RESUMEN
BACKGROUND: Esophageal cancer is a significant global health concern, ranking seventh in incidence and sixth in mortality. It encompasses two pathological types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma, with ESCC being more prevalent globally and associated with higher mortality rates. The POU (Pit-Oct-Unc) domain family transcription factors, comprising 15 members, play important roles in embryonic development and organ formation. Aberrant expression of POUs has been observed in several human cancers, influencing cell proliferation, tumor invasion, and drug resistance. However, their specific role in ESCC remains unknown. METHODS: We analyzed TCGA and GEO databases to assess POUs expression in ESCC tissues. Kaplan-Meier and ROC analyses were used to evaluate the prognostic value of POUs. Gene Set Enrichment Analysis and Protein-Protein interaction network were used to explore the potential pathway. Functional assays (Cell Counting Kit-8, EdU Staining assay, and cloning formation assay) and mechanism analyses (RNA-seq, flow cytometry, and Western blot) were conducted to determine the effects of POU4F1 knockdown on ESCC cell phenotypes and signaling pathways. RESULTS: POU4F1 and POU6F2 were upregulated in various cancer tissues, including ESCC, compared to normal tissues. POU4F1 expression was significantly correlated with patient survival and superior to previous models (AUC = 0.776). Knockdown of POU4F1 inhibited ESCC cell proliferation and affected cell cycle, autophagy, and DNA damage pathways in ESCC cells. CONCLUSION: POU4F1 is a novel and promising prognostic and therapeutic target for ESCC patients, providing insights into potential treatment strategies.
RESUMEN
Disulfidptosis, a regulated form of cell death, has been recently reported in cancers characterized by high SLC7A11 expression, including invasive breast carcinoma, lung adenocarcinoma, and hepatocellular carcinoma. However, its role in colon adenocarcinoma (COAD) has been infrequently discussed. In this study, we developed and validated a prognostic model based on 20 disulfidptosis-related genes (DRGs) using LASSO and Cox regression analyses. The robustness and practicality of this model were assessed via a nomogram. Subsequent correlation and enrichment analysis revealed a relationship between the risk score, several critical cancer-related biological processes, immune cell infiltration, and the expression of oncogenes and cell senescence-related genes. POU4F1, a significant component of our model, might function as an oncogene due to its upregulation in COAD tumors and its positive correlation with oncogene expression. In vitro assays demonstrated that POU4F1 knockdown noticeably decreased cell proliferation and migration but increased cell senescence in COAD cells. We further investigated the regulatory role of the DRG in disulfidptosis by culturing cells in a glucose-deprived medium. In summary, our research revealed and confirmed a DRG-based risk prediction model for COAD patients and verified the role of POU4F1 in promoting cell proliferation, migration, and disulfidptosis.
Asunto(s)
Adenocarcinoma , Biomarcadores de Tumor , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/diagnóstico , Pronóstico , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Biomarcadores de Tumor/genética , Femenino , Línea Celular Tumoral , Masculino , Proliferación Celular/genética , Perfilación de la Expresión Génica , Transcriptoma , Nomogramas , Factor 3 de Transcripción de Unión a Octámeros/genética , Movimiento Celular/genéticaRESUMEN
Basal-like breast cancer (BLBC) is the most aggressive molecular subtype of breast cancer with worse prognosis and fewer treatment options. The underlying mechanisms upon BLBC transcriptional dysregulation and its upstream transcription factors (TFs) remain unclear. Here, among the hyperactive candidate TFs of BLBC identified by bioinformatic analysis, POU4F1 is uniquely upregulated in BLBC and is associated with poor prognosis. POU4F1 is necessary for the tumor growth and malignant phenotypes of BLBC through regulating G1/S transition by direct binding at the promoter of CDK2 and CCND1. More importantly, POU4F1 maintains BLBC identity by repressing ERα expression through CDK2-mediated EZH2 phosphorylation and subsequent H3K27me3 modification in ESR1 promoter. Knocking out POU4F1 in BLBC cells reactivates functional ERα expression, rendering BLBC sensitive to tamoxifen treatment. In-depth epigenetic analysis reveals that the subtype-specific re-configuration and activation of the bivalent chromatin in the POU4F1 promoter contributes to its unique expression in BLBC, which is maintained by DNA demethylase TET1. Together, these results reveal a subtype-specific epigenetically activated TF with critical role in promoting and maintaining BLBC, suggesting that POU4F1 is a potential therapeutic target for BLBC.
Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Humanos , Femenino , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Ratones , Animales , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Modelos Animales de Enfermedad , Regiones Promotoras Genéticas/genéticaRESUMEN
Glioma is the most common malignancy in the central nervous system. This study aims to disclose the impacts of Xihuang pill (XHP), a traditional Chinese formula, on glioma cell pyroptosis and relevant molecular mechanism. U251 and SHG-44 cells were treated with XHP alone or together with oe-POU4F1 and sh-STAT3. CCK8 assay detected the viability, flow cytometry evaluated pyroptosis, and microscopy observed cell morphology. LDH release was determined by the LDH kit and the levels of IL-1ß and IL-18 were detected by ELISA. Immunofluorescence showed NLRP3 expression in glioma cells and western blotting measured the levels of POU4F1, STAT3, NLRP3, ASC, cleaved caspase-1, and IL-1ß. The binding of POU4F1 to STAT3 was verified. Primary glioma model was established to observe tumor change by in vivo imaging, determine the levels of Ki67 and NLRP3 by immunochemistry, and detect relevant protein levels by western blotting. XHP treatment alone downregulated POU4F1 and STAT3 levels, aroused pyroptotic appearance in glioma cells such as ballooning swelling, reduced cell viability and number of pyroptotic cells, increased LDH release and IL-1ß and IL-18 levels, formed NLRP3 sports in cells, and elevated the levels of pyroptosis-related proteins. However, POU4F1 overexpression or STAT3 silencing suppressed XHP-promoted pyroptosis. Mechanistically, POU4F1 acted as a transcription factor of STAT3 and regulated its transcription. In primary glioma models, XHP enhanced glioma cell pyroptosis and blocked glioma growth. XHP facilitates glioma cell pyroptosis via the POU4F1/STAT3 axis.
Asunto(s)
Glioma , Interleucina-18 , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Glioma/tratamiento farmacológico , Glioma/genética , Factor de Transcripción Brn-3A , Factor de Transcripción STAT3/genéticaRESUMEN
More than 40 retinal ganglion cell (RGC) subtypes have been categorized in mouse based on their morphologies, functions, and molecular features. Among these diverse subtypes, orientation-selective Jam2-expressing RGCs (J-RGCs) has two unique morphologic characteristics: the ventral-facing dendritic arbor and the OFF-sublaminae stratified terminal dendrites in the inner plexiform layer. Previously, we have discovered that T-box transcription factor T-brain 1 (Tbr1) is expressed in J-RGCs. We further found that Tbr1 is essential for the expression of Jam2, and Tbr1 regulates the formation and the dendritic morphogenesis of J-RGCs. However, Tbr1 begins to express in terminally differentiated RGCs around perinatal stage, suggesting that it is unlikely involved in the initial fate determination for J-RGC and other upstream transcription factors must control Tbr1 expression and J-RGC formation. Using the Cleavage Under Targets and Tagmentation technique, we discovered that Pou4f1 binds to Tbr1 on the evolutionary conserved exon 6 and an intergenic region downstream of the 3'UTR, and on a region flanking the promoter and the first exon of Jam2. We showed that Pou4f1 is required for the expression of Tbr1 and Jam2, indicating Pou4f1 as a direct upstream regulator of Tbr1 and Jam2. Most interestingly, the Pou4f1-bound element in exon 6 of Tbr1 possesses high-level enhancer activity, capable of directing reporter gene expression in J-RGCs. Together, these data revealed a Pou4f1-Tbr1-Jam2 genetic hierarchy as a critical pathway in the formation of J-RGC subtype.
