RESUMEN
Porcine circovirus type 3 (PCV3) infection is clinically related to various diseases, including porcine dermatitis and nephrotic syndrome (PDNS)-like disease, respiratory disease, reproductive disorders, and gastrointestinal and neurological diseases. Since PCV3 infection was discovered in 2016, it has developed rapidly and has attracted much attention worldwide. However, specific preventive and therapeutic interventions are currently lacking. In this study, four-dimensional (4D) data-independent acquisition (DIA)-based quantitative proteomics detection combined with bioinformatics analysis were employed to quantitatively identify the differentially expressed proteins in PK-15 cells from the PCV3-infected group compared with those from the uninfected control group. A total of 194 cellular proteins were significantly altered in response to PCV3 infection, including 58 upregulated proteins and 136 downregulated proteins. In our Gene Ontology (GO) enrichment analysis, these differentially expressed proteins were mostly associated with cellular anatomical entities, binding, cellular processes, biological regulation, catalytic activity, metabolic processes, developmental processes, protein-containing complexes and responses to stimuli. Our Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs were predominantly involved in metabolic pathways, the cAMP signaling pathway, protein processing in the endoplasmic reticulum, the PI3K-Akt signaling pathway, and the calcium signaling pathway. For the experiments, Western blotting (WB) was used to confirm the changes in important molecules. The differentially expressed proteins identified should contribute to a greater understanding of the mechanism of PCV3 replication and pathogenesis, as well as the host response.
RESUMEN
Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.
Asunto(s)
Toxinas Bacterianas , Interleucina-8 , Infecciones por Pasteurella , Pasteurella multocida , Animales , Apoptosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Caspasa 8/metabolismo , Caspasa 8/genética , Línea Celular , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Interleucina-8/metabolismo , Interleucina-8/genética , Pasteurella multocida/genética , Porcinos , Infecciones por Pasteurella/metabolismo , Infecciones por Pasteurella/veterinariaRESUMEN
BACKGROUND: Pseudorabies virus (PRV) causes substantial losses in the swine industry worldwide. Attenuated PRV strains with deletions of immunomodulatory genes glycoprotein E (gE), glycoprotein I (gI) and thymidine kinase (TK) are candidate vaccines. However, the effects of gE/gI/TK deletions on PRV-host interactions are not well understood. METHODS: To characterize the impact of gE/gI/TK deletions on host cells, we analyzed and compared the transcriptomes of PK15 cells infected with wild-type PRV (SD2017), PRV with gE/gI/TK deletions (SD2017gE/gI/TK) using RNA-sequencing. RESULTS: The attenuated SD2017gE/gI/TK strain showed increased expression of inflammatory cytokines and pathways related to immunity compared to wild-type PRV. Cell cycle regulation and metabolic pathways were also perturbed. CONCLUSIONS: Deletion of immunomodulatory genes altered PRV interactions with host cells and immune responses. This study provides insights into PRV vaccine design.
Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Porcinos , Animales , Herpesvirus Suido 1/genética , Timidina Quinasa/genética , Proteínas del Envoltorio Viral/genética , Glicoproteínas/genética , Perfilación de la Expresión GénicaRESUMEN
Introduction: Pseudorabies virus (PRV) is a herpesvirus that can infect domestic animals, such as pigs, cattle and sheep, and cause fever, itching (except pigs), and encephalomyelitis. In particular, the emergence of PRV variants in 2011 have resulted in serious economic losses to the Chinese pig industry. However, the signaling pathways mediated by PRV variants and their related mechanisms are not fully understood. Methods: Here, we performed RNA-seq to compare the gene expression profiling between PRV virulent SD2017-infected PK15 cells and Bartha-K/61-infected PK15 cells. Results: The results showed that 5,030 genes had significantly different expression levels, with 2,239 upregulated and 2,791 downregulated. GO enrichment analysis showed that SD2017 significantly up-regulated differentially expressed genes (DEGs) were mainly enriched in the binding of cell cycle, protein and chromatin, while down-regulated DEGs were mainly enriched in ribosomes. KEGG enrichment analysis revealed that the pathways most enriched for upregulated DEGs were pathways in cancer, cell cycle, microRNAs in cancer, mTOR signaling pathway and autophagy-animal. The most down-regulated pathways of DEGs enrichment were ribosome, oxidative phosphorylation, and thermogenesis. These KEGG pathways were involved in cell cycle, signal transduction, autophagy, and virus-host cell interactions. Discussion: Our study provides a general overview of host cell responses to PRV virulent infection and lays a foundation for further study of the infection mechanism of PRV variant strain.
