Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38954053

RESUMEN

Identification of changes in protein abundance for attention-deficit/hyperactivity disorder (ADHD) is important for potential disease mechanisms and therapeutic study for ADHD. In order to identify candidate proteins that confer risk for ADHD, a proteome-wide association study (PWAS) for ADHD was conducted by integrating two human brain proteome datasets and the ADHD genome-wide association study (GWAS) summary statistics released by the Psychiatric Genomics Consortium (PGC). A total of 11 risk proteins were identified as significant candidates that passed the bonferroni corrected proteome-wide significant (PWS) level. The predicted protein abundance level of LSM6, GMPPB, ICA1L and CISD2 are shown significantly associated with ADHD in both proteome datasets, highlighting their potential role in ADHD pathogenesis. A transcriptome-wide association study (TWAS) of ADHD was also conducted, and 13 genes with predicted expression changes related to ADHD were identified. GMPPB, ICA1L and NAT6 were supported by both TWAS and PWASs analysis. This study uncovers the predicted protein abundance changes that confer risk for ADHD and pinpoints a number of high-confidence protein candidates (e.g. LSM6, GMPPB, ICA1L, CISD2) for further functional exploration studies and drug development targeting these proteins.

2.
Front Genet ; 15: 1409226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919955

RESUMEN

Hypothyroidism is a common endocrine disorder whose prevalence increases with age. The disease manifests itself when the thyroid gland fails to produce sufficient thyroid hormones. The disorder includes cases of congenital hypothyroidism (CH), but most cases exhibit hormonal feedback dysregulation and destruction of the thyroid gland by autoantibodies. In this study, we sought to identify causal genes for hypothyroidism in large populations. The study used the UK-Biobank (UKB) database, reporting on 13,687 cases of European ancestry. We used GWAS compilation from Open Targets (OT) and tuned protocols focusing on genes and coding regions, along with complementary association methods of PWAS (proteome-based) and TWAS (transcriptome-based). Comparing summary statistics from numerous GWAS revealed a limited number of variants associated with thyroid development. The proteome-wide association study method identified 77 statistically significant genes, half of which are located within the Chr6-MHC locus and are enriched with autoimmunity-related genes. While coding GWAS and PWAS highlighted the centrality of immune-related genes, OT and transcriptome-wide association study mostly identified genes involved in thyroid developmental programs. We used independent populations from Finland (FinnGen) and the Taiwan cohort to validate the PWAS results. The higher prevalence in females relative to males is substantiated as the polygenic risk score prediction of hypothyroidism relied mostly from the female group genetics. Comparing results from OT, TWAS, and PWAS revealed the complementary facets of hypothyroidism's etiology. This study underscores the significance of synthesizing gene-phenotype association methods for this common, intricate disease. We propose that the integration of established association methods enhances interpretability and clinical utility.

3.
Genet Epidemiol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940271

RESUMEN

In most Proteome-Wide Association Studies (PWAS), variants near the protein-coding gene (±1 Mb), also known as cis single nucleotide polymorphisms (SNPs), are used to predict protein levels, which are then tested for association with phenotypes. However, proteins can be regulated through variants outside of the cis region. An intermediate GWAS step to identify protein quantitative trait loci (pQTL) allows for the inclusion of trans SNPs outside the cis region in protein-level prediction models. Here, we assess the prediction of 540 proteins in 1002 individuals from the Women's Health Initiative (WHI), split equally into a GWAS set, an elastic net training set, and a testing set. We compared the testing r2 between measured and predicted protein levels using this proposed approach, to the testing r2 using only cis SNPs. The two methods usually resulted in similar testing r2, but some proteins showed a significant increase in testing r2 with our method. For example, for cartilage acidic protein 1, the testing r2 increased from 0.101 to 0.351. We also demonstrate reproducible findings for predicted protein association with lipid and blood cell traits in WHI participants without proteomics data and in UK Biobank utilizing our PWAS weights.

