Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2401973121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809707

RESUMEN

In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Recombinación Genética , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Mamíferos/genética , Islas de CpG/genética , Euterios/genética , Ratones , Femenino , Conversión Génica , Evolución Molecular
2.
Animals (Basel) ; 14(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731349

RESUMEN

Meiotic recombination is a prevalent process in eukaryotic sexual reproduction organisms that plays key roles in genetic diversity, breed selection, and species evolution. However, the recombination events differ across breeds and even within breeds. In this study, we initially computed large-scale population recombination rates of both sexes using approximately 52 K SNP genotypes in a total of 3279 pigs from four different Chinese and Western breeds. We then constructed a high-resolution historical recombination map using approximately 16 million SNPs from a sample of unrelated individuals. Comparative analysis of porcine recombination events from different breeds and at different resolutions revealed the following observations: Firstly, the 1Mb-scale pig recombination maps of the same sex are moderately conserved among different breeds, with the similarity of recombination events between Western pigs and Chinese indigenous pigs being lower than within their respective groups. Secondly, we identified 3861 recombination hotspots in the genome and observed medium- to high-level correlation between historical recombination rates (0.542~0.683) and estimates of meiotic recombination rates. Third, we observed that recombination hotspots are significantly far from the transcription start sites of pig genes, and the silico-predicted PRDM9 zinc finger domain DNA recognition motif is significantly enriched in the regions of recombination hotspots compared to recombination coldspots, highlighting the potential role of PRDM9 in regulating recombination hotspots in pigs. Our study analyzed the variation patterns of the pig recombination map at broad and fine scales, providing a valuable reference for genomic selection breeding and laying a crucial foundation for further understanding the molecular mechanisms of pig genome recombination.

3.
Biology (Basel) ; 13(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38666830

RESUMEN

The Pacific whiteleg shrimp (Penaeus vannamei) is a highly significant species in shrimp aquaculture. In the production of shrimp larvae, noticeable variations in the reproductive capacity among female individuals have been observed. Some females experience slow gonadal development, resulting in the inability to spawn, while others undergo multiple maturations and contribute to the majority of larval supply. Despite numerous studies that have been conducted on the regulatory mechanisms of ovarian development in shrimp, the factors contributing to the differences in reproductive capacity among females remain unclear. To elucidate the underlying mechanisms, this study examined the differences in the ovarian characteristics between high and low reproductive bulks at different maturity stages, focusing on the cellular and molecular levels. Transmission electron microscopy analysis revealed that the abundance of the endoplasmic reticulum, ribosomes, mitochondria, and mitochondrial cristae in oocytes of high reproductive bulk was significantly higher than that of the low reproductive bulk in the early stages of ovarian maturation (stages I and II). As the ovaries progressed to late-stage maturation (stages III and IV), differences in the internal structures of oocytes between females with different reproductive capacities gradually diminished. Transcriptome analysis identified differentially expressed genes (DEGs) related to the mitochondria between two groups, suggesting that energy production processes might play a crucial role in the observed variations in ovary development. The expression levels of the ETS homology factor (EHF) and PRDI-BF1 and RIZ homology domain containing 9 (PRDM9), which were significantly different between the two groups, were compared using qRT-PCR in individuals at different stages of ovarian maturation. The results showed a significantly higher expression of the EHF gene in the ovaries of high reproductive bulk at the II and IV maturity stages compared to the low reproductive bulk, while almost no expression was detected in the eyestalk tissue of the high reproductive bulk. The PRDM9 gene was exclusively expressed in ovarian tissue, with significantly higher expression in the ovaries of the high reproductive bulk at the four maturity stages compared to the low reproductive bulk. Fluorescence in situ hybridization further compared the expression patterns of EHF and PRDM9 in the ovaries of individuals with different fertility levels, with both genes showing stronger positive signals in the high reproductive bulk at the four ovarian stages. These findings not only contribute to our understanding of the regulatory mechanisms involved in shrimp ovarian development, but also provide valuable insights for the cultivation of new varieties aimed at improving shrimp fecundity.