RESUMEN
OBJECTIVES: PCV2-associated disease (PCVAD), caused by porcine circovirus type 2 (PCV2) infection, is one of the major infectious diseases in the global swine industry. Nitric oxide (NO), as an important signalling molecule, has antiviral activities against a variety of viruses. To date, limited knowledge is available on the role of NO during PCV2 infection. METHODS: This study was conducted to investigate the effects of exogenous NO on PCV2 replication in vitro. To exclude the possibility that the detected antiviral effects were due to cell toxicity, maximum non-cytotoxic concentrations of the drugs were determined. Kinetics of NO production were assessed after drug treatment. The antiviral activities of NO at different concentrations and at different time points were carefully assessed by measuring the virus titers, viral DNA copies and percentage of PCV2-infected cells. Regulation of NF-κB activity by exogenous NO was also investigated. RESULTS: Kinetics of NO production indicated that S-nitroso-acetylpenicillamine (SNAP) produced NO in a dose-dependent manner, while NO was scavenged by its scavenger haemoglobin (Hb). An in vitro antiviral assay demonstrated that exogenous NO strongly inhibited PCV2 replication in a time-dependent and dose-dependent manner, whereas the inhibitory effects could be reversed by Hb. Furthermore, inhibition of NF-κB activity induced by NO contributed to a notable decrease in PCV2 replication. CONCLUSION: These findings provide a new potential antiviral therapy against PCV2 infection, and the antiviral effects of exogenous NO may be partly achieved by regulating NF-κB activity.
Asunto(s)
Circovirus , Enfermedades de los Porcinos , Animales , Porcinos , FN-kappa B/genética , FN-kappa B/farmacología , Óxido Nítrico , Circovirus/genética , Línea Celular , Antivirales/farmacología , Replicación ViralRESUMEN
Ochratoxin A (OTA) is one of the most harmful mycotoxins, which can cause multiple toxicological effects, especially nephrotoxicity in animals and humans. Taurine is an essential amino acid with various biological functions such as anti-inflammatory and anti-oxidation. However, the protective effect of taurine on OTA-induced nephrotoxicity and pyroptosis had not been reported. Our results showed that OTA exposure induced cytotoxicity and oxidative stress in PK-15 cells, including reactive oxygen species (ROS) accumulation, increased mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), and decreased mRNA levels of catalase (CAT), glutathione peroxidase 1 (GPx1), and glutathione peroxidase 4 (GPx4). In addition, OTA treatment induced pyroptosis by increasing the expressions of pyroptosis-related proteins NLRP3, GSDMD, Caspase-1 P20, ASC, Pro-caspase-1, and IL-1ß. Meanwhile, taurine could alleviate OTA-induced pyroptosis and cytotoxicity, as well as reduce ROS level, COX-2, and iNOS mRNA levels, and increase the mRNA levels of the antioxidant enzyme in PK-15 cells. Taken together, taurine alleviated OTA-induced pyroptosis in PK-15 cells by inhibiting ROS generation and altering the activity of antioxidant enzymes, thereby attenuating its nephrotoxicity.