4.
Eur Thyroid J ; 13(3)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805593

RESUMEN

Introduction: Thyroid hormones have systemic effects on the human body and play a key role in the development and function of virtually all tissues. They are regulated via the hypothalamic-pituitary-thyroid (HPT) axis and have a heritable component. Using genetic information, we applied tissue-specific transcriptome-wide association studies (TWAS) and plasma proteome-wide association studies (PWAS) to elucidate gene products related to thyrotropin (TSH) and free thyroxine (FT4) levels. Results: TWAS identified 297 and 113 transcripts associated with TSH and FT4 levels, respectively (25 shared), including transcripts not identified by genome-wide association studies (GWAS) of these traits, demonstrating the increased power of this approach. Testing for genetic colocalization revealed a shared genetic basis of 158 transcripts with TSH and 45 transcripts with FT4, including independent, FT4-associated genetic signals within the CAPZB locus that were differentially associated with CAPZB expression in different tissues. PWAS identified 18 and ten proteins associated with TSH and FT4, respectively (HEXIM1 and QSOX2 with both). Among these, the cognate genes of five TSH- and 7 FT4-associated proteins mapped outside significant GWAS loci. Colocalization was observed for five plasma proteins each with TSH and FT4. There were ten TSH and one FT4-related gene(s) significant in both TWAS and PWAS. Of these, ANXA5 expression and plasma annexin A5 levels were inversely associated with TSH (PWAS: P = 1.18 × 10-13, TWAS: P = 7.61 × 10-12 (whole blood), P = 6.40 × 10-13 (hypothalamus), P = 1.57 × 10-15 (pituitary), P = 4.27 × 10-15 (thyroid)), supported by colocalizations. Conclusion: Our analyses revealed new thyroid function-associated genes and prioritized candidates in known GWAS loci, contributing to a better understanding of transcriptional regulation and protein levels relevant to thyroid function.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sistema Hipotálamo-Hipofisario , Proteoma , Glándula Tiroides , Tirotropina , Tiroxina , Transcriptoma , Humanos , Glándula Tiroides/metabolismo , Proteoma/genética , Proteoma/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Tirotropina/sangre , Tirotropina/metabolismo , Tiroxina/sangre , Tiroxina/metabolismo , Perfilación de la Expresión Génica
5.
medRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585769

RESUMEN

Characterizing the genetic mechanisms underlying Alzheimer's disease (AD) dementia is crucial for developing new therapeutics. Proteome-wide association study (PWAS) integrating proteomics data with genome-wide association study (GWAS) summary data was shown as a powerful tool for detecting risk genes. The identified PWAS risk genes can be interpretated as having genetic effects mediated through the genetically regulated protein abundances. Existing PWAS analyses of AD often rely on the availability of individual-level proteomics and genetics data of a reference cohort. Leveraging summary-level protein quantitative trait loci (pQTL) reference data of multiple relevant tissues is expected to improve PWAS findings for studying AD. Here, we applied our recently developed OTTERS tool to conduct PWAS of AD dementia, by leveraging summary-level pQTL data of brain, cerebrospinal fluid (CSF), and plasma tissues, and multiple statistical methods. For each target protein, imputation models of the protein abundance with genetic predictors were trained from summary-level pQTL data, estimating a set of pQTL weights for considered genetic predictors. PWAS p-values were obtained by integrating GWAS summary data of AD dementia with estimated pQTL weights. PWAS p-values from multiple statistical methods were combined by the aggregated Cauchy association test to yield one omnibus PWAS p-value for the target protein. We identified significant PWAS risk genes through omnibus PWAS p-values and analyzed their protein-protein interactions using STRING. Their potential causal effects were assessed by the probabilistic Mendelian randomization (PMR-Egger). As a result, we identified a total of 23 significant PWAS risk genes for AD dementia in brain, CSF, and plasma tissues, including 7 novel findings. We showed that 15 of these risk genes were interconnected within a protein-protein interaction network involving the well-known AD risk gene of APOE and 5 novel findings, and enriched in immune functions and lipids pathways including positive regulation of immune system process, positive regulation of macrophage proliferation, humoral immune response, and high-density lipoprotein particle clearance. Existing biological evidence was found to relate our novel findings with AD. We validated the mediated causal effects of 14 risk genes (60.8%). In conclusion, we identified both known and novel PWAS risk genes, providing novel insights into the genetic mechanisms in brain, CSF, and plasma tissues, and targeted therapeutics development of AD dementia. Our study also demonstrated the effectiveness of integrating public available summary-level pQTL data with GWAS summary data for mapping risk genes of complex human diseases.

6.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38400239

RESUMEN

This paper addresses the challenging issue of achieving high spatial resolution in temperature monitoring of printed circuit boards (PCBs) without compromising the operation of electronic components. Traditional methods involving numerous dedicated sensors such as thermocouples are often intrusive and can impact electronic functionality. To overcome this, this study explores the application of ultrasonic guided waves, specifically utilising a limited number of cost-effective and unobtrusive Piezoelectric Wafer Active Sensors (PWAS). Employing COMSOL multiphysics, wave propagation is simulated through a simplified PCB while systematically varying the temperature of both components and the board itself. Machine learning algorithms are used to identify hotspots at component positions using a minimal number of sensors. An accuracy of 97.6% is achieved with four sensors, decreasing to 88.1% when utilizing a single sensor in a pulse-echo configuration. The proposed methodology not only provides sufficient spatial resolution to identify hotspots but also offers a non-invasive and efficient solution. Such advancements are important for the future electrification of the aerospace and automotive industries in particular, as they contribute to condition-monitoring technologies that are essential for ensuring the reliability and safety of electronic systems.

7.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511084

RESUMEN

Target biomarkers for H2 at both the protein and genome levels are still unclear. In this study, quantitative proteomics acquired from a mouse model were first analyzed. At the same time, functional pathway analysis helped identify functional pathways at the protein level. Then, bioinformatics on mRNA sequencing data were conducted between sepsis and normal mouse models. Differential expressional genes with the closest relationship to disease status and development were identified through module correlation analysis. Then, common biomarkers in proteomics and transcriptomics were extracted as target biomarkers. Through analyzing expression quantitative trait locus (eQTL) and genome-wide association studies (GWAS), colocalization analysis on Apoa2 and sepsis phenotype was conducted by summary-data-based Mendelian randomization (SMR). Then, two-sample and drug-target, syndrome Mendelian randomization (MR) analyses were all conducted using the Twosample R package. For protein level, protein quantitative trait loci (pQTLs) of the target biomarker were also included in MR. Animal experiments helped validate these results. As a result, Apoa2 protein or mRNA was identified as a target biomarker for H2 with a protective, causal relationship with sepsis. HDL and type 2 diabetes were proven to possess causal relationships with sepsis. The agitation and inhibition of Apoa2 were indicated to influence sepsis and related syndromes. In conclusion, we first proposed Apoa2 as a target for H2 treatment.


Asunto(s)
Apolipoproteína A-II , Diabetes Mellitus Tipo 2 , Lesión Pulmonar , Sepsis , Animales , Ratones , Biomarcadores , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Polimorfismo de Nucleótido Simple , Proteómica , Sepsis/tratamiento farmacológico , Sepsis/genética , Apolipoproteína A-II/genética , Apolipoproteína A-II/metabolismo
8.
Genome Biol ; 24(1): 150, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365616

