression levels of TNFα and IL-1ß, accompanied by depressive and anxiety-like behaviors. Coexposure to EHDPHP and DSS exacerbated these neurobehavioral impairments. RNA sequencing confirmed that EHDPHP triggered inflammation via the PI3K-Akt-NF-κB and Wnt/GSK3ß signaling pathways, as confirmed by Western blot analysis. These findings suggest that EHDPHP aggravates colitis-induced neuroinflammation and neurobehavioral abnormalities, highlighting the harmful impact of EHDPHP, particularly in individuals with preexisting inflammatory conditions.
RESUMEN
Paridis Rhizoma saponins (PRS) are significant components of Rhizoma Paridis and have inhibitory effects on various tumors, such as bladder, breast, liver and colon cancer. Polyphyllin II (PPII), one of the PRS, has an unclear effect on breast cancer. The present study aimed to explore the effect and mechanism of PPII in breast cancer. A network pharmacology approach was employed to predict the core components and breast cancerrelated targets of PRS. Moreover, a xenograft tumor model was established to determine the antibreast cancer effect of PPII in vivo. The viability of MDAMB231 cells was determined by a Cell Counting Kit8 assay. Apoptosis was analyzed using annexin V/PI double staining. Additionally, Transwell and scratch assays were performed to evaluate invasion and migration. The potential mechanism was predicted by Kyoto Encyclopedia of Genes and Genomes enrichment analysis and molecular docking analysis and verified by western blot analysis. The effect of PPII on aerobic glycolysis in breast cancer cells was detected by lactic acid and pyruvate kits and Western blotting of glycolytic ratelimiting enzymes. Network pharmacology analysis revealed 26 core targets involved in breast cancer and that PPII was the core active component of PRS. The in vivo studies showed that PPII could inhibit the growth of breast cancer in mice. In vitro experiments confirmed that PPII induced cancer cell apoptosis and inhibited invasion and migration. Furthermore, PPII was capable of suppressing the expression of key proteins in the PI3K/Akt signaling pathway, reducing the generation of aerobic glycolytic products, and diminishing the protein expression levels of hexokinase 2 and pyruvate kinase M2. The results indicated that PPII inhibited aerobic glycolysis in breast cancer cells through the PI3K/Akt signaling pathway, thereby inhibiting breast cancer growth.
Asunto(s)
Apoptosis , Neoplasias de la Mama , Proliferación Celular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Saponinas , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Transducción de Señal/efectos de los fármacos , Femenino , Proliferación Celular/efectos de los fármacos , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Saponinas/farmacología , Simulación del Acoplamiento Molecular , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Diosgenina/farmacología , Diosgenina/análogos & derivados , EsteroidesRESUMEN
BACKGROUND: Myocardial ischemia/reperfusion (I/R) injury stands as a primary contributor to ischemic heart disease. Sevoflurane (SEVO), a commonly used inhalation anesthetic, has been shown to exert a direct protective effect on ischemic heart injury. However, the specific mechanism by which it exerts the protective effect remains unclear. This study was designed to investigate the role of SEVO in myocardial I/R injury and its potential molecular mechanisms. METHODS: Blood samples were collected from patients with acute myocardial infarction (AMI) (n = 20) and healthy volunteers (n = 20). The human cardiomyocytes AC16 models of I/R injury were induced by hypoxia/reoxygenation. The mRNA expression levels of growth differentiation factor 11 (GDF11) in the cells and blood were determined by reverse transcription quantitative real-time PCR (RT-qPCR). The cell proliferation was detected by Cell Counting Kit-8 (CCK-8). Enzyme-Linked Immunosorbent Assay (ELISA) was utilized to detect the levels of inflammatory factors interleukin (IL)-8, IL-1ß and IL-6 in the cells. And biochemical assay kits were applied for the measurement of the activity of lactate dehydrogenase (LDH) and superoxide dismutase (SOD) as well as the malondialdehyde (MDA) level in the cells. Moreover, western blot was employed to evaluate the levels of the p-serine-threonine protein kinase (AKT), AKT, and phosphatidylinositol 3-kinase (PI3K), protein expression in the cells. RESULTS: The GDF11 expression was decreased in the blood of AMI patients and cardiomyocytes induced by I/R (p < 0.01). Besides, 1% SEVO was presented to promote cardiomyocyte proliferation, inhibit apoptosis, oxidative stress and inflammation, and activate the PI3K/AKT signaling pathway through up-regulation of GDF11 expression (p < 0.01). CONCLUSION: SEVO promotes proliferation and inhibits inflammatory response, apoptosis, and oxidative stress of I/R-treated cardiomyocytes by elevating GDF11 expression, thereby reducing myocardial I/R injury. Notably, the mechanism underlying the alleviation of the I/R injury may involve the activation of PI3K/AKT signaling pathway.