RESUMEN
BACKGROUND: While the transcriptional code governing retinal ganglion cell (RGC) type specification begins to be understood, its interplay with neurotrophic signaling is largely unexplored. In mice, the transcription factor Brn3a/Pou4f1 is expressed in most RGCs, and is required for the specification of RGCs with small dendritic arbors. The Glial Derived Neurotrophic Factor (GDNF) receptor Ret is expressed in a subset of RGCs, including some expressing Brn3a, but its role in RGC development is not defined. METHODS: Here we use combinatorial genetic experiments using conditional knock-in reporter alleles at the Brn3a and Ret loci, in combination with retina- or Ret specific Cre drivers, to generate complete or mosaic genetic ablations of either Brn3a or Ret in RGCs. We then use sparse labelling to investigate Brn3a and Ret gene dosage effects on RGC dendritic arbor morphology. In addition, we use immunostaining and/or gene expression profiling by RNASeq to identify transcriptional targets relevant for the potential Brn3a-Ret interaction in RGC development. RESULTS: We find that mosaic gene dosage manipulation of the transcription factor Brn3a/Pou4f1 in neurotrophic receptor Ret heterozygote RGCs results in altered cell fate decisions and/or morphological dendritic defects. Specific RGC types are lost if Brn3a is ablated during embryogenesis and only mildly affected by postnatal Brn3a ablation. Sparse but not complete Brn3a heterozygosity combined with complete Ret heterozygosity has striking effects on RGC type distribution. Brn3a only mildly modulates Ret transcription, while Ret knockouts exhibit slightly skewed Brn3a and Brn3b expression during development that is corrected by adult age. Brn3a loss of function modestly but significantly affects distribution of Ret co-receptors GFRα1-3, and neurotrophin receptors TrkA and TrkC in RGCs. CONCLUSIONS: Based on these observations, we propose that Brn3a and Ret converge onto developmental pathways that control RGC type specification, potentially through a competitive mechanism requiring signaling from the surrounding tissue.
Asunto(s)
Receptores de Factor de Crecimiento Nervioso , Células Ganglionares de la Retina , Animales , Ratones , Retina , Factor de Transcripción Brn-3A/genéticaRESUMEN
De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.
Asunto(s)
Ataxia/genética , Hipotonía Muscular/genética , Factor de Transcripción Brn-3A/genética , Temblor/genética , Adulto , Ataxia/complicaciones , Ataxia/diagnóstico , Ataxia/patología , Niño , Preescolar , Femenino , Haploinsuficiencia , Humanos , Imagen por Resonancia Magnética , Masculino , Hipotonía Muscular/complicaciones , Hipotonía Muscular/diagnóstico , Mutación Missense , Estudios Retrospectivos , Síndrome , Temblor/complicaciones , Temblor/diagnóstico , Estados Unidos , Secuenciación del Exoma , Adulto JovenRESUMEN
Over-expression of the human epidermal growth factor receptor-2 (HER2) is related to aggressive tumors and poor prognosis in breast cancer. Trastuzumab (TRA) resistance leads to tumor recurrence and metastasis, resulting in poor prognosis in HER2-positive breast cancer. POU Class 4 Homeobox 1 (POU4F1) is a member of the POU domain family transcription factors, and has a key role in regulating cancers. However, its effects on TRA-resistant HER2-positive breast cancer are still vague. In the present study, we found that POU4F1 expression was dramatically increased in clinical breast cancer specimens with TRA resistance. Higher POU4F1 was also detected in HER2-positive breast cancer cells with TRA resistance than that of the parental ones. Poor prognosis was detected in breast cancer patients with high POU4F1 expression. Under TRA treatment, POU4F1 knockdown significantly reduced the proliferative capacity of HER2-positive breast cancer cells with TRA resistance. POU4F1 silence also sensitized resistant HER-positive breast cancer cells to TRA treatment in vivo using a xenograft mouse model, along with the markedly reduced tumor growth rate and tumor weight. Moreover, we found that POU4F1 deletion greatly decreased the activation of mitogen-activated or extracellular signal-regulated protein kinase kinases 1 and 2 (MEK1/2) and extracellular-regulated kinase 1/2 (ERK1/2) signaling pathways in breast cancer cells with TRA resistance. Migration and invasion were also effectively hindered by POU4F1 knockdown in TRA-resistant HER2-positive breast cancer cells. Notably, we found that POU4F1 deletion-improved chemosensitivity of HER2-positive breast cancer cells with drug-resistance to TRA treatment was closely associated with the blockage of ERK1/2 signaling. Collectively, our findings reported a critical role of POU4F1 in regulating TRA resistance, and demonstrated the underlying molecular mechanisms in HER2-positive breast cancer. Thus, POU4F1 may be a promising prognostic and therapeutic target to develop effective treatment for overcoming TRA resistance.
Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción Brn-3A/metabolismo , Trastuzumab/uso terapéutico , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Invasividad Neoplásica , Receptor ErbB-2/análisis , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/fisiologíaRESUMEN
Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-ß1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-ß1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.