4.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513632

RESUMEN

Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.


Asunto(s)
Cromosomas , Genómica , Masculino , Animales , Ratones , Alelos
5.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38366575

RESUMEN

Reference genome assemblies have been created from multiple lineages within the Canidae family; however, despite its phylogenetic relevance as a basal genus within the clade, there is currently no reference genome for the gray fox (Urocyon cinereoargenteus). Here, we present a chromosome-level assembly for the gray fox (U. cinereoargenteus), which represents the most contiguous, non-domestic canid reference genome available to date, with 90% of the genome contained in just 34 scaffolds and a contig N50 and scaffold N50 of 59.4 and 72.9 Megabases, respectively. Repeat analyses identified an increased number of simple repeats relative to other canids. Based on mitochondrial DNA, our Vermont sample clusters with other gray fox samples from the northeastern United States and contains slightly lower levels of heterozygosity than gray foxes on the west coast of California. This new assembly lays the groundwork for future studies to describe past and present population dynamics, including the delineation of evolutionarily significant units of management relevance. Importantly, the phylogenetic position of Urocyon allows us to verify the loss of PRDM9 functionality in the basal canid lineage, confirming that pseudogenization occurred at least 10 million years ago.


Asunto(s)
Cromosomas , Zorros , Animales , Zorros/genética , Filogenia , Cromosomas/genética , ADN Mitocondrial/genética , Genoma
6.
Genetics ; 226(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38217871

RESUMEN

PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.


Asunto(s)
Infertilidad , Animales , Humanos , Masculino , Ratones , Exones , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Infertilidad/genética , Ratones Endogámicos C57BL , Fenotipo , Zinc
7.
Curr Stem Cell Res Ther ; 19(3): 417-425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37608663

RESUMEN

OBJECTIVES: Periodontal ligament stem cells (PDLSCs) are ideal seed cells for periodontal tissue regeneration. Our previous studies have indicated that the histone methyltransferase PRDM9 plays an important role in human periodontal ligament stem cells (hPDLSCs). Whether FBLN5, which is a downstream gene of PRDM9, also has a potential impact on hPDLSCs is still unclear. METHODS: Senescence was assessed using ß-galactosidase and Enzyme-linked immunosorbent assay (ELISA). Osteogenic differentiation potential of hPDLSCs was measured through Alkaline phosphatase (ALP) activity assay and Alizarin red detection, while gene expression levels were evaluated using western blot and RT-qPCR analysis. RESULTS: FBLN5 overexpression promoted the osteogenic differentiation and senescence of hPDLSCs. FBLN5 knockdown inhibited the osteogenic differentiation and senescence of hPDLSCs. Knockdown of PRDM9 decreased the expression of FBLN5 in hPDLSCs and inhibited senescence of hPDLSCs. Additionally, both FBLN5 and PRDM9 promoted the expression of phosphorylated p38 MAPK, Erk1/2 and JNK. The p38 MAPK pathway inhibitor SB203580 and the Erk1/2 pathway inhibitor PD98059 have the same effects on inhibiting the osteogenic differentiation and senescence of hPDLSCs. The JNK pathway inhibitor SP600125 reduced the senescence of hPDLSCs. CONCLUSION: FBLN5 promoted senescence and osteogenic differentiation of hPDLSCs via activation of the MAPK signaling pathway. FBLN5 was positively targeted by PRDM9, which also activated the MAPK signaling pathway.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Humanos , Osteogénesis/genética , Células Cultivadas , Diferenciación Celular , Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/farmacología , N-Metiltransferasa de Histona-Lisina/metabolismo
8.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003713

RESUMEN

The PR domain-containing 9 or PRDM9 is a gene recognized for its fundamental role in meiosis, a process essential for forming reproductive cells. Recent findings have implicated alterations in the PRDM9, particularly its zinc finger motifs, in the onset and progression of cancer. This association is manifested through genomic instability and the misregulation of genes critical to cell growth, proliferation, and differentiation. In our comprehensive study, we harnessed advanced bioinformatic mining tools to delve deep into the intricate relationship between PRDM9F and cancer. We analyzed 136,752 breakpoints and found an undeniable association between specific PRDM9 motifs and the occurrence of double-strand breaks, a phenomenon evidenced in every cancer profile examined. Utilizing R statistical querying and the Regioner package, 55 unique sequence variations of PRDM9 were statistically correlated with cancer, from a pool of 1024 variations. A robust analysis using the Enrichr tool revealed prominent associations with various cancer types. Moreover, connections were noted with specific phenotypic conditions and molecular functions, underlining the pervasive influence of PRDM9 variations in the biological spectrum. The Reactome tool identified 25 significant pathways associated with cancer, offering insights into the mechanistic underpinnings linking PRDM9 to cancer progression. This detailed analysis not only confirms the pivotal role of PRDM9 in cancer development, but also unveils a complex network of biological processes influenced by its variations. The insights gained lay a solid foundation for future research aimed at deciphering the mechanistic pathways of PRDM9, offering prospects for targeted interventions and innovative therapeutic approaches in cancer management.


Asunto(s)
Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina , Neoplasias , Humanos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Recombinación Homóloga , Meiosis , Neoplasias/genética , Neoplasias/metabolismo
9.
Elife ; 122023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37830496

RESUMEN

In many species, meiotic recombination events tend to occur in narrow intervals of the genome, known as hotspots. In humans and mice, double strand break (DSB) hotspot locations are determined by the DNA-binding specificity of the zinc finger array of the PRDM9 protein, which is rapidly evolving at residues in contact with DNA. Previous models explained this rapid evolution in terms of the need to restore PRDM9 binding sites lost to gene conversion over time, under the assumption that more PRDM9 binding always leads to more DSBs. This assumption, however, does not align with current evidence. Recent experimental work indicates that PRDM9 binding on both homologs facilitates DSB repair, and that the absence of sufficient symmetric binding disrupts meiosis. We therefore consider an alternative hypothesis: that rapid PRDM9 evolution is driven by the need to restore symmetric binding because of its role in coupling DSB formation and efficient repair. To this end, we model the evolution of PRDM9 from first principles: from its binding dynamics to the population genetic processes that govern the evolution of the zinc finger array and its binding sites. We show that the loss of a small number of strong binding sites leads to the use of a greater number of weaker ones, resulting in a sharp reduction in symmetric binding and favoring new PRDM9 alleles that restore the use of a smaller set of strong binding sites. This decrease, in turn, drives rapid PRDM9 evolutionary turnover. Our results therefore suggest that the advantage of new PRDM9 alleles is in limiting the number of binding sites used effectively, rather than in increasing net PRDM9 binding. By extension, our model suggests that the evolutionary advantage of hotspots may have been to increase the efficiency of DSB repair and/or homolog pairing.


Asunto(s)
Roturas del ADN de Doble Cadena , N-Metiltransferasa de Histona-Lisina , Humanos , Ratones , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , Reparación del ADN , Recombinación Homóloga , ADN/metabolismo , Meiosis/genética
10.
Trends Genet ; 39(11): 844-857, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716846

RESUMEN

Canonical Krüppel-associated box (KRAB)-containing zinc finger proteins (KZFPs) act as major repressors of transposable elements (TEs) via the KRAB-mediated recruitment of the heterochromatin scaffold KRAB-associated protein (KAP)1. KZFP genes emerged some 420 million years ago in the last common ancestor of coelacanth, lungfish, and tetrapods, and dramatically expanded to give rise to lineage-specific repertoires in contemporary species paralleling their TE load and turnover. However, the KRAB domain displays sequence and function variations that reveal repeated diversions from a linear TE-KZFP trajectory. This Review summarizes current knowledge on the evolution of KZFPs and discusses how ancestral noncanonical KZFPs endowed with variant KRAB, SCAN or DUF3669 domains have been utilized to achieve KAP1-independent functions.


Asunto(s)
Proteínas Represoras , Dedos de Zinc , Proteínas Represoras/genética , Dedos de Zinc/genética , Factores de Transcripción/genética , Elementos Transponibles de ADN , Heterocromatina
11.
bioRxiv ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37162821

RESUMEN

Meiotic DNA double-strand breaks (DSBs) initiate homologous recombination and are crucial for ensuring proper chromosome segregation. In mice, ANKRD31 recently emerged as a regulator of DSB timing, number, and location, with a particularly important role in targeting DSBs to the pseudoautosomal regions (PARs) of sex chromosomes. ANKRD31 interacts with multiple proteins, including the conserved and essential DSB-promoting factor REC114, so it was hypothesized to be a modular scaffold that "anchors" other proteins together and to meiotic chromosomes. To determine if and why the REC114 interaction is important for ANKRD31 function, we generated mice with Ankrd31 mutations that either reduced (missense mutation) or eliminated (C-terminal truncation) the ANKRD31-REC114 interaction without diminishing contacts with other known partners. A complete lack of the ANKRD31-REC114 interaction mimicked an Ankrd31 null, with delayed DSB formation and recombination, defects in DSB repair, and altered DSB locations including failure to target DSBs to the PARs. In contrast, when the ANKRD31-REC114 interaction was substantially but not completely disrupted, spermatocytes again showed delayed DSB formation globally, but recombination and repair were hardly affected and DSB locations were similar to control mice. The missense Ankrd31 allele showed a dosage effect, wherein combining it with the null or C-terminal truncation allele resulted in intermediate phenotypes for DSB formation, recombination, and DSB locations. Our results show that ANKRD31 function is critically dependent on its interaction with REC114, and that defects in ANKRD31 activity correlate with the severity of the disruption of the interaction.

12.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37030001

RESUMEN

Hybrid sterility (HS) is an early postzygotic reproductive isolation mechanism observed in all sexually reproducing species. Infertility of hybrids prevents gene flow between incipient species and leads to speciation. While Drosophila studies have focused almost exclusively on the genic control of HS, two other model species, Mus musculus and budding yeast, provided the first experimental evidence of hybrid sterility governed by the nongenic effects of DNA sequence divergence. Here, we propose that the nongenic effect of increasing DNA divergence between closely related species may impair mutual recognition of homologous chromosomes and disrupt their synapsis. Unsynapsed or mispaired homologs can induce early meiotic arrest, or their random segregation can cause aneuploidy of spermatids and sperm cells. Impaired recognition of homologs may thus act as a universal chromosomal checkpoint contributing to the complexity of genetic control of HS. Chromosomal HS controlled by the Prdm9 gene in mice and HS driven by the mismatch repair machinery in yeast are currently the most advanced examples of chromosomal homology search-based HS. More focus on the cellular and molecular phenotypes of meiosis will be needed to further validate the role of homolog recognition in hybrid sterility and speciation.


Asunto(s)
Infertilidad Masculina , Infertilidad , Masculino , Ratones , Animales , Humanos , Hibridación Genética , Semillas , Infertilidad/genética , Cromosomas , Meiosis , Saccharomyces cerevisiae/genética , Infertilidad Masculina/genética , N-Metiltransferasa de Histona-Lisina/genética
13.
Curr Top Dev Biol ; 151: 27-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681473

RESUMEN

Recent discoveries have advanced our understanding of recombination initiation beyond the placement of double-stranded DNA breaks (DSBs) from germline replication timing to the dynamic reorganization of chromatin, and defined critical players of recombination initiation. This article focuses on recombination initiation in mammals utilizing the PRDM9 protein to orchestrate crucial stages of meiotic recombination initiation by interacting with the local DNA environment and several protein complexes. The Pioneer Complex with the SNF2-type chromatin remodeling enzyme HELLS, exposes PRDM9-bound DNA. At the same time, a Compass-Complex containing EWSR1, CXXC1, CDYL, EHMT2 and PRDM9 facilitates the association of putative hotspot sites in DNA loops with the chromosomal axis where DSB-promoting complexes are located, and DSBs are catalyzed by the SPO11/TOPOVIBL complex. Finally, homology search is facilitated at PRDM9-directed sites by ANKRD31. The Reader-Writer system consists of PRDM9 writing characteristic histone methylation signatures, which are read by ZCWPW1, promoting efficient homology engagement.


Asunto(s)
Cromatina , ADN , Animales , ADN/metabolismo , Cromosomas , Recombinación Homóloga , Roturas del ADN de Doble Cadena , Meiosis/genética , Mamíferos/genética
14.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36508360

RESUMEN

Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recombination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9's zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles identified to date, and pose a particularly powerful system for addressing this open question. We employed a coalescent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary patterns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between surveyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and underscore the functional impact of Prdm9 allelic variation in wild mouse populations.


Asunto(s)
Evolución Molecular , Variación Genética , N-Metiltransferasa de Histona-Lisina , Ratones , Animales , Ratones/genética , Cromosomas/genética , Genoma , N-Metiltransferasa de Histona-Lisina/genética
15.
BMC Genomics ; 23(1): 212, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296233

RESUMEN

BACKGROUND: PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types - that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. RESULTS: Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales - shared across North Atlantic and North Pacific minke whale subspecies boundaries. CONCLUSION: The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility.


Asunto(s)
Ballena Minke , Alelos , Animales , N-Metiltransferasa de Histona-Lisina/genética , Meiosis , Ballena Minke/genética , Dedos de Zinc/genética
16.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217607

RESUMEN

In most mammals and likely throughout vertebrates, the gene PRDM9 specifies the locations of meiotic double strand breaks; in mice and humans at least, it also aids in their repair. For both roles, many of the molecular partners remain unknown. Here, we take a phylogenetic approach to identify genes that may be interacting with PRDM9 by leveraging the fact that PRDM9 arose before the origin of vertebrates but was lost many times, either partially or entirely-and with it, its role in recombination. As a first step, we characterize PRDM9 domain composition across 446 vertebrate species, inferring at least 13 independent losses. We then use the interdigitation of PRDM9 orthologs across vertebrates to test whether it coevolved with any of 241 candidate genes coexpressed with PRDM9 in mice or associated with recombination phenotypes in mammals. Accounting for the phylogenetic relationship among a subsample of 189 species, we find two genes whose presence and absence is unexpectedly coincident with that of PRDM9: ZCWPW1, which was recently shown to facilitate double strand break repair, and its paralog ZCWPW2, as well as, more tentatively, TEX15 and FBXO47ZCWPW2 is expected to be recruited to sites of PRDM9 binding; its tight coevolution with PRDM9 across vertebrates suggests that it is a key interactor within mammals and beyond, with a role either in recruiting the recombination machinery or in double strand break repair.


Asunto(s)
Proteínas de Ciclo Celular/genética , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina/genética , Animales , Evolución Molecular , Humanos , Ratones , Filogenia , Recombinación Genética , Análisis de Secuencia de ARN/métodos
17.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35162997

RESUMEN

Krüppel-associated box (KRAB) zinc finger proteins are a large class of tetrapod transcription factors that usually exert transcriptional repression through recruitment of TRIM28/KAP1. The evolutionary root of modern KRAB domains (mKRAB) can be traced back to an ancestral motif (aKRAB) that occurs even in invertebrates. Here, we first stratified three subgroups of aKRAB sequences from the animal kingdom (PRDM9, SSX and coelacanth KZNF families) and defined ancestral subdomains for KRAB-A and KRAB-B. Using human ZNF10 mKRAB-AB as blueprints for function, we then identified the necessary amino acid changes that transform the inactive aKRAB-A of human PRDM9 into an mKRAB domain capable of mediating silencing and complexing TRIM28/KAP1 in human cells when employed as a hybrid with ZNF10-B. Full gain of function required replacement of residues KR by the conserved motif MLE (positionsA32-A34), which inserted an additional residue, and exchange of A9/S for F, A20/M for L, and A27/R for V. AlphaFold2 modelling documented an evolutionary conserved L-shaped body of two α-helices in all KRAB domains. It is transformed into a characteristic spatial arrangement typical for mKRAB-AB upon the amino acid replacements and in conjunction with a third helix supplied by mKRAB-B. Side-chains pointing outward from the core KRAB 3D structure may reveal a protein-protein interaction code enabling graded binding of TRIM28 to different KRAB domains. Our data provide basic insights into structure-function relationships and emulate transitions of KRAB during evolution.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Invertebrados/metabolismo , Factores de Transcripción de Tipo Kruppel/química , Proteínas Represoras/química , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Evolución Molecular , Mutación con Ganancia de Función , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Modelos Moleculares , Conformación Proteica en Hélice alfa , Dominios Proteicos , Proteínas Represoras/genética
18.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34864964

RESUMEN

Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.


Asunto(s)
Epigénesis Genética , Infertilidad Masculina , Animales , N-Metiltransferasa de Histona-Lisina/genética , Hibridación Genética , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Ratones , Espermatogénesis/genética , Cromosoma X/genética
19.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34888655

RESUMEN

It has long been known (circa 1917) that environmental conditions, as well as speciation, can affect dramatically the frequency distribution of Spo11/Rec12-dependent meiotic recombination. Here, by analyzing DNA sequence-dependent meiotic recombination hotspots in the fission yeast Schizosaccharomyces pombe, we reveal a molecular basis for these phenomena. The impacts of changing environmental conditions (temperature, nutrients, and osmolarity) on local rates of recombination are mediated directly by DNA site-dependent hotspots (M26, CCAAT, and Oligo-C). This control is exerted through environmental condition-responsive signal transduction networks (involving Atf1, Pcr1, Php2, Php3, Php5, and Rst2). Strikingly, individual hotspots modulate rates of recombination over a very broad dynamic range in response to changing conditions. They can range from being quiescent to being highly proficient at promoting activity of the basal recombination machinery (Spo11/Rec12 complex). Moreover, each different class of hotspot functions as an independently controlled rheostat; a condition that increases the activity of one class can decrease the activity of another class. Together, the independent modulation of recombination rates by each different class of DNA site-dependent hotspots (of which there are many) provides a molecular mechanism for highly dynamic, large-scale changes in the global frequency distribution of meiotic recombination. Because hotspot-activating DNA sites discovered in fission yeast are conserved functionally in other species, this process can also explain the previously enigmatic, Prdm9-independent, evolutionarily rapid changes in hotspot usage between closely related species, subspecies, and isolated populations of the same species.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Secuencia de Bases , Recombinación Homóloga , Meiosis/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/genética
20.
Gene ; 813: 146123, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34952174

RESUMEN

PRDM9 drives recombination hotspots in some mammals, including mice and apes. Non-functional orthologs of PRDM9 are present in a wide variety of vertebrates, but why it is functionally maintained in some lineages is not clear. One possible explanation is that PRDM9 plays a role in ensuring that meiosis is successful. During meiosis, available DNA may be a limiting resource given the tight packaging of chromosomes and could lead to competition between two key processes: meiotic transcription and recombination. Here we explore this potential competition and the role that PRDM9 might play in their interaction. Leveraging existing mouse genomic data, we use resampling schemes that simulate shuffled features along the genome and models that account for the rarity of features in the genome, to test if PRDM9 influences interactions between recombination hotspots and meiotic transcription in a whole genome framework. We also explored possible DNA sequence motifs associated to clusters of hotspots not tied to transcription or PRDM9. We find evidence of competition between meiotic transcription and recombination, with PRDM9 appearing to relocate recombination to avoid said conflict. We also find that retrotransposons may be playing a role in directing hotspots in the absence of other factors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Meiosis/genética , Animales , Cromosomas/metabolismo , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Bases de Datos Genéticas , Genoma , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Modelos Genéticos , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...