RESUMEN

BACKGROUND: The pathophysiological causes of kidney disease are not fully understood. Here we show that the integration of genome-wide genetic, transcriptomic, and proteomic association studies can nominate causal determinants of kidney function and damage. RESULTS: Through transcriptome-wide association studies (TWAS) in kidney cortex, kidney tubule, liver, and whole blood and proteome-wide association studies (PWAS) in plasma, we assess for effects of 12,893 genes and 1342 proteins on kidney filtration (glomerular filtration rate (GFR) estimated by creatinine; GFR estimated by cystatin C; and blood urea nitrogen) and kidney damage (albuminuria). We find 1561 associations distributed among 260 genomic regions that are supported as putatively causal. We then prioritize 153 of these genomic regions using additional colocalization analyses. Our genome-wide findings are supported by existing knowledge (animal models for MANBA, DACH1, SH3YL1, INHBB), exceed the underlying GWAS signals (28 region-trait combinations without significant GWAS hit), identify independent gene/protein-trait associations within the same genomic region (INHBC, SPRYD4), nominate tissues underlying the associations (tubule expression of NRBP1), and distinguish markers of kidney filtration from those with a role in creatinine and cystatin C metabolism. Furthermore, we follow up on members of the TGF-beta superfamily of proteins and find a prognostic value of INHBC for kidney disease progression even after adjustment for measured glomerular filtration rate (GFR). CONCLUSION: In summary, this study combines multimodal, genome-wide association studies to generate a catalog of putatively causal target genes and proteins relevant to kidney function and damage which can guide follow-up studies in physiology, basic science, and clinical medicine.


Asunto(s)
Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/genética , Cistatina C/genética , Proteoma/genética , Transcriptoma , Creatinina , Estudio de Asociación del Genoma Completo , Proteómica , Riñón
9.
Psychol Med ; : 1-9, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803885

RESUMEN

BACKGROUND: Anorexia nervosa (AN) is a psychiatric disorder associated with marked morbidity. Whilst AN genetic studies could identify novel treatment targets, integration of functional genomics data, including transcriptomics and proteomics, would assist to disentangle correlated signals and reveal causally associated genes. METHODS: We used models of genetically imputed expression and splicing from 14 tissues, leveraging mRNA, protein, and mRNA alternative splicing weights to identify genes, proteins, and transcripts, respectively, associated with AN risk. This was accomplished through transcriptome, proteome, and spliceosome-wide association studies, followed by conditional analysis and finemapping to prioritise candidate causal genes. RESULTS: We uncovered 134 genes for which genetically predicted mRNA expression was associated with AN after multiple-testing correction, as well as four proteins and 16 alternatively spliced transcripts. Conditional analysis of these significantly associated genes on other proximal association signals resulted in 97 genes independently associated with AN. Moreover, probabilistic finemapping further refined these associations and prioritised putative causal genes. The gene WDR6, for which increased genetically predicted mRNA expression was correlated with AN, was strongly supported by both conditional analyses and finemapping. Pathway analysis of genes revealed by finemapping identified the pathway regulation of immune system process (overlapping genes = MST1, TREX1, PRKAR2A, PROS1) as statistically overrepresented. CONCLUSIONS: We leveraged multiomic datasets to genetically prioritise novel risk genes for AN. Multiple-lines of evidence support that WDR6 is associated with AN, whilst other prioritised genes were enriched within immune related pathways, further supporting the role of the immune system in AN.

10.
J Psychiatr Res ; 156: 547-556, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368244

RESUMEN

BACKGROUND: Comparing with the general population, the pain in depression patients has more complex biological mechanism. We aim to explore the etiological mechanism of pain in depression patients from the perspective of genetics. METHODS: Utilizing the UK Biobank samples with self-reported depression status or PHQ score ≥10, we conducted genome-wide association studies (GWAS) of seven pain traits (N = 1,133-58,349). Additionally, we used FUSION pipeline to perform proteome-wide association study (PWAS) and transcriptome-wide association study (TWAS) by integrating GWAS summary data with two different proteome reference weights (ROS/MAP and Banner) and Rnaseq gene expression reference weights, respectively. RESULTS: GWAS identified 3 significant genes associated with different pain traits in depression patients, including TRIOBP (PGWAS = 4.48 × 10-8) for stomach or abdominal pain, SLC9A9(PGWAS = 2.77 × 10-8) for multisite chronic pain (MCP) and ADGRF1 (PGWAS = 1.51 × 10-8) for neck or shoulder pain. In addition, PWAS and TWAS analysis also identified multiple candidate genes associated with different pain traits in depression patients, such as TPRG1L (PPWAS-Banner = 3.38 × 10-2) and SIRPA (PPWAS-Banner = 3.65 × 10-2) for MCP, etc. Notably, when comparing the results of PWAS and TWAS analysis, we found overlapping candidate genes in these pain traits, such as GSTM3 (PPWAS-Banner = 3.38 × 10-2, PTWAS = 6.92 × 10-3) in the stomach or abdominal pain phenotype, ATG7 (PPWAS-Rosmap = 3.15 × 10-2, PTWAS = 2.98 × 10-2) in the MCP, etc. CONCLUSIONS: We identified multiple novel candidate genes for pain traits in depression patients from different perspectives of genetics, which provided novel clues for understanding the genetic mechanisms underlying the pain in depression patients.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteoma , Humanos , Estructuras Genéticas , Dolor Abdominal
11.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328582

RESUMEN

Small vessel strokes (SVS) and intracerebral haemorrhages (ICH) are acute outcomes of cerebral small vessel disease (SVD). Genetic studies combining both phenotypes have identified three loci associated with both traits. However, the genetic cis-regulation at the protein level associated with SVD has not been studied before. We performed a proteome-wide association study (PWAS) using FUSION to integrate a genome-wide association study (GWAS) and brain proteomic data to discover the common mechanisms regulating both SVS and ICH. Dorsolateral prefrontal cortex (dPFC) brain proteomes from the ROS/MAP study (N = 376 subjects and 1443 proteins) and the summary statistics for the SVS GWAS from the MEGASTROKE study (N = 237,511) and multi-trait analysis of GWAS (MTAG)-ICH−SVS from Chung et al. (N = 240,269) were selected. We performed PWAS and then a co-localization analysis with COLOC. The significant and nominal results were validated using a replication dPFC proteome (N = 152). The replicated results (q-value < 0.05) were further investigated for the causality relationship using summary data-based Mendelian randomization (SMR). One protein (ICA1L) was significantly associated with SVS (z-score = −4.42 and p-value = 9.6 × 10−6) and non-lobar ICH (z-score = −4.8 and p-value = 1.58 × 10−6) in the discovery PWAS, with a high co-localization posterior probability of 4. In the validation PWAS, ICA1L remained significantly associated with both traits. The SMR results for ICA1L indicated a causal association of protein expression levels in the brain with SVS (p-value = 3.66 × 10−5) and non-lobar ICH (p-value = 1.81 × 10−5). Our results show that the association of ICA1L with SVS and non-lobar ICH is conditioned by the cis-regulation of its protein levels in the brain.


Asunto(s)
Proteoma , Accidente Cerebrovascular , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/genética , Estudio de Asociación del Genoma Completo , Humanos , Proteoma/genética , Proteómica , Accidente Cerebrovascular/etiología
12.
Sensors (Basel) ; 21(12)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203019

RESUMEN

Acoustic waves are widely used in structural health monitoring (SHM) for detecting fatigue cracking. The strain energy released when a fatigue crack advances has the effect of exciting acoustic waves, which travel through the structures and are picked up by the sensors. Piezoelectric wafer active sensors (PWAS) can effectively sense acoustic waves due to fatigue-crack growth. Conventional acoustic-wave passive SHM, which relies on counting the number of acoustic events, cannot precisely estimate the crack length. In the present research, a novel method for estimating the crack length was proposed based on the high-frequency resonances excited in the crack by the energy released when a crack advances. In this method, a PWAS sensor was used to sense the acoustic wave signal and predict the length of the crack that generated the acoustic event. First, FEM analysis was undertaken of acoustic waves generated due to a fatigue-crack growth event on an aluminum-2024 plate. The FEM analysis was used to predict the wave propagation pattern and the acoustic signal received by the PWAS mounted at a distance of 25 mm from the crack. The analysis was carried out for crack lengths of 4 and 8 mm. The presence of the crack produced scattering of the waves generated at the crack tip; this phenomenon was observable in the wave propagation pattern and in the acoustic signals recorded at the PWAS. A study of the signal frequency spectrum revealed peaks and valleys in the spectrum that changed in frequency and amplitude as the crack length was changed from 4 to 8 mm. The number of peaks and valleys was observed to increase as the crack length increased. We suggest this peak-valley pattern in the signal frequency spectrum can be used to determine the crack length from the acoustic signal alone. An experimental investigation was performed to record the acoustic signals in crack lengths of 4 and 8 mm, and the results were found to match well with the FEM predictions.