Asunto(s)
Proteína smad3/metabolismo , Factor de Transcripción Brn-3A/genética , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Femenino , Fibrosis/fisiopatología , Redes Reguladoras de Genes , Humanos , Inflamación/patología , Riñón/patología , Enfermedades Renales/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Transducción de Señal/genética , Factor de Transcripción Brn-3A/metabolismo , Factor de Transcripción Brn-3A/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Sistema Urinario/metabolismoRESUMEN
BACKGROUND: Brn3a/Pou4f1 is a class IV POU domain-containing transcription factor and has been found to be expressed in a variety of cancers. However, the mechanism and action of Brn3a in thyroid cancer has not been investigated. PURPOSE: To investigate the role of Brn3a in thyroid cancer progression and its clinical implication. METHODS: We examined Brn3a expression status in patients with thyroid cancer and analyzed relationships between Brn3a expression and clinicopathological findings using The Cancer Genome Atlas (TCGA) database. For functional in vitro analysis, proliferation, migration, invasion assay, and Western blotting were performed after overexpression or suppression of Brn3a. RESULTS: The promoter hypermethylation of Brn3a was found in patients with aggressive thyroid cancer and Brn3a was downregulated in tissues of patients with thyroid cancer. In TCGA database, the low-Brn3a-expression group revealed a more aggressive phenotype, including T stage and extrathyroid extension when compared with the high-Brn3a-expression group. Overexpression of Brn3a suppressed cell migration and invasion via regulation of epithelial-mesenchymal transition (EMT)-associated proteins in thyroid cancer cell lines. Brn3a overexpression also downregulated signal transducer and activator of transcription 3 (STAT3) signaling through suppression of tyrosine-protein kinase Met (c-MET). In contrast, knockdown of Brn3a by small interfering ribonucleic acid (siRNA) significantly increased cell migration and invasion through upregulation of c-MET/STAT3. These results imply that Brn3a suppresses tumor metastasis via c-MET/STAT3 inhibition and EMT suppression in thyroid cancer. CONCLUSIONS: Our findings show that Brn3a is a potential tumor suppressor that leads to reduced cancer cell migration and invasion in thyroid cancer. Elucidation of the Brn3a-regulated cancer pathways may therefore provide novel therapeutic strategies to control thyroid cancer metastasis.
Asunto(s)
Proteínas Tirosina Quinasas Receptoras/genética , Factor de Transcripción STAT3/genética , Neoplasias de la Tiroides/genética , Factor de Transcripción Brn-3A/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor/fisiología , Humanos , Análisis por Micromatrices , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética , Neoplasias de la Tiroides/patologíaRESUMEN
BACKGROUND: Normal-tension glaucoma (NTG) that occurs despite normal intraocular pressure has genetic predisposition. Since retinal ganglion cells (RGCs) are a key node in pathogenesis of glaucoma, neurodegeneration of RGCs is thought to be the main cause increasing the risk of NTG development. Here, we aimed to investigate the association of polymorphisms in RGC development genes with NTG development. MATERIALS AND METHODS: We performed a case-control association study of 435 patients with NTG and 419 normal controls. We genotyped four single nucleotide polymorphisms (SNPs) in genes responsible for RGC development, namely POU4F2 (rs13152799 and rs1504360), POU4F1 (rs9601092), and ISL1 (rs2288468), by either real-time PCR or PCR-RFLP, and evaluated its association with the risk of NTG development. RESULTS: No significant association was observed between the candidate SNPs and NTG development. CONCLUSIONS: To the best of our knowledge, this is the first report exploring the association between genes regulating RGC development and NTG susceptibility. Our data could provide a reference for further researches that focus on finding additional potential SNPs of POU4F2, POU4F1, ISL1 or other RGC development genes for NTG.
Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas con Homeodominio LIM/genética , Glaucoma de Baja Tensión/patología , Polimorfismo de Nucleótido Simple , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3B/genética , Factores de Transcripción/genética , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Glaucoma de Baja Tensión/epidemiología , Glaucoma de Baja Tensión/genética , Masculino , Persona de Mediana Edad , República de Corea/epidemiología , Factores de RiesgoRESUMEN
Monocrotophos (MCP) is a broad spectrum organophosphorus insecticide, which is widely used as foliar spray to the different important crops. MCP may reach the soil and the aquatic environment directly or indirectly during and after the application, which leads to the different environmental issues. MCP is found to be associated with neurotoxicity and its toxic effects have been monitored during different stages of neuronal development. Identification of gene expression in MCP-induced neurotoxicity during neuronal developmental stage is a major area of genomic research interest. In accordance with this identification, screening of potential neuroprotective, natural resources are also required as a preventive aspects by targeting the impaired genes. In this current course of work, microarray experiment has been used to identify genes that were expressed in monocrotophos (MCP)-induced mesenchymal stem cells (MSC) and also the neuroprotectant activity of RV on MCP-exposed MSCs. Microarray experiment data have been deposited in NCBI's Gene Expression Omnibus database and are accessible through GEO Series accession number GSE121261. In this paper, we have discussed two important genes NIPBL (nipped-B-like protein) and POU4F1 (POU domain, class 4, transcription factor 1). These genes were found to be significantly expressed in MCP-exposed MSC and show minimum expression in presence of RV. Homology modelling and docking study was done to identify the interaction and binding affinity of resveratrol and its derivatives with NIPBL and POU4F1 protein. Docking analysis shows that RV and its derivatives have strong interaction with NIPBL and POU4F1 protein hence proves the significance of resveratrol as potential neuroprotectant. This paper highlights the hazardous impact of MCP on neuronal development disorders and repairing potentiality of RV and its derivatives on altered genes involved in neuronal diseases. Graphical Abstract.
Asunto(s)
Insecticidas/toxicidad , Monocrotofos/toxicidad , Fármacos Neuroprotectores/farmacología , Resveratrol/farmacología , Factor de Transcripción Brn-3A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Genes cdc , Humanos , Células Madre Mesenquimatosas , Simulación del Acoplamiento Molecular , Monocrotofos/química , Neuronas/efectos de los fármacosRESUMEN
Many distinct regulatory factors have been shown to be required for the proper initiation of neuron-type-specific differentiation programs, but much less is known about the regulatory programs that maintain the differentiated state in the adult [1-3]. One possibility is that regulatory factors that initiate a terminal differentiation program during development are continuously required to maintain the differentiated state. Here, we test this hypothesis by investigating the function of two orthologous POU homeobox genes in nematodes and mice. The C. elegans POU homeobox gene unc-86 is a terminal selector that is required during development to initiate the terminal differentiation program of several distinct neuron classes [4-13]. Through post-developmental removal of unc-86 activity, we show here that unc-86 is also continuously required throughout the life of many neuron classes to maintain neuron-class-specific identity features. Similarly, the mouse unc-86 ortholog Brn3a/POU4F1 has been shown to control the initiation of the terminal differentiation program of distinct neuron types across the mouse brain, such as the medial habenular neurons [14-20]. By conditionally removing Brn3a in the adult mouse central nervous system, we show that, like its invertebrate ortholog unc-86, Brn3a is also required for the maintenance of terminal identity features of medial habenular neurons. In addition, Brn3a is required for the survival of these neurons, indicating that identity maintenance and survival are genetically linked. We conclude that the continuous expression of transcription factors is essential for the active maintenance of the differentiated state of a neuron across phylogeny.
Asunto(s)
Caenorhabditis elegans/genética , Diferenciación Celular/fisiología , Neuronas/fisiología , Factores del Dominio POU/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Genes Homeobox , Ratones , Mitosis , Neurogénesis , Factores del Dominio POU/genética , Tamoxifeno/farmacología , Factores de Transcripción/metabolismoRESUMEN
Visual information is conveyed from the eye to the brain by distinct types of retinal ganglion cells (RGCs). It is largely unknown how RGCs acquire their defining morphological and physiological features and connect to upstream and downstream synaptic partners. The three Brn3/Pou4f transcription factors (TFs) participate in a combinatorial code for RGC type specification, but their exact molecular roles are still unclear. We use deep sequencing to define (i) transcriptomes of Brn3a- and/or Brn3b-positive RGCs, (ii) Brn3a- and/or Brn3b-dependent RGC transcripts, and (iii) transcriptomes of retinorecipient areas of the brain at developmental stages relevant for axon guidance, dendrite formation, and synaptogenesis. We reveal a combinatorial code of TFs, cell surface molecules, and determinants of neuronal morphology that is differentially expressed in specific RGC populations and selectively regulated by Brn3a and/or Brn3b. This comprehensive molecular code provides a basis for understanding neuronal cell type specification in RGCs.
Asunto(s)
Encéfalo/metabolismo , Proteínas de la Membrana/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3/metabolismo , Animales , Orientación del Axón , Encéfalo/embriología , Comunicación Celular , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Células Ganglionares de la Retina/citología , TranscriptomaRESUMEN
The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance.