Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Handb Exp Pharmacol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39254747

RESUMEN

mRNA and targeted delivery of mRNA carry the promise to enable targeted treatment of undruggable diseases with high unmet medical needs. The transient nature of mRNA opens options for safe influencing of protein biology, immune responses, and complex ailments without impacting DNA heritage. Technical challenges such as mRNA stability and targeted delivery require next generation solutions, which attracted substantial funding and research interests. To build an integrated mRNA value chain and enable the development of novel therapeutics, Merck KGaA Darmstadt, Germany has initiated an internally incubated program, "Targeted mRNA Delivery" (TMD). This collaborative approach brings together scientists, researchers, engineers, and commercial experts from diverse backgrounds to overcome the multidimensional challenges associated with mRNA technology. In this chapter, the multiple opportunities and challenges for the development of mRNA formulations and therapeutics are described comprehensively. Specifically, the TMD program is presented as a use case to show how intrapreneurs were gathered to establish internal mRNA capabilities and foster collaborations for technology development. In the realm of targeted mRNA delivery, partnerships, encompassing internal partnership and external private, public, and hybrid collaborations, play a crucial role in driving innovation and addressing these hurdles. Within multinational pharmaceutical companies, the establishment of "internal startups" is an effective solution to drive innovation to the next level with support from different business sectors, where existing capabilities and positioning are seamlessly blended with the agility and speed of a startup.

2.
Int J Pharm ; 665: 124658, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236775

RESUMEN

Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.

3.
Proc Natl Acad Sci U S A ; 121(35): e2400194121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172792

RESUMEN

Size-dependent phagocytosis is a well-characterized phenomenon in monocytes and macrophages. However, this size effect for preferential gene delivery to these important cell targets has not been fully exploited because commonly adopted stabilization methods for electrostatically complexed nucleic acid nanoparticles, such as PEGylation and charge repulsion, typically arrest the vehicle size below 200 nm. Here, we bridge the technical gap in scalable synthesis of larger submicron gene delivery vehicles by electrostatic self-assembly of charged nanoparticles, facilitated by a polymer structurally designed to modulate internanoparticle Coulombic and van der Waals forces. Specifically, our strategy permits controlled assembly of small poly(ß-amino ester)/messenger ribonucleic acid (mRNA) nanoparticles into particles with a size that is kinetically tunable between 200 and 1,000 nm with high colloidal stability in physiological media. We found that assembled particles with an average size of 400 nm safely and most efficiently transfect monocytes following intravenous administration and mediate their differentiation into macrophages in the periphery. When a CpG adjuvant is co-loaded into the particles with an antigen mRNA, the monocytes differentiate into inflammatory dendritic cells and prime adaptive anticancer immunity in the tumor-draining lymph node. This platform technology offers a unique ligand-independent, particle-size-mediated strategy for preferential mRNA delivery and enables therapeutic paradigms via monocyte programming.


Asunto(s)
Monocitos , Nanopartículas , ARN Mensajero , Monocitos/metabolismo , Nanopartículas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Animales , Ratones , Humanos , Polielectrolitos/química , Macrófagos/metabolismo , Poliaminas/química , Tamaño de la Partícula , Diferenciación Celular , Técnicas de Transferencia de Gen , Células Dendríticas/metabolismo , Electricidad Estática , Polímeros
4.
Beilstein J Nanotechnol ; 15: 1105-1116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188757

RESUMEN

Over recent decades, nanomedicine has played an important role in the enhancement of therapeutic outcomes compared to those of conventional therapy. At the same time, nanoparticle drug delivery systems offer a significant reduction in side effects of treatments by lowering the off-target biodistribution of the active pharmaceutical ingredients. Cancer nanomedicine represents the most extensively studied nanotechnology application in the field of pharmaceutics and pharmacology since the first nanodrug for cancer treatment, liposomal doxorubicin (Doxil®), has been approved by the FDA. The advancement of cancer nanomedicine and its enormous technological success also included various other target diseases, including hepatic fibrosis. This confirms the versatility of nanomedicine for improving therapeutic activity. In this review, we summarize recent updates of nanomedicine platforms for improving therapeutic efficacy regarding liver fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies.

5.
Int J Nanomedicine ; 19: 8373-8400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161363

RESUMEN

Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.


Asunto(s)
Antineoplásicos , Quitosano , Nanopartículas , Neoplasias , Humanos , Quitosano/química , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Animales , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos
6.
J Liposome Res ; : 1-16, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988127

RESUMEN

Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.

7.
Drug Des Devel Ther ; 18: 2921-2949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055164

RESUMEN

Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.


Asunto(s)
Sistemas de Liberación de Medicamentos , Enfermedades Inflamatorias del Intestino , Nanopartículas , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Nanopartículas/química , Animales , Portadores de Fármacos/química , Sistema de Administración de Fármacos con Nanopartículas/química , Nanomedicina
8.
Artículo en Inglés | MEDLINE | ID: mdl-39042244

RESUMEN

Nanoparticles used for drug delivery often require intravenous administration exposing them to fluid forces within the vasculature, yet the impact of blood flow on nanoparticle delivery remains incompletely understood. Here, we utilized transgenic zebrafish embryos to investigate the relationship between the accumulation of fluorescently labeled PEGylated liposomes and various hemodynamic factors (such as flow velocity, wall shear stress (WSS), and flow pattern) across a wide range of angiogenic blood vessels. We reconstructed 3D models of vascular structures from confocal images and used computational fluid dynamics to calculate local WSS, velocities, and define flow patterns. The spatial distribution of fluorescently labeled liposomes was subsequently mapped within the same 3D space and correlated with local hemodynamic parameters. Through the integration of computational fluid dynamics and in vivo experimentation, we show that liposomes accumulated in vessel regions with WSS between 0.1-0.8 Pa, displaying an inverse linear correlation (R2 > 0.85) between time-averaged wall shear stress and liposome localization in vivo. Interestingly, flow pattern did not appear to impact liposome accumulation. Collectively, our findings suggest the potential of stealth liposomes for passive targeting of low-flow vasculature, including capillaries and intricate angiogenic vasculature resembling that of tumor vessel networks.

9.
J Drug Target ; : 1-14, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39072411

RESUMEN

BACKGROUND: The liver, a central organ in human metabolism, is often the primary target for drugs. However, conditions such as viral hepatitis, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC) present substantial health challenges worldwide. Existing treatments, which suffer from the non-specific distribution of drugs, frequently fail to achieve desired efficacy and safety, risking unnecessary liver harm and systemic side effects. PURPOSE: The aim of this review is to synthesise the latest progress in the design of liver-targeted prodrugs, with a focus on passive and active targeting strategies, providing new insights into the development of liver-targeted therapeutic approaches. METHODS: This study conducted an extensive literature search through databases like Google Scholar, PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), systematically collecting and selecting recent research on liver-targeted prodrugs. The focus was on targeting mechanisms, including the Enhanced Permeability and Retention (EPR) effect, the unique microenvironment of liver cancer, and active targeting through specific transporters and receptors. RESULTS: Active targeting strategies achieve precise drug delivery by binding specific ligands to liver surface receptors. Passive targeting takes advantage of the EPR effect and tumour characteristics to enrich drugs in liver tumours. The review details successful cases of using small molecule ligands, peptides, antibodies and nanoparticles as drug carriers. CONCLUSION: Liver-targeted prodrug strategies show great potential in enhancing the efficacy of drug treatment and reducing side effects for liver diseases. Future research should balance the advantages and limitations of both targeting strategies, focusing on optimising drug design and targeting efficiency, especially for clinical application. In-depth research on liver-specific receptors and the development of innovative targeting molecules are crucial for advancing the field of liver-targeted prodrugs.

10.
Life (Basel) ; 14(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38929656

RESUMEN

In drug development, it is not uncommon that an active substance exhibits efficacy in vitro but lacks the ability to specifically reach its target in vivo. As a result, targeted drug delivery has become a primary focus in the pharmaceutical sciences. Since the approval of Doxil® in 1995, liposomes have emerged as a leading nanoparticle in targeted drug delivery. Their low immunogenicity, high versatility, and well-documented efficacy have led to their clinical use against a wide variety of diseases. That being said, every disease is accompanied by a unique set of physiological conditions, and each liposomal product must be formulated with this consideration. There are a multitude of different targeting techniques for liposomes that can be employed depending on the application. Passive techniques such as PEGylation or the enhanced permeation and retention effect can improve general pharmacokinetics, while active techniques such as conjugating targeting molecules to the liposome surface may bring even further specificity. This review aims to summarize the current strategies for targeted liposomes in the treatment of diseases.

11.
Nanomedicine ; 59: 102753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734039

RESUMEN

In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO3), and silica (SiO2) with similar sizes (TEM: 50-110 nm and DLS: 110-140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO3 and SiO2 NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, ex vivo fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.


Asunto(s)
Oro , Nanopartículas , Animales , Ratones , Nanopartículas/química , Oro/química , Dióxido de Silicio/química , Poliésteres/química , Portadores de Fármacos/química , Línea Celular Tumoral , Carbonato de Calcio/química , Femenino , Humanos , Sistemas de Liberación de Medicamentos , Ratones Endogámicos BALB C , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
12.
Front Oncol ; 14: 1296091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660132

RESUMEN

Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.

13.
Nanotheranostics ; 8(2): 239-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444742

RESUMEN

Cancer metastasis plays a major role in failure of therapeutic avenues against cancer. Owing to metastasis, nearly 70-80% of stage IV breast cancer patients lose their lives. Nanodrug delivery systems are playing a critical role in the therapy of metastatic cancer in the recent times. This paper reports the enhanced permeation and retention (EPR) based targeting of metastatic breast cancer using a novel nano lipo-polymeric system (PIR-Au NPs). The PIR-Au NPs demonstrated an increase in fluorescence by virtue of surface coating with gold, owing to the metal enhanced fluorescence phenomenon as reported in our earlier reports. Enhanced fluorescence of PIR-Au NPs was observed in murine mammary carcinoma cell line (4T1), as compared to free IR780 or IR780 loaded nanosystems (P-IR NPs), when incubated for same time at same concentrations, indicating its potential application for imaging and an enhanced bioavailability of IR780. Significant cell death was noted with photothermal mediated cytotoxicity in-vitro against breast cancer cells (MCF-7 and 4T1). An enhanced fluorescence was observed in the zebra fish embryos incubated with PIR-Au NPs. The enhanced permeation and retention (EPR) effect was seen with PIR-Au NPs in-vivo. A strong fluorescent signal was recorded in mice injected with PIR-Au NPs. The tumor tissue collected after 72 h, clearly showed a greater fluorescence as compared to other groups, indicating the plasmon enhanced fluorescence. We also demonstrated the EPR-based targeting of the PIR-Au NPs in-vivo by means of photothermal heat. This lipo-polymeric hybrid nanosystem could therefore be successfully applied for image-guided, passive-targeting to achieve maximum therapeutic benefits.


Asunto(s)
Neoplasias de la Mama , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Fluorescencia , Oro , Muerte Celular , Calor , Polímeros
14.
Front Pharmacol ; 15: 1363346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389925

RESUMEN

Amidst a global rise in lung cancer occurrences, conventional therapies continue to pose substantial side effects and possess notable toxicities while lacking specificity. Counteracting this, the incorporation of nanomedicines can notably enhance drug delivery at tumor sites, extend a drug's half-life and mitigate inadvertent toxic and adverse impacts on healthy tissues, substantially influencing lung cancer's early detection and targeted therapy. Numerous studies signal that while the nano-characteristics of lung cancer nanomedicines play a pivotal role, further interplay with immune, photothermal, and genetic factors exist. This review posits that the progression towards multimodal combination therapies could potentially establish an efficacious platform for multimodal targeted lung cancer treatments. Current nanomedicines split into active and passive targeting. Active therapies focus on a single target, often with unsatisfactory results. Yet, developing combination systems targeting multiple sites could chart new paths in lung cancer therapy. Conversely, low drug delivery rates limit passive therapies. Utilizing the EPR effect to bind specific ligands on nanoparticles to tumor cell receptors might create a new regime combining active-passive targeting, potentially elevating the nanomedicines' concentration at target sites. This review collates recent advancements through the lens of nanomedicine's attributes for lung cancer therapeutics, the novel carrier classifications, targeted therapeutic modalities and their mechanisms, proposing that the emergence of multi-target nanocomposite therapeutics, combined active-passive targeting therapies and multimodal combined treatments will pioneer novel approaches and tools for future lung cancer clinical therapies.

15.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317220

RESUMEN

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Asunto(s)
Adipogénesis , Ácidos Linoleicos Conjugados , Tocoferoles , Masculino , Humanos , Ratas , Animales , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacología , Distribución Tisular , Obesidad/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo
16.
Acta Pharm Sin B ; 13(11): 4442-4460, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969739

RESUMEN

Atherosclerosis (AS) is a leading cause of the life-threatening cardiovascular disease (CVD), creating an urgent need for efficient, biocompatible therapeutics for diagnosis and treatment. Biomimetic nanomedicines (bNMs) are moving closer to fulfilling this need, pushing back the frontier of nano-based drug delivery systems design. This review seeks to outline how these nanomedicines (NMs) might work to diagnose and treat atherosclerosis, to trace the trajectory of their development to date and in the coming years, and to provide a foundation for further discussion about atherosclerotic theranostics.