Asunto(s)
Factores de Diferenciación de Crecimiento , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Sevoflurano , Transducción de Señal , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Sevoflurano/farmacología , Factores de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Regulación hacia Arriba/efectos de los fármacos , Femenino , Persona de Mediana Edad , Infarto del Miocardio/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/sangre , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas Morfogenéticas ÓseasRESUMEN
The rising occurrence of erectile dysfunction related to diabetes mellitus (DMED) has led to the creation of new medications. Proanthocyanidins (PROs) is a potential agent for DMED. In this study, the DMED rat model was established using streptozotocin (STZ) and erectile function was assessed using apomorphine (APO) in rats. Following this, the rats were subjected to oral treatment with PRO. Then, we evaluated the influence of PROs on DMED rats. The findings suggest that PROs significantly enhance erectile function in DMED rats. PROs modulated glucose and lipid metabolism in DMED rats by decreasing blood glucose and lipid levels while increasing liver glycogen and serum insulin levels. Furthermore, PROs enhanced vascular endothelial function in DMED rats by augmenting nitric oxide (NO) levels and reducing the levels of endothelin-1 (ET-1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Additionally, PROs have been shown to elevate testosterone (T) levels, mitigate pathological testicular damage, and enhance sperm concentration and survival rates. Finally, the core targets were screened using network pharmacology, followed by validation through molecular docking, enzyme-linked immunoassay (ELISA), and real-time PCR methodologies. Our findings imply that PROs may treat DMED by elevating AKT1 levels while concurrently diminishing CASP3 levels, thereby effectively regulating the PI3K-Akt signaling pathway. Overall, these results support using PROs as a potential candidate for the treatment of DMED.
Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Proantocianidinas , Animales , Masculino , Proantocianidinas/farmacología , Proantocianidinas/uso terapéutico , Proantocianidinas/química , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Disfunción Eréctil/metabolismo , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucemia/metabolismo , Endotelina-1/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Óxido Nítrico/metabolismo , Testosterona/sangre , Insulina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Depuradores de Clase E/metabolismoRESUMEN
Intramuscular fat (IMF) content is an economic trait in beef cattle that improves the meat quality. Studies have highlighted the correlation between long noncoding RNAs (lncRNAs) and IMF development. In this study, lncBNIP3 knockdown promoted bovine intramuscular preadipocyte differentiation. RNA-seq analysis of intramuscular preadipocytes with lncBNIP3 knockdown identified 230 differentially expressed genes. The PI3K-Akt and PPAR signaling pathways were enriched. lncBNIP3 interference promoted mRNA and protein expression of key genes in PI3K-Akt signaling pathway. LncBNIP3 interference reversed the effects of an AKT-inhibitor MK-2206 on Akt protein expression and lipid droplet accumulation, promoted mRNA and protein expression of essential genes in the PPAR signaling pathway, and ameliorated the inhibitory effects of a PPARg antagonist GW9662 on lipid accumulation. Therefore, lncBNIP3 inhibition of bovine intramuscular preadipocyte differentiation is likely mediated via the PI3K-Akt and PPAR signaling pathways. This study identified a valuable lncRNA with functional roles in IMF accumulation and revealed new strategies to improve beef quality.