Asunto(s)
Sonido , Vibración , Acústica , Fatiga , Humanos
13.
Sensors (Basel) ; 21(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922056

RESUMEN

This review article is focused on the analysis of the state of the art of sensors for guided ultrasonic waves for the detection and localization of impacts for structural health monitoring (SHM). The recent developments in sensor technologies are then reported and discussed through the many references in recent scientific literature. The physical phenomena that are related to impact event and the related main physical quantities are then introduced to discuss their importance in the development of the hardware and software components for SHM systems. An important aspect of the article is the description of the different ultrasonic sensor technologies that are currently present in the literature and what advantages and disadvantages they could bring in relation to the various phenomena investigated. In this context, the analysis of the front-end electronics is deepened, the type of data transmission both in terms of wired and wireless technology and of online and offline signal processing. The integration aspects of sensors for the creation of networks with autonomous nodes with the possibility of powering through energy harvesting devices and the embedded processing capacity is also studied. Finally, the emerging sector of processing techniques using deep learning and artificial intelligence concludes the review by indicating the potential for the detection and autonomous characterization of the impacts.

14.
Front Public Health ; 9: 772620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35252109

RESUMEN

BACKGROUND: Translating research outputs into practical tools for medical practitioners is a neglected area and could have a substantial impact. One of the barriers to implementing artificial intelligence (AI) and machine learning (ML) applications is their practical deployment in the field. Traditional web-based (i.e., server sided) applications are dependent on reliable internet connections, which may not be readily available in rural areas. Native mobile apps require device specific programming skills as well as contemporary hardware and software, with often rapid and unpredictable platform specific changes. This is a major challenge for using AI/ML tools in resource-limited settings. METHODS: An emerging technology, progressive web applications (PWAs), first introduced by Google in 2015, offers an opportunity to overcome the challenges of deploying bespoke AI/ML systems. The same PWA code can be implemented across all desktop platforms, iOS and Android phones and tablets. In addition to platform independence, a PWA can be designed to be primarily offline. RESULTS: We demonstrate how a neural network-based pneumonia mortality prediction triage tool was migrated from a typical academic framework (paper and web-based prototype) to a tool that can be used offline on any mobile phone-the most convenient deployment vehicle. After an initial online connection to download the software, the application runs entirely offline, reading data from cached memory, and running code via JavaScript. On mobile devices the application is installed as a native app, without the inconvenience of platform specific code through manufacturer code stores. DISCUSSION: We show that an ML application can be deployed as a platform independent offline PWA using a pneumonia-related child mortality prediction tool as an example. The aim of this tool was to assist clinical staff in triaging children for hospital admission, by predicting their risk of death. PWAs function seamlessly when their host devices lose internet connectivity, making them ideal for e-health apps that can help improve health and save lives in resource-limited settings in line with the UN Sustainable Development Goal 3 (SDG3).


Asunto(s)
Inteligencia Artificial , Neumonía , Niño , Mortalidad del Niño , Gambia , Humanos , Internet , Aprendizaje Automático , Redes Neurales de la Computación
15.
Materials (Basel) ; 10(1)2017 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-28772431

RESUMEN

The use of piezoelectric wafer active sensors (PWAS) for structural health monitoring (SHM) purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV). New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...