Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Mol Cell Biol ; 25(1): 19, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090552

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS: A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS: Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS: This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.


Asunto(s)
Islas de CpG , Metilación de ADN , Impresión Genómica , Virus de la Hepatitis B , Hepatitis B , Regiones Promotoras Genéticas , Espermatozoides , Humanos , Masculino , Metilación de ADN/genética , Regiones Promotoras Genéticas/genética , Espermatozoides/metabolismo , Islas de CpG/genética , Impresión Genómica/genética , Hepatitis B/genética , Hepatitis B/virología , Adulto , Virus de la Hepatitis B/genética , Haplotipos/genética , Persona de Mediana Edad
2.
Eur J Pharmacol ; 968: 176397, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331337

RESUMEN

Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 µg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Músculo Liso Vascular , Prazosina/análogos & derivados , Ratones , Humanos , Animales , Análisis de la Onda del Pulso , Ratones Noqueados , Ratones Endogámicos C57BL , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/genética , Apoptosis , Inflamación/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Modelos Animales de Enfermedad , Miocitos del Músculo Liso , Factores de Transcripción de Tipo Kruppel/metabolismo
3.
Acta Pharmacol Sin ; 43(8): 2109-2118, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34876700

RESUMEN

Cln Three Requiring 9 (CTR9), a scaffold protein of the polymerase-associated factor-1 (PAF1) complex (PAF1c), is primarily localized in the nucleus of cells. Recent studies show that CTR9 plays essential roles in the development of various human cancers and their occurrence; however, its regulatory roles and precise mechanisms in hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the roles of CTR9 using in vitro assays and a xenograft mouse model. We found that CTR9 protein is upregulated in tumor tissues from HCC patients. Knockdown of CTR9 substantially reduced HCC cell proliferation, invasion, and migration, whereas its overexpression promoted these activities. In addition, in vitro results revealed that CTR9 silencing dramatically increased cell cycle regulators, p21 and p27, but markedly decreased matrix metalloproteinases, MMP2 and MMP9, with these outcomes reversed upon CTR9 overexpression. Furthermore, the underlying molecular mechanism suggests that CTR9 promoted the oncogene paternally expressed gene 10 (PEG10) transcription via its promoter region. Finally, the oncogenic roles of CTR9 were confirmed in a xenograft mouse model. This study confirms that CTR9, an oncoprotein that promotes HCC cell proliferation, invasion, and migration, increases tumor growth in a xenograft mouse model. CTR9 could be a novel therapeutic target. Further investigation is warranted to verify CTR9 potential in novel therapies for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfoproteínas , Factores de Transcripción , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Ratones , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
4.
Urol Int ; 105(9-10): 906-915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34192708

RESUMEN

OBJECTIVE: miR-155-5p as an important microRNA has been extensively studied for its biological functions and mechanisms in various cancers. However, the role and underlying mechanisms in clear cell renal cell carcinoma (ccRCC) remain to be further elucidated. METHODS: Bioinformatics methods were implemented to analyze differentially expressed genes in the cancer genome atlas database. qRT-PCR and Western blot were employed to detect the expression of miR-155-5p and paternally expressed gene 3 (PEG3) mRNA as well as protein expression. Cell lines with miR-155-5p knockdown or miR-155-5p/PEG3 co-overexpression were constructed. A series of experiments including the MTT method, wound healing assay, and transwell assay were carried out to detect the proliferation, migration, and invasion of cancer cells in different treatment groups. Bioinformatics analysis and dual-luciferase assay were conducted to confirm the targeting relationship between PEG3 and miR-155-5p in ccRCC. RESULTS: miR-155-5p was found to be significantly upregulated in ccRCC cells, while PEG3 exhibited significantly low expression. The downregulation of miR-155-5p could inhibit cell proliferation, migration, and invasion of ccRCC. miR-155-5p could inhibit the expression of PEG3. The overexpression of miR-155-5p could promote cell proliferation, migration, and invasion, whereas overexpression of PEG3 could significantly attenuate such effect. Therefore, miR-155-5p may promote cell growth of ccRCC via inhibiting PEG3 expression. CONCLUSION: These findings validated the effect of miR-155-5p/PEG3 on ccRCC cells and provided novel potential targets for the prognosis and treatment of patients with ccRCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias Renales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/genética , Invasividad Neoplásica , Transducción de Señal
5.
Mol Ther Nucleic Acids ; 24: 542-553, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33898106

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the major causes of morbidity and mortality worldwide. We aimed to investigate the role of N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) regulating microRNA-1246 (miR-1246) in the progression of NSCLC by targeting paternally expressed gene 3 (PEG3). METTL3, miR-1246, and PEG3 expression in tissues was assessed, and the predictive role of METTL3 in prognosis of patients with NSCLC was detected. NSCLC cells were relatively treated with altered expression of METTL3, miR-1246, or PEG3 to measure their roles in the proliferation, migration, invasion, apoptosis, and in vivo growth of the NSCLC cells. The RNA m6A level was determined, and the targeting relationship between miR-1246 and PEG3 was confirmed. Our results revealed that METTL3 and miR-1246 were upregulated, whereas PEG3 was downregulated in NSCLC tissues. METTL3 knockdown or PEG3 overexpression in NSCLC cells suppressed malignant behaviors of NSCLC cells. METTL3 affected the m6A modification of miR-1246, thus upregulating miR-1246 and miR-1246-targeted PEG3. The elevation of PEG3 reversed the effects of miR-1246 upregulation on NSCLC cells. This study revealed that m6A methyltransferase METTL3 affects the m6A modification of miR-1246, thus upregulating miR-1246 to promote NSCLC progression by inhibiting PEG3.

6.
Biol Reprod ; 104(6): 1386-1399, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33693478

RESUMEN

RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans.


Asunto(s)
Caballos/fisiología , Placenta/fisiología , Proteínas Gestacionales/genética , Animales , Femenino , Caballos/genética , Embarazo , Proteínas Gestacionales/metabolismo
7.
J Mol Histol ; 52(3): 491-501, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33743102

RESUMEN

Hepatic fibrosis is a reversible scaring response to chronic liver injury. MicroRNA (miR)-129-5p might regulate fibrosis-related gene expression. This study is performed to decipher, potential of miR-129-5p to influence the progression of hepatic fibrosis in a carbon tetrachloride (CCl4) rat model. Rat hepatic fibrosis was successfully established by subcutaneous injection of 50% CCl4. RT-qPCR revealed that miR-129-5p was poorly expressed and PEG3 was highly expressed in hepatic fibrosis tissues. As reflected by dual-luciferase reporter gene assay, miR-129-5p targeted and reduced the expression of PEG3. Thereafter, miR-129-5p antagomir or short hairpin RNA against paternally expressed gene 3 (PEG3) was adopted for gain- and loss-of-function assay to determine the molecular regulatory mechanism of miR-129-5p. Moreover, we detected the expression of nuclear factor kappa B (NF-κB) signaling pathway-related proteins and apoptosis-related factors, and made a serological analysis of the rat serum samples. Results showed that upregulated miR-129-5p or downregulated PEG3 led to reduction of the histological changes of liver cirrhosis and lowered the apoptosis rate, via downstream effects on the NF-κB signaling pathway. Thus, the hepatic fibrosis induced by CCl4 can be rescued by upregulated miR-129-5p or downregulated PEG3 expression.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Cirrosis Hepática/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Animales , Secuencia de Bases , Tetracloruro de Carbono , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Factores de Transcripción de Tipo Kruppel/genética , Cirrosis Hepática/sangre , Cirrosis Hepática/inducido químicamente , MicroARNs/genética , Modelos Biológicos , Ratas Sprague-Dawley , Regulación hacia Arriba/genética
8.
Cancer Cell Int ; 20: 93, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231463

RESUMEN

BACKGROUND: Growing studies have focused on the role of microRNA-21 (miR-21) in glioma, thus our objective was to discuss the effect of M2 bone marrow-derived macrophage (BMDM)-derived exosomes (BMDM-Exos) shuffle miR-21 on biological functions of glioma cells by regulating paternally expressed gene 3 (PEG3). METHODS: Seventy-one cases of human glioma tissues and 30 cases of non-tumor normal brain tissues were collected and stored in liquid nitrogen. PEG3 and miR-21 expression in glioma tissues was tested. The fasting venous blood of glioma patients and healthy control was collected and centrifuged, and then the supernatant was stored at - 80 °C refrigerator. The contents of interferon (IFN)-γ and transforming growth factor-ß1 (TGF-ß1) in serum were tested by ELISA. Glioma cells and normal glial cells were cultured to screen the target cells for further in vitro experiments. BMDM-Exos was obtained by ultra-high speed centrifugation and then was identified. BMDM-Exos was co-cultured with U87 cells to detect the biological functions. The fasting venous blood of glioma patients was extracted and treated with ethylene diamine tetraacetic acid-K2 anti-freezing, and then CD8+T cells were isolated. CD8+T cells were co-cultured with U87 cells to detect the CD8+T proliferation, cell cytotoxic activity, U87 cell activity, as well as IFN-γ and TGF-ß1 levels. Moreover, BALB/c-nu/nu mice was taken, and the human-nude mouse glioma orthotopic transplantation model was established with U87 cells, and then mice were grouped to test the trends in tumor growth. The brain of mice (fixed by 10% formaldehyde) was sliced to detect the expression of Ki67 and proliferating cell nuclear antigen (PCNA). The spleen of mice was taken to prepare single-cell suspension, and the percentage of T lymphocytes in spleen to CD8+T cells was detected. RESULTS: PEG3 expression was decreased and miR-21 expression was increased in glioma cells and tissues. Depleting miR-21 or restoring PEG3 suppressed growth, migration and invasion as well as accelerated apoptosis of glioma cells, also raised CD8+T proliferation, cell cytotoxic activity, and IFN-γ level as well as decreased U87 cell activity and TGF-ß1 level. BMDM-Exos shuttle miR-21 promoted migration, proliferation and invasion as well as suppressed apoptosis of glioma cells by reducing PEG3. Exosomes enhanced the volume of tumor, Ki67 and PCNA expression, reduced the percentage of CD8+T cells in glioma mice. CONCLUSION: BMDM-Exos shuffle miR-21 to facilitate invasion, proliferation and migration as well as inhibit apoptosis of glioma cells via inhibiting PEG3, furthermore, promoting immune escape of glioma cells.

9.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244497

RESUMEN

Paternally expressed gene 10 (PEG10) is a human retrotransposon-derived imprinted gene. The mRNA of PEG10 encodes two protein isoforms: the Gag-like protein (RF1PEG10) is coded by reading frame 1, while the Gag-Pol-like polyprotein (RF1/RF2PEG10) is coded by reading frames 1 and 2. The proteins are translated by a typical retroviral frameshift mechanism. The protease (PR) domain of RF2PEG10 contains an -Asp-Ser-Gly- sequence, which corresponds to the consensus -Asp-Ser/Thr-Gly- active-site motif of retroviral aspartic proteases. The function of the aspartic protease domain of RF2PEG10 remains unclear. To elucidate the function of PEG10 protease (PRPEG10), we designed a frameshift mutant (fsRF1/RF2PEG10) for comparison with the RF1/RF2PEG10 form. To study the effects of PRPEG10 on cellular proliferation and viability, mammalian HEK293T and HaCaT cells were transfected with plasmids coding for either RF1/RF2PEG10, the frameshift mutant (fsRF1/RF2PEG10), or a PR active-site (D370A) mutant fsRF1/RF2PEG10. Our results indicate that fsRF1/RF2PEG10 overexpression results in increased cellular proliferation. Remarkably, transfection with fsRF1/RF2PEG10 had a detrimental effect on cell viability. We hypothesize that PRPEG10 plays an important role in the function of this retroviral remnant, mediating the proliferation of cells and possibly implicating it in the inhibition of apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Retroelementos/fisiología , Ácido Aspártico Endopeptidasas/genética , Proliferación Celular , Supervivencia Celular , Mutación del Sistema de Lectura , Células HEK293 , Células HaCaT , Humanos , Péptido Hidrolasas/genética , Isoformas de Proteínas , Sistemas de Lectura , Proteínas Recombinantes , Alineación de Secuencia , Transfección
10.
Front Genet ; 11: 563265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33574830

RESUMEN

Long non-coding RNAs (lncRNAs) have recently emerged as inflammation-associated biological molecules with a specific role in the progression of liver fibrosis conditions including non-alcoholic steatohepatitis (NASH). The aim of this study was to elucidate the effects of lncRNA nuclear enriched abundant transcript 1 (NEAT1), microRNA-129-5p (miR-129-5p), and paternally expressed gene 3 (PEG3) on the biological activities of hepatic stellate cells (HSCs) subjected to NASH. First, microarray-based analysis revealed upregulated PEG3 in NASH. Liver tissues from mice fed a methionine-choline-deficient (MCD) diet exhibited increased expression of NEAT1 and PEG3 along with lower miR-129-5p expression. A series of in vitro and in vivo assays were then performed on HSCs after transfection with shPEG3, miR-129-5p mimic, or treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of the nuclear factor-kappa B (NF-κB) signaling pathway. Results confirmed the alleviated fibrosis by restoring miR-129-5p, while depleting PEG3 or NEAT1, as evidenced by the inactivation of HSCs. To sum up, NEAT1 can bind specifically to miR-129-5p and consequently regulate miR-129-5p and PEG3 expression in relation to the HSC activation occurring in NASH. Thus, NEAT1-targeted inhibition against miR-129-5p presents a promising therapeutic strategy for the treatment of NASH.

11.
Hematol Rep ; 11(3): 8124, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31579144

RESUMEN

We propose using a modified amplification refractory mutation system real-time polymerase chain reaction (ARMS RTPCR) technique to exclude the invasive prenatal diagnosis for a non-paternally inherited beta thalassemia mutation in couples atrisk for having a baby with CHBT. The ARMS RT-PCR method was performed for 36 at-risk couples by using isolated fetal cell-free DNA from maternal plasma. The modified ARMS RT-PCR primers targeted one of the following paternally inherited beta thalassemia mutation: -28 A→G, CD17 A→T, CD 26 G→A, IVS1-1 G→T and CD 41-42 -CTTT. The method could be successfully employed for NIPST starting with the 7th week of gestation. The results showed that 19 pregnant women were negative for PIBTM (53%). After an on-track and on-time of one year, including postnatal thalassemia blood tests, none of the babies showed symptoms or signs of beta thalassemia disease. We concluded that the modified ARMS RT-PCR method was an accurate, cost-effective and feasible method for use as a NIPST for at-risk couples with the potential of having a baby with CHBT.

12.
Cell Stem Cell ; 25(5): 697-712.e6, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31588047

RESUMEN

To investigate the contribution of parental genomes to early embryogenesis, we profiled the single-cell transcriptomes of human biparental and uniparental embryos systematically from the 1-cell to the morula stage. We observed that uniparental embryos exhibited variable and decreased embryonic genome activation (EGA). Comparative transcriptome analysis identified 807 maternally biased expressed genes (MBGs) and 581 paternally biased expressed genes (PBGs) in the preimplantation stages. MBGs became apparent at the 4-cell stage and contributed to the initiation of EGA, whereas PBGs preferentially appeared at the 8-cell stage and might affect embryo compaction and trophectoderm specification. Regulatory network analysis revealed that DUX4, EGR2, and DUXA are key transcription factors in MBGs' expression; ZNF263 and KLF3 are important for PBGs' expression. We demonstrated that parent-specific DNA methylation might account for the expression of most PBGs. Our results provide a valuable resource to understand parental genome activation and might help to elucidate parent-of-origin effects in early human development.


Asunto(s)
Blastocisto/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Transcriptoma/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Ontología de Genes , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Oocitos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , RNA-Seq , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
13.
Mol Oncol ; 13(11): 2375-2392, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31420931

RESUMEN

Zinc finger protein 667-antisense RNA 1 (ZNF667-AS1), located on human chromosome 19q13.43, is a member of the C2H2 zinc finger protein family. Herein, we aimed to analyze the interactions between ZNF667-AS1, microRNA-93-3p (miR-93-3p), and paternally expressed gene 3 (PEG3) and to explore their roles in the tumorigenesis of cervical cancer (CC). Differentially expressed long noncoding RNAs and miRNAs related to CC were determined using gene expression datasets sourced from the Gene Expression Omnibus database. Subsequently, the regulatory relationships between ZNF667-AS1 and miR-93-3p and between miR-93-3p and PEG3 were identified using the dual-luciferase reporter gene assay. In addition, the expression of miR-93-3p and ZNF667-AS1 was up- or downregulated in CC cells (HeLa), in order to assess their effects on cell cycle distribution and cell invasion in vitro, and tumor growth and metastasis in vivo. MiR-93-3p was found to be highly expressed, while ZNF667-AS1 and PEG3 were poorly expressed in CC. ZNF667-AS1 could competitively bind to miR-93-3p, which targeted PEG3. In addition, miR-93-3p downregulation and ZNF667-AS1 overexpression led to increased expression of PEG3, tissue inhibitor of metalloproteinases, and p16 and decreased expression of cyclin D1, matrix metalloproteinase-2 and -9. MiR-93-3p inhibition and ZNF667-AS1 elevation also inhibited cell cycle entry and cell invasion in vitro, but repressed tumor growth and metastasis in vivo. These key findings demonstrated that upregulation of ZNF667-AS1 could suppress the progression of CC via the modulation of miR-93-3p-dependent PEG3, suggesting a potential therapeutic target for the treatment of CC.


Asunto(s)
Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Adulto , Anciano , Animales , Unión Competitiva , Ciclo Celular/genética , Línea Celular Tumoral , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Metástasis de la Neoplasia , Regulación hacia Arriba/genética
14.
J Cell Biochem ; 120(12): 19868-19877, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31318088

RESUMEN

The importance of long noncoding RNAs (lncRNAs) has been certified in malignant melanoma. Nonetheless, the functions of lncRNA paternally expressed gene 10 (PEG10) in malignant melanoma remain uninvestigated. This research discloses the influence of PEG10 in the biological actions of malignant melanoma cells. The sh-PEG10 plasmid was transfected into A375 cells; meanwhile, the effects of declined PEG10 on cell viability, apoptosis, migration, invasion, and the correlative protein levels were probed. The miR-33a expression in sh-PEG10-transfected cells was examined, and the above biological processes were studied again in miR-33a inhibitor-transfected A375 cells. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mechanistic target of rapamycin (mTOR) pathways were delved via Western blot. We found that the enhancement of PEG10 was discovered in melanoma tissues compared to related nonmelanoma tissues. Declination of PEG10 frustrated cell viability, repressed cyclinD1 and CDK4 expression, and triggered apoptosis, as well as suppressed migration and invasion in A375 cells. A negative correction between PEG10 and miR-33a was confirmed, and repressed miR-33a inverted the functions of PEG10 repression in A375 cells. In addition, PEG10 repression discouraged the activation of PI3K/AKT and mTOR pathways via elevation of miR-33a. These results indicated that declination of PEG10 restrained A375 cell growth, migration, and invasion via adjusting miR-33a and PI3K/AKT and mTOR pathways.


Asunto(s)
Melanoma/genética , Melanoma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Adulto , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
15.
Genome Biol ; 20(1): 41, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30791924

RESUMEN

BACKGROUND: Imprinted genes are epigenetically modified during gametogenesis and maintain the established epigenetic signatures after fertilization, causing parental-specific gene expression. RESULTS: In this study, we show that imprinted paternally expressed genes (PEGs) in the Arabidopsis endosperm are marked by an epigenetic signature of Polycomb Repressive Complex2 (PRC2)-mediated H3K27me3 together with heterochromatic H3K9me2 and CHG methylation, which specifically mark the silenced maternal alleles of PEGs. The co-occurrence of H3K27me3 and H3K9me2 on defined loci in the endosperm drastically differs from the strict separation of both pathways in vegetative tissues, revealing tissue-specific employment of repressive epigenetic pathways in plants. Based on the presence of this epigenetic signature on maternal alleles, we are able to predict known PEGs at high accuracy and identify several new PEGs that we confirm using INTACT-based transcriptomes generated in this study. CONCLUSIONS: The presence of the three repressive epigenetic marks, H3K27me3, H3K9me2, and CHG methylation on the maternal alleles in the endosperm serves as a specific epigenetic signature that allows prediction of genes with parental-specific gene expression. Our study reveals that there are substantially more PEGs than previously identified, indicating that paternal-specific gene expression is of higher functional relevance than currently estimated. The combined activity of PRC2-mediated H3K27me3 together with the heterochromatic H3K9me3 has also been reported to silence the maternal Xist locus in mammalian preimplantation embryos, suggesting convergent employment of both pathways during the evolution of genomic imprinting.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Endospermo/metabolismo , Complejo Represivo Polycomb 2
16.
Int J Legal Med ; 132(2): 343-352, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28429088

RESUMEN

Researchers have sought to develop an effective protocol for paternity analysis using cell-free DNA (cfDNA) in maternal plasma. The use of massively parallel sequencing (MPS) technology for SNP testing is attractive because of its high-throughput capacity and resolution to single-base precision. In this study, we designed a customized SNP panel for cfDNA sequencing that includes 720 short amplicons (< 140 bp) targeting SNPs on the autosome and Y chromosome. The systemic performance was evaluated using the Ion Torrent PGM, indicating balanced coverage among most of the included loci, except for 78 poorly performing SNPs that were observed to have an inconsistent allele balance, lower coverage reads or high background signals. Then, the custom panel was used to perform cfDNA genotyping in maternal plasma from 20 pregnancies in the first and second trimesters (9 to 21 weeks). By establishing an allele fraction cutoff of 2.0%, 53 to 128 autosomal SNP loci were considered informative for paternal origin. Validation results in foetal samples showed that 49.43% to 100% of the real paternal alleles were accurately identified, with incorrect alleles encountered in 3 cases. The concentration of foetal cfDNA ranged from 4.28% to 10.70%. Our results show that this amplicon-based sequencing strategy could be utilized in analysing paternally inherited alleles in maternal plasma. However, further studies and optimization are required for a more detailed and accurate interpretation of the cfDNA sequencing results based on MPS technology.


Asunto(s)
Alelos , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Polimorfismo de Nucleótido Simple , Embarazo/sangre , Ácidos Nucleicos Libres de Células , Femenino , Feto , Genotipo , Humanos , Paternidad , Análisis de Secuencia de ADN
17.
Asian Pac J Cancer Prev ; 18(6): 1513-1518, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28669160

RESUMEN

Background: Oral squamous cell carcinoma (OSCC) is one of the most common forms of cancer occurring worldwide. PEG10 is well known as a paternally expressed gene from a newly recognized imprinted region at human chromosome 7q21. Previous study had demonstrated that the significant expression of PEG10 was found in radioresistant OSCC cell line and its expression was significantly associated with poor survival in several cancers. Therefore it has been evaluated as a potential marker in OSCC patients undergoing radiotherapy. Objective: This study was conducted to analyze the mRNA expression of PEG10 in OSCC and its expression in relation to clinicpathological features, radiotherapy treatment response and survival. Methods: This study included tissue specimens obtained via biopsy of 118 patients with OSCC who were recommended for radiotherapy treatment and 80 healthy control tissues analysis of mRNA expression of PEG10 was done by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Patients were treated with 70 Gy of radiation dose by shrinking field technique using Cobalt-60 teletherapy machine. Results: Significantly higher mRNA expression of PEG10 was found in OSCC patients when compared with matched controls. High level of PEG10 mRNA expression showed a significant correlation with lymph node metastasis (p = 0.0047) and tumor stage (p = 0.0499). Multivariate Cox regression analysis revealed that high level of mRNA expression of PEG10 was significantly associated with poor survival (p < 0.05). Our research demonstrated that the expression of PEG10 was higher in radioresistant tumor. Conclusion: We observed significantly increased expression of PEG10 in context of lymph node status, advanced stage and poor survival in our study. Thus PEG10 gene can be used as potential predictive and prognostic biomarker in OSCC patients undergoing radiotherapy.