17.
ADMET DMPK ; 11(4): 499-511, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937247

RESUMEN

Background and purpose: The reciprocal translocation of the ABL gene from chromosome 9 to chromosome 22 near the BCR gene gives rise to chronic myelogenous leukemia (CML). The translocation results in forming the Philadelphia chromosome (BCR-ABL) tyrosine kinase. CML results in an increase in the number of white blood cells and alteration in tyrosine kinase expression. CML prognosis includes three stages, namely chronic, accelerated, and blast. The diagnosis method involves a CT scan, biopsy, and complete blood count. However, due to certain disadvantages, early diagnosis of CML is not possible by traditional methods. Nanotechnology offers many advantages in diagnosing and treating cancer. Experimental approach: We searched PubMed, Scopus and Google Scholar using the keywords Philadelphia chromosome, bionanotechnology, tyrosine kinase pathway, half-life, passive targeting, and organic and inorganic nanoparticles. The relevant papers and the classical papers in this field were selected to write about in this review. Key results: The sensitivity and specificity of an assay can be improved by nanoparticles. Utilizing this property, peptides, antibodies, aptamers, etc., in the form of nanoparticles, can be used to detect cancer at a much earlier stage. The half-life of the drug is also increased by nanoformulation. The nanoparticle-coated drugs can easily escape from the immune system. Conclusion: Depending on their type, nanoparticles can be categorized into organic, inorganic and hybrid. Each type has its advantages. Organic nanoparticles have good biocompatibility, inorganic nanoparticles increase the half-life of the drugs. In this review, we highlight the nanoparticles involved in treating CML.

18.
Expert Opin Drug Deliv ; 20(11): 1511-1530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37898874

RESUMEN

INTRODUCTION: The application of DNA framework nucleic acid materials in the biomedical field has witnessed continual expansion. Among them, tetrahedral framework nucleic acids (tFNAs) have gained significant traction as the foremost biological vectors due to their superior attributes of editability, low immunogenicity, biocompatibility, and biodegradability. tFNAs have demonstrated promising results in numerous in vitro and in vivo applications. AREAS COVERED: This review summarizes the latest research on tFNAs in drug delivery, including a discussion of the advantages of tFNAs in regulating biological behaviors, and highlights the updated development and advantageous applications of tFNAs-based nanostructures from static design to dynamically responsive design. EXPERT OPINION: tFNAs possess distinct biological regulatory attributes and can be taken up by cells without the requirement of transfection, differentiating them from other biological vectors. tFNAs can be easily physically/chemically modified and seamlessly incorporated with other functional systems. The static design of the tFNAs-based drug delivery system makes it versatile, reproducible, and predictable. Further use of the dynamic response mechanism of DNA to external stimuli makes tFNAs-based drug delivery more effective and specific, improving the uptake and utilization of the payload by the intended target. Dynamic targeting is poised to become the future primary approach for drug delivery.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos , Sistemas de Liberación de Medicamentos , ADN , Nanoestructuras/química , Transfección
19.
J Liposome Res ; : 1-19, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814217

RESUMEN

Nano-drug delivery systems have opened new pathways for tumor treatment by overcoming some of the limitations of conventional drugs, such as physiological degradation, short half-life, and rapid release. Liposomes are promising nanocarrier systems due to their biocompatibility, low toxicity, and high inclusivity, as well as their enhanced drug bioavailability. Various strategies for active targeting of liposomal formulations have been investigated to achieve the highest drug efficacy. This review aims to summarize current developments in novel liposomal formulations, particularly ligand-targeted liposomes (such as folate, transferrin, hyaluronic acid, antibodies, aptamer, and peptide, etc.) used for the therapy of various cancers and provide an insight on the challenges and future of liposomes for scientists and pharmaceutical companies.

20.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4874-4883, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802829

RESUMEN

Rheumatoid arthritis(RA) is a widely prevalent autoimmune inflammatory disease that severely affects patients' quality of life. Currently, conventional formulations against RA have several limitations, such as nonspecificity, poor efficacy, large drug dosages, frequent administration, and systemic side effects. Nanotechnology-based drug delivery systems have emerged as a promising stra-tegy for the diagnosis and treatment of RA since nanotechnology can overcome the limitations of traditional treatments and simplify the complexity of the disease. These systems enable targeted delivery of anti-inflammatory drugs to the inflamed areas through active and passive targeting, achieving specificity to the joints, overcoming the need for increased dosage and administration frequency, and reducing associated adverse reactions. This article aimed to review nanocarrier-based drug delivery systems in the field of RA and elucidate how nanosystems can be utilized to deliver therapeutic drugs to inflamed joints for controlling RA progression. By discussing the current issues and challenges faced by nanodrug delivery systems and highlighting the urgent need for solutions, this article offers theoretical support for further research on nanotechnology-based co-delivery systems in the future.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Humanos , Calidad de Vida , Sistemas de Liberación de Medicamentos , Artritis Reumatoide/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...