Asunto(s)
Antioxidantes , Piroptosis , Animales , Humanos , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Taurina/farmacología , Ciclooxigenasa 2/metabolismo , Estrés Oxidativo , Caspasa 1/metabolismo , ARN Mensajero/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismoRESUMEN
Silver nanoparticles (AgNPs) show a plethora of possible applications due to their antimicrobial properties. Different coatings of AgNPs are used in order to increase stability, availability, and activity. However, the question about the toxicity after prolonged exposure still remains. Here, we show that different surface coatings affect in vitro toxicity and internalization of AgNPs in porcine kidney (PK15) cells. AgNPs coated with cetyltrimethylammonium bromide (CTAB), poly(vinylpyrrolidone) (PVP), sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), poly-L-lysine (PLL), and bovine serum albumin (BSA) were toxic at the concentration of 10 mg Ag/L and higher. The toxicity increased in the following manner: PVP-AgNPs < CTAB-AgNPs < PLL-AgNPs < AOT-AgNPs < BSA-AgNPs. All types of AgNPs were internalized by the PK15 cells in a dose-dependent manner with greater internalization of AgNPs bearing positive surface charge. Transmission electron microscopy (TEM) experiments showed that AgNPs were located in the lysosomal compartments, while the co-treatment with known inhibitors of endocytosis pathways suggested macropinocytosis as the preferred internalization pathway. When inside the cell, all types of AgNPs induced the formation of reactive oxygen species while decreasing the concentration of the cell's endogenous antioxidant glutathione. The comet assay indicated possible genotoxicity of tested AgNPs starting at the concentration of 2 mg Ag/L or higher, depending on the surface functionalization. This study demonstrates the toxicity of AgNPs pointing to the importance of biosafety evaluation when developing novel AgNPs-containing materials.
Asunto(s)
Nanopartículas del Metal , Plata , Animales , Porcinos , Plata/toxicidad , Plata/metabolismo , Nanopartículas del Metal/toxicidad , Cetrimonio , Tamaño de la Partícula , Endocitosis , Riñón/metabolismo , Mamíferos/metabolismoRESUMEN
Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease and is communicable across species. In particular, the emergence of PRV variants in 2011 have resulted in serious economic losses to the Chinese pig industry. In this study, we used tandem mass tag (TMT) quantitative protein analysis to identify differentially expressed proteins between the PRV variant strain SD-2017 and the vaccine strain Bartha-K/61 in the swine kidney cell line PK15. Overall, we identified 4690 proteins for SD-2017 infection compared with the mock-infected control cells. We found 162 differentially expressed cellular proteins including 41 up- and 121 down-regulated proteins. SD-2017-infected PK15 cells differential proteins were primarily related to gap junctions, the phagosome, antigen processing and presentation, cell adhesion molecules and peroxisome pathways. Compared to Bartha-K/61-infected PK15 cells, SD-2017-infected cells displayed differentially expressed proteins involved in tryptophan metabolism, mitophagy and Notch signaling. Western blot analysis of MARK2, TSR1 and TMED1 three representative proteins validated the reliability of the TMT data. This study is an initial at-tempt to compare the proteomes of PK15 cells infected by a PRV variant and a vaccine strain using TMT technology to provide new insights into the mechanisms of PRV pathogenesis and immune evasion.
Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Vacunas Virales , Animales , Herpesvirus Suido 1/genética , Riñón/patología , Proteómica , Seudorrabia/prevención & control , Reproducibilidad de los Resultados , PorcinosRESUMEN
Classical swine fever (CSF) is a highly contagious notifiable disease of pigs caused by CSF virus of Flaviviridae family. Previously, lapinized vaccines were used for the disease control, which has now been replaced with cell culture vaccines. Determination of virus titre is the key factor for development and quality control testing of classical swine fever (CSF) cell culture vaccines. Since CSFV is a non- cytopathic virus, an accurate method for the titration of this virus in cell culture has not yet been reported. Here we present a full proof method of titration of CSF cell culture viruses employing Fluorescent Antibody Technique (FAT) in 24 well plate cover slip culture of PK-15 cells. CSFV monoclonal antibodies (Mab) used in the test bind to the CSF virus particles in the cell cytoplasm of the infected cells and the immune-fluorescence signal is produced by subsequent binding of FITC conjugate with Mab. In this newly developed method, apple green fluorescence is observed in the cytoplasm of the infected cells as the virus multiplies only in the cytoplasm. The nucleus as well as the uninfected cells cytoplasm is stained red without any traces of green fluorescence. Thus, the test clearly differentiates a CSFV infected cell from the uninfected cells in the vicinity, if any, and also from the uninfected controls. The test can also quantify the accurate titres of CSF live viruses in the cell culture vaccines and hence it has wide application in routine virus titration applied for manufacturing of CSF cell culture vaccines, determination of accurate multiplicity of infection (m.o.i.) during infection and quality control of vaccines by the testing laboratories.
Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Vacunas Virales , Animales , Anticuerpos Antivirales , Peste Porcina Clásica/diagnóstico , Peste Porcina Clásica/prevención & control , PorcinosRESUMEN
Viruses depend on the metabolic mechanisms of the host to support viral replication. We utilize an approach based on ultra-high-performance liquid chromatography/Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass (UHPLC-QE-MS) to analyze the metabolic changes in PK-15 cells induced by the infections of the pseudorabies virus (PRV) variant strain and Bartha K61 strain. Infections with PRV markedly changed lots of metabolites, when compared to the uninfected cell group. Additionally, most of the differentially expressed metabolites belonged to glycerophospholipid metabolism, sphingolipid metabolism, purine metabolism, and pyrimidine metabolism. Lipid metabolites account for the highest proportion (around 35%). The results suggest that those alterations may be in favor of virion formation and genome amplification to promote PRV replication. Different PRV strains showed similar results. An understanding of PRV-induced metabolic reprogramming will provide valuable information for further studies on PRV pathogenesis and the development of antiviral therapy strategies.
Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Animales , Cromatografía Líquida de Alta Presión , Herpesvirus Suido 1/genética , Metabolómica , PorcinosRESUMEN
As an emergent picornavirus pathogenic to pigs, Senecavirus A (SVA) can replicate in pig kidneys and proliferates well in porcine kidney epithelial PK-15 cells. Here, tandem mass tags (TMT) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze the proteome dynamic changes in PK-15 cells during SVA infection. In total, 314, 697 and 426 upregulated differentially expressed proteins (DEPs) and 131, 263 and 342 downregulated DEPs were identified at 12, 24 and 36 hpi, respectively. After ensuring reliability of the proteomic data by quantitative PCR and Western blot testing of five randomly selected DEPs, Mx1, eIF4E, G6PD, TOP1 and PGAM1, all the DEPs were subjected to multiple bioinformatics analyses, including GO, COG, KEGG and STRING. The results reveal that the DEPs were mainly involved in host innate and adaptive immune responses in the early and middle stages of SVA infection, while the DEPs mainly participated in various metabolic processes in the late stage of infection. Finally, we demonstrated that Mx1 protein exerts antiviral activity against SVA by interacting with VP1 and VP2 proteins dependent on its GTPase, oligomerization and interaction activities, while Mx1 interacts with VP3 only depending on its oligomerization activity. Collectively, our study provides valuable clues for further investigation of SVA pathogenesis.
Asunto(s)
Proteínas de la Cápside , Proteómica , Animales , Cromatografía Liquida , Picornaviridae , Proteómica/métodos , Reproducibilidad de los Resultados , Porcinos , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to vaccines, the availability of antiviral polymers provides an efficient and safe option for reducing the impact of these diseases. By virtue of their molecular weight and repetitious structure, polymers possess properties not found in small-molecule drugs. In this perspective, we focus on chitosan, a ubiquitous biopolymer, that adjusts the molecular weight and sulfated-mediated functionality can act as an efficient antiviral polymer by mimicking PCV2-cell receptor interactions. METHODS: Sulfated chitosan (Chi-S) polymers of two molecular weights were synthesized and characterized by FTIR, SEM-EDS and elemental analysis. The Chi-S solutions were tested against PCV2 infection in PK15 cells in vitro and antiviral activity was evaluated by measuring the PCV2 DNA copy number, TCID50 and capsid protein expression, upon application of different molecular weights, sulfate functionalization, and concentrations of polymer. In addition, to explore the mode of action of the Chi-S against PCV2 infection, experiments were designed to elucidate whether the antiviral activity of the Chi-S would be influenced by when it was added to the cells, relative to the time and stage of viral infection. RESULTS: Chi-S significantly reduced genomic copies, TCID50 titers and capsid protein of PCV2, showing specific antiviral effects depending on its molecular weight, concentration, and chemical functionalization. Assays designed to explore the mode of action of the low molecular weight Chi-S revealed that it exerted antiviral activity through impeding viral attachment and penetration into cells. CONCLUSIONS: These findings help better understanding the interactions of PCV2 and porcine cells and reinforce the idea that sulfated polymers, such as Chi-S, represent a promising candidates for use in antiviral therapies against PCV2-associated diseases. Further studies in swine are warranted.
Asunto(s)
Quitosano , Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Animales , Antivirales/metabolismo , Antivirales/farmacología , Proteínas de la Cápside/genética , Quitosano/metabolismo , Quitosano/farmacología , Infecciones por Circoviridae/prevención & control , Circovirus/genética , Peso Molecular , Sulfatos/metabolismo , Porcinos , Replicación Viral/genéticaRESUMEN
Circular RNAs (circRNAs) are a new type of endogenous noncoding RNA that exhibit a variety of biological functions. However, it is not clear whether they are involved in foot-and-mouth disease virus (FMDV) infection and host response. In this study, we established circRNA expression profiles in FMDV-infected PK-15 cells using RNA-seq (RNA-sequencing) technology analysis. The biological function of the differentially expressed circRNAs was determined by protein interaction network, Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment. We found 1100 differentially expressed circRNAs (675 downregulated and 425 upregulated) which were involved in various biological processes such as protein ubiquitination modification, cell cycle regulation, RNA transport, and autophagy. We also found that circRNAs identified after FMDV infection may be involved in the host cell immune response. RNA-Seq results were validated by circRNAs qRT-PCR. In this study, we analyzed for the first time circRNAs expression profile and the biological function of these genes after FMDV infection of host cells. The results provide new insights into the interactions between FMDV and host cells.
Asunto(s)
Virus de la Fiebre Aftosa , MicroARNs , Animales , Virus de la Fiebre Aftosa/genética , Perfilación de la Expresión Génica/veterinaria , Ontología de Genes , MicroARNs/genética , ARN Circular/genéticaRESUMEN
T-2 toxin is a highly toxic trichothecene that can induce toxic effects in a variety of organs and tissues, but the pathogenesis of its nephrotoxicity has not been elucidated. In this study, we assessed the involvement of protein kinase RNA-like ER kinase (PERK)-mediated endoplasmic reticulum (ER) stress and apoptosis in PK-15 cells cultured at different concentrations of T-2 toxin. Cell viability, antioxidant capacity, intracellular calcium (Ca2+) content, apoptotic rate, levels of ER stress, and apoptosis-related proteins were studied. T-2 toxin inhibited cell proliferation; increased the apoptosis rate; and was accompanied by increased cleaved caspase-3 expression, altered intracellular oxidative stress marker levels, and intracellular Ca2+ overloading. The ER stress inhibitor 4-phenylbutyrate (4-PBA) and PERK selective inhibitor GSK2606414 prevented the decrease of cell activity and apoptosis caused by T-2 toxin. The altered expression of glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 proved that ER stress was involved in cell injury triggered by T-2 toxin. T-2 toxin activated the phosphorylation of PERK and the alpha subunit of eukaryotic initiation factor 2 (eIF2α) and upregulated the activating transcription factor 4 (ATF4), thereby triggering ER stress via the GRP78/PERK/CHOP signaling pathway. This study provides a new perspective for understanding the nephrotoxicity of T-2 toxin.
Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Toxina T-2/toxicidad , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 12/metabolismo , Línea Celular , Chaperón BiP del Retículo Endoplásmico/metabolismo , Células Epiteliales/enzimología , Células Epiteliales/patología , Riñón/enzimología , Riñón/patología , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal , Sus scrofa , Factor de Transcripción CHOP/metabolismoRESUMEN
T-2 toxin is highly cytotoxic to animals, which causes damage to animal health and great economic losses to agriculture and livestock production. Betulinic acid (BA), a naturally occurring pentacyclic lupane-type triterpenoid, has various biological and medicinal activities in vivo and in vitro. The objective of the present study was to investigate the toxic effects of T-2 toxin and the reversal effect of BA on porcine kidney (PK-15) cells. We evaluated T-2 toxin-induced apoptotic responses via oxidative stress and endoplasmic reticulum stress pathways by assessing the repair effect of BA in PK-15 cells. The results proved that T-2 toxin (1 µM, treated for 24 h) is highly toxic to PK-15 cells. After pre-treatment with BA (0.25, 0.5, and 1 µM) for 24 h, the cell viabilities were significantly increased, and the lactate dehydrogenase (LDH) in the culture media was dramatically decreased compared to that in the T-2 toxin treatment group. BA also enhanced the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT) and reduced the production of reactive oxygen species (ROS) and malondialdehyde (MDA) in cells. BA also dose-dependently increased the expression of glucose regulated protein (GRP78), reduced expression of activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2α (eIF2α), and intracellular Ca2+ concentration in a dose-dependent manner. In addition, BA significantly decreased the expression of cleaved-caspase-3 and caspase-12, consequently reducing T-2 toxin-induced PK-15 cell apoptosis in a dose-dependent manner. Collectively, we suggest that BA has a protective effect on T-2 toxin-induced cytotoxicity by ameliorating oxidative stress and endoplasmic reticulum stress in PK-15 cells.
Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Triterpenos Pentacíclicos/farmacología , Toxina T-2/toxicidad , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/fisiología , Enzimas/metabolismo , Riñón/citología , Riñón/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Estrés Oxidativo/fisiología , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Porcinos , Ácido BetulínicoRESUMEN
Classical swine fever (CSF) is one of the most epidemic viral diseases in swine industry. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of Flaviviridae family. Claudin-1 was reported to be involved in the infections of a number of viruses, including many from Flaviviridae family, but no studies have investigated the role of porcine claudin-1 during CSFV infection in PK-15 cells. In this study, on the one hand, we demonstrated that CSFV infection reduced the claudin-1 expression at both mRNA and protein levels; on the other hand, CSFV infection was enhanced after claudin-1 knockdown, but inhibited by claudin-1 overexpression in a dose-dependent manner. Furthermore, negative correlation was demonstrated between the claudin-1 expression and CSFV titer. In conclusion, claudin-1 might be a barrier for CSFV infection in PK-15 cells, while CSFV bypasses the barrier through lysosome mediated degradation of claudin-1, which could be repressed by bafilomycin A1. Although the elaborate mechanisms how claudin-1 plays its roles in CSFV infection require further investigations, this study may advance our understanding of the molecular host-pathogen interaction mechanisms underlying CSFV infection and suggests enhancement of porcine claudin-1 as a potential preventive or therapeutic strategy for CSF control.
Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Animales , Línea Celular , Claudina-1/genética , Porcinos , Replicación ViralRESUMEN
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome (PMWS) and causes heavy economic losses to the porcine industry worldwide. In this study, PK-15 cells were infected with PCV2 for 48 h, then harvested and subjected to label-free quantitative proteomic mass spectrometry. In total, 1212 proteins were differentially expressed in PCV2-infected cells compared with mock-infected cells, including 796 upregulated and 416 downregulated proteins. Gene ontology analysis showed that these differentially expressed proteins were involved in biological processes, cellular components and molecular functions, and these categories included cellular processes, environmental information processing, genetic information processing, disease, metabolism, and body systems. Enrichment analysis of the KEGG pathway showed that innate immune responses were significantly enriched. AlphaB-crystallin (CRYAB) interacts with desmin and cytoplasmic actin to prevent protein misfolding and aggregation, helping to maintain cytoskeletal integrity and promoting cell proliferation. In this study, CRYAB was found to effect the replication of PCV2, as verified by qRT-PCR, TCID50 determination and western blot analysis. Overexpression of CRYAB significantly upregulated PCV2 capsid protein and increased viral titers in both PK-15 cells and culture supernatants, whereas the opposite results were obtained in CRYAB knockdown cells. Furthermore, we revealed that the promotion of PCV2 replication by CRYAB was dependent on cell proliferation. To our knowledge, this is the first report of the effect of CRYAB on PCV2 replication and our findings contribute to a greater understanding of the mechanism of PCV2 replication and pathogenesis, as well as the host's response to PCV2 infection.
Asunto(s)
Infecciones por Circoviridae , Circovirus , Cristalinas , Animales , Línea Celular , Proliferación Celular , Infecciones por Circoviridae/patología , Circovirus/genética , Proteómica , PorcinosRESUMEN
Porcine circovirus type 3 (PCV3) invades multiple tissues and organs of pigs of different ages and are widely spread throughout pig farms, emerging as an important viral pathogen that can potentially damage the pig industry worldwide. Since PCV3 is a newly discovered virus, many aspects of its life cycle remain unknown. Porcine kidney epithelial cells are important host targets for PCV3. Here, we used systematic approaches to dissect the molecular mechanisms underlying the cell entry and intracellular trafficking of PCV3 in PK15 cells, a cell line of porcine kidney epithelial origin. A large number of PCV3 viral particles were found to colocalize with clathrin but not caveolin-1 after entry, and PCV3 infection was significantly decreased when treated with chlorpromazine, dynasore, knockdown of clathrin heavy chain expression via RNA interference, or overexpression of a dominant-negative mutant of EPS15 in PCV3-infected cells. After internalization, the viral particles were further observed to colocalize with Rab5 and Rab7, and knockdown of both expression by RNA interference significantly inhibited PCV3 replication. We also found that PCV3 infection was impeded by ammonium chloride treatment, which indicated the requirement of an acidic environment for viral entry. Taken together, our findings demonstrate that PCV3 enters PK15 cells through a clathrin- and dynamin-2-mediated endocytic pathway, which requires early and late endosomal trafficking, as well as an acidic environment, providing an insightful theoretical basis for further understanding the PCV3 life cycle and its pathogenesis.
RESUMEN
BACKGROUND: Japanese encephalitis virus is a mosquito-borne neurotropic flavivirus that causes acute viral encephalitis in humans. Pigs are crucial amplifier host of JEV. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs) play important roles in virus infection. METHODS: JEV proliferation was evaluated after overexpression or knockdown of lncRNA-SUSAJ1 using western blotting and reverse-transcription polymerase chain reaction (RT-PCR). C-C chemokine receptor type 1 (CCR1) was found to regulate the expression of lncRNA-SUSAJ1 by inhibitors screen. The expression of lncRNA-SUSAJ1 was detected using RT-PCR after overexpression or knockdown of transcription factor SP1. In addition, the enrichments of transcription factor SP1 on the promoter of lncRNA-SUSAJ1 were analyzed by chromatin immunoprecipitation. RESULTS: In this study, we demonstrated that swine lncRNA-SUSAJ1 could suppress JEV proliferation in PK-15 cells. We also found that CCR1 inhibited the expression of lncRNA-SUSAJ1 via the transcription factor SP1. In addition, knockdown of CCR1 could upregulated the expression of SP1 and lncRNA-SUSAJ1, resulting in resistance to JEV proliferation. CONCLUSIONS: These findings illustrate the importance of lncRNAs in virus proliferation, and reveal how this virus regulates lncRNAs in host cells to promote its proliferation.
Asunto(s)
Interacciones Huésped-Patógeno/genética , ARN Largo no Codificante/genética , Replicación Viral/genética , Animales , Línea Celular , Virus de la Encefalitis Japonesa (Especie) , Regulación de la Expresión Génica , PorcinosRESUMEN
Classical swine fever (CSF) is one of the main viral diseases of swine worldwide. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of the genus Pestivirus. Activation of NF-κB is a hallmark of most viral infections and the viral pathogens frequently kidnap NF-κB pathway for their own advantages, however, it is unclear or even controversial about whether CSFV infection can activate NF-κB signal pathway. RACK1 was shown as an interacting host protein with CSFV NS5A protein, but no studies so far have clearly defined the role of RACK1 during CSFV infection and NF-κB activation. In this study, to properly address these open questions, using RT-qPCR, western blot, indirect fluorescence staining, siRNA knockdown and protein overexpression techniques, we demonstrated that CSFV infection reduced the RACK1 expression at both mRNA and protein levels in PK-15 cells. Downregulation of cellular RACK1 enhanced CSFV infection and subsequent NF-κB activation, while RACK1 overexpression inhibited CSFV infection and the NF-κB activation. In conclusion, RACK1 is a negative cellular regulator for CSFV infection and NF-κB activation in PK-15 cells. Our work addressed a novel aspect concerning the regulation of innate antiviral immune response during CSFV infection. This study may provide some insights into the molecular mechanisms of CSFV infection in swine. However, the elaborate mechanism by which CSFV regulates NF-κB activation and how RACK1 plays its roles in CSFV infection and NF-κB induction require further in-depth studies.