RESUMEN
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder and metabolic abnormality disease that mainly affects women of reproductive age. LINC00173, a novel long noncoding RNA (lncRNA), has emerged as an important factor in the development of PCOS. However, the role of LINC00173 in PCOS development and its specific upstream and downstream mechanisms remain to be further clarified. Here, we found that LINC00173 was significantly upregulated in granulosa cells (GCs) of PCOS patients, and played a crucial role in promoting apoptosis of GCs. Mechanistically, we observed the activation of endoplasmic reticulum (ER) stress in the GCs of PCOS patients, and the ER stress sensor ATF4 could directly induce LINC00173 expression by binding to its promoter. LINC00173 further upregulated the expression of Harakiri (HRK) and subsequently inhibited downstream PI3K/AKT pathway. In conclusions, our study uncovered that ER stress-induced upregulation of LINC00173 leads to increased HRK expression and inhibition of the PI3K/AKT pathway, thereby promoting the progression of PCOS. These findings provide a new therapeutic strategy for the treatment of PCOS.
Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Células de la Granulosa , Fosfatidilinositol 3-Quinasas , Síndrome del Ovario Poliquístico , Proteínas Proto-Oncogénicas c-akt , ARN Largo no Codificante , Femenino , Humanos , Apoptosis/genética , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de SeñalRESUMEN
It was to clarify the effects of silver nanoparticles (AgNPs) on biological functions of human periodontal ligament fibroblasts (hPDLFs). METHODS: AgNPs were synthesized using a tannic acid reduction method and characterized accordingly. Fifteen Sprague-Dawley rats were randomly assigned to Normal group, Group A (orthodontic tooth movement after alveolar bone defect repair with a blood clot), and Group B (orthodontic tooth movement after alveolar bone defect repair with AgNPs), with five rats in each group. Morphological changes in periodontal tissues were visualized. hPDLFs were treated with 0 µM (Ctrl), 25 µM (L-AgNPs), 50 µM (M-AgNPs), and 100 µM (H-AgNPs) AgNPs to assess cell proliferation via the MTT assay, calcification via alizarin red staining, and osteogenic differentiation and genes/proteins' expression associated with the I3K/Akt signaling pathway through quantitative polymerase chain reaction and Western blot. RESULTS: AgNP diameter was approximately 20 nm. Relative to the normal group, both Group A and Group B exhibited increased widths of the periodontal ligament (PDL) while displaying a decrease in cell counts within the PDL (P < 0.05). Furthermore, the L-AgNPs, M-AgNPs, and H-AgNPs groups exhibited a notable elevation in the number of calcified nodules in hPDLFs, along with elevated alkaline phosphatase, Runx2, osteocalcin, osterix, type I collagen, phosphorylated phosphoinositide 3-kinase, and phosphorylated protein kinase B versus Ctrl (P < 0.05). CONCLUSION: AgNPs are beneficial in enhancing the biological functions of the PDL, promoting the repair and regeneration of periodontal tissues, indicating their potential clinical value in orthodontic treatments.
RESUMEN
Colorectal cancer (CRC) is the third deadliest cancer in the world, with a high incidence, aggressiveness, poor prognosis, and resistant to drugs. 5-fluorouracil (5-FU) is the most commonly used drug for the chemotherapeutic of CRC, however, CRC is resistant to 5-FU after a period of treatment. Therefore, there is an urgent need to explore the underlying molecular mechanisms of CRC resistance to 5-FU. In the present study, we found that the expression of PANX2 was increased in CRC tissues and metastatic tissues from the TCGA database. The K-M survival curve showed that the high expression of PANX2 was associated with poor cancer prognosis. GDSC database showed that the IC50 of 5-Fu in the PANX2 high expression group was significantly higher, and the results were verified in CRC cells. In vitro cell function and in vivo tumorigenesis experiments showed that PANX2 promoted CRC cell proliferation, clone formation, migration and tumorigenesis in vivo. WB result revealed that PANX2 may lead to resistance to 5-Fu in CRC by affecting the PI3K-AKT signaling pathway. Overall, PANX2 regulates CRC proliferation, clone formation, migration, and 5-Fu resistance by PI3K-AKT signaling pathway.