18.
Mol Reprod Dev ; 84(4): 316-328, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186371

RESUMEN

Gene expression and/or epigenetic deregulation may have consequences for sperm and blastocysts, as well as for the placenta, together potentially contributing to problems observed in offspring. We previously demonstrated specific perturbations of fertilization, blastocyst formation, implantation, as well as aberrant glucose metabolism and adiposity in offspring using a mouse model of paternal obesity. The current investigation analyzed gene expression and methylation of specific CpG residues in F1 placentas of pregnancies fathered by obese and normal-weight male mice, using real-time PCR and bisulfite pyrosequencing. Our aim was to determine if paternal obesity deregulated placental gene expression and DNA methylation when compared to normal-weight males. Gene methylation of sperm DNA was analyzed and compared to placentas to address epigenetic transmission. Of the 10 paternally expressed genes (Pegs), 11 genes important for development and transport of nutrients, and the long-terminal repeat Intracisternal A particle (IAP) elements, derived from a member of the class II endogenous retroviral gene family, we observed a significant effect of paternal diet-induced obesity on deregulated expression of Peg3, Peg9, Peg10, and the nutrient transporter gene Slc38a2, and aberrant DNA methylation of the Peg9 promoter in F1 placental tissue. Epigenetic changes in Peg9 were also found in sperm from obese fathers. We therefore propose that paternal obesity renders changes in gene expression and/or methylation throughout the placental genome, which could contribute to the reproductive problems related to fertility and to the metabolic, long-term health impact on offspring.


Asunto(s)
Blastocisto/metabolismo , Implantación del Embrión , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Obesidad/embriología , Placenta/metabolismo , Animales , Metilación de ADN , Femenino , Masculino , Ratones , Obesidad/genética , Embarazo
19.
Ann Hematol ; 95(8): 1341-50, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26968552

RESUMEN

The discovery of fetal DNA (f-DNA) opens the possibility of early non-invasive procedure for detection of paternally inherited mutation of beta-thalassemia. Since 2002, some studies have examined the sensitivity and specificity of this method for detection of paternally inherited mutation of thalassemia in pregnant women at risk of having affected babies. We conducted a systematic review of published articles that evaluated using this method for early detection of paternally inherited mutation in maternal plasma. A sensitive search of multiple databases was done in which nine studies met our inclusion criteria. The sensitivity and specificity was 99 and 99 %, respectively. The current study found that detection of paternally inherited mutation of thalassemia using analysis of cell-free fetal DNA is highly accurate. This method could replace conventional and invasive methods.


Asunto(s)
ADN/sangre , Diagnóstico Prenatal/métodos , Talasemia beta/sangre , Talasemia beta/diagnóstico , Sistema Libre de Células , ADN/genética , Femenino , Feto/metabolismo , Humanos , Embarazo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Talasemia beta/genética
20.
Int J Mol Sci ; 16(10): 23994-4010, 2015 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-26473836

RESUMEN

Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ° cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation.


Asunto(s)
Ácido Aminolevulínico/farmacología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Mitocondrias/patología , Invasividad Neoplásica/patología , Fotoquimioterapia/métodos , Acetilación , Azacitidina/farmacología , Línea Celular Tumoral , Movimiento Celular/fisiología , Inmunoprecipitación de Cromatina , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Humanos , Ácidos Hidroxámicos/farmacología , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/genética , MicroARNs/genética , Regiones Promotoras Genéticas/genética , Proteínas/genética , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...