Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Heliyon ; 10(17): e37100, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286147

RESUMEN

Objective: This study aimed to predict the level of stemness index (mRNAsi) and survival prognosis of lung adenocarcinoma (LUAD) using pathomics model. Methods: From The Cancer Genome Atlas (TCGA) database, 327 LUAD patients were randomly assigned to a training set (n = 229) and a validation set (n = 98) for pathomics model development and evaluation. PyRadiomics was used to extract pathomics features, followed by feature selection using the mRMR-RFE algorithm. In the training set, Gradient Boosting Machine (GBM) was utilized to establish a model for predicting mRNAsi in LUAD. The model's predictive performance was evaluated using ROC curves, calibration curves, and decision curve analysis (DCA). Prognostic analysis was conducted using Kaplan-Meier curves and cox regression. Additionally, gene enrichment analysis, tumor microenvironment analysis, and tumor mutational burden (TMB) analysis were performed to explore the biological mechanisms underlying the pathomics prediction model. Results: Multivariable cox analysis (HR = 1.488, 95 % CI 1.012-2.187, P = 0.043) identified mRNAsi as a prognostic risk factor for LUAD. A total of 465 pathomics features were extracted from TCGA-LUAD histopathological images, and ultimately, the most representative 8 features were selected to construct the predictive model. ROC curves demonstrated the significant predictive value of the model for mRNAsi in both the training set (AUC = 0.769) and the validation set (AUC = 0.757). Calibration curves and Hosmer-Lemeshow goodness-of-fit test showed good consistency between the model's prediction of mRNAsi levels and the actual values. DCA indicated a good net benefit of the model. The prediction of mRNAsi levels by the pathomics model is represented using the pathomics score (PS). PS was strongly associated with the prognosis of LUAD (HR = 1.496, 95 % CI 1.008-2.222, P = 0.046). Signaling pathways related to DNA replication and damage repair were significantly enriched in the high PS group. Prediction of immune therapy response indicated significantly reduced Dysfunction in the high PS group (P < 0.001). The high PS group exhibited higher TMB values (P < 0.001). Conclusions: The predictive model constructed based on pathomics features can forecast the mRNAsi and survival risk of LUAD. This model holds promise to aid clinical practitioners in identifying high-risk patients and devising more optimized treatment plans for patients by jointly employing therapeutic strategies targeting cancer stem cells (CSCs).

2.
Acad Radiol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39289097

RESUMEN

RATIONALE AND OBJECTIVES: To develop and validate multimodal deep-learning models based on clinical variables, multiparametric MRI (mp-MRI) and hematoxylin and eosin (HE) stained pathology slides for predicting microsatellite instability (MSI) status in rectal cancer patients. MATERIALS AND METHODS: A total of 467 surgically confirmed rectal cancer patients from three centers were included in this study. Patients from center 1 were randomly divided into a training set (242 patients) and an internal validation (invad) set (105 patients) in a 7:3 ratio. Patients from centers 2 and 3 (120 patients) were included in an external validation (exvad) set. HE and immunohistochemistry (IHC) staining were analyzed, and MSI status was confirmed by IHC staining. Independent predictive factors were identified through univariate and multivariate analyses based on clinical evaluations and were used to construct a clinical model. Deep learning with ResNet-101 was applied to preoperative MRI (T2WI, DWI, and contrast-enhanced T1WI sequences) and postoperative HE-stained images to calculate deep-learning radiomics score (DLRS) and deep-learning pathomics score (DLPS), respectively, and to DLRS and DLPS models. Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was used to evaluate and compare the predictive performance of each model. RESULTS: Among all rectal cancer patients, 82 (17.6%) had MSI. Long diameter (LD) and pathological T stage (pT) were identified as independent predictors and were used to construct the clinical model. After undergoing deep learning and feature selection, a final set of 30 radiomics features and 30 pathomics features were selected to construct the DLRS and DLPS models. A nomogram combining the clinical model, DLRS, and DLPS was created through weighted linear combination. The AUC values of the clinical model for predicting MSI were 0.714, 0.639, and 0.697 in the training, invad, and exvad sets, respectively. The AUCs of DLPS and DLRS ranged from 0.896 to 0.961 across the training, invad, and exvad sets. The nomogram achieved AUC values of 0.987, 0.987, and 0.974, with sensitivities of 1.0, 0.963, and 1.0 and specificities of 0.919, 0.949, and 0.867 in the training, invad, and exvad sets, respectively. The nomogram outperformed the other three models in all sets, with DeLong test results indicating superior predictive performance in the training set. CONCLUSION: The nomogram, incorporating clinical data, mp-MRI, and HE staining, effectively reflects tumor heterogeneity by integrating multimodal data. This model demonstrates high predictive accuracy and generalizability in predicting MSI status in rectal cancer patients.

3.
Front Med (Lausanne) ; 11: 1447057, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301494

RESUMEN

Introduction: The prevalence of Renal cell carcinoma (RCC) is increasing among adults. Histopathologic samples obtained after surgical resection or from biopsies of a renal mass require subtype classification for diagnosis, prognosis, and to determine surveillance. Deep learning in artificial intelligence (AI) and pathomics are rapidly advancing, leading to numerous applications such as histopathological diagnosis. In our meta-analysis, we assessed the pooled diagnostic performances of deep neural network (DNN) frameworks in detecting RCC subtypes and to predicting survival. Methods: A systematic search was done in PubMed, Google Scholar, Embase, and Scopus from inception to November 2023. The random effects model was used to calculate the pooled percentages, mean, and 95% confidence interval. Accuracy was defined as the number of cases identified by AI out of the total number of cases, i.e. (True Positive + True Negative)/(True Positive + True Negative + False Positive + False Negative). The heterogeneity between study-specific estimates was assessed by the I 2 statistic. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to conduct and report the analysis. Results: The search retrieved 347 studies; 13 retrospective studies evaluating 5340 patients were included in the final analysis. The pooled performance of the DNN was as follows: accuracy 92.3% (95% CI: 85.8-95.9; I 2 = 98.3%), sensitivity 97.5% (95% CI: 83.2-99.7; I 2 = 92%), specificity 89.2% (95% CI: 29.9-99.4; I 2 = 99.6%) and area under the curve 0.91 (95% CI: 0.85-0.97.3; I 2 = 99.6%). Specifically, their accuracy in RCC subtype detection was 93.5% (95% CI: 88.7-96.3; I 2 = 92%), and the accuracy in survival analysis prediction was 81% (95% CI: 67.8-89.6; I 2 = 94.4%). Discussion: The DNN showed excellent pooled diagnostic accuracy rates to classify RCC into subtypes and grade them for prognostic purposes. Further studies are required to establish generalizability and validate these findings on a larger scale.

4.
Heliyon ; 10(15): e34877, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145002

RESUMEN

Background: CTLA4, an immune checkpoint, plays an important role in tumor immunotherapy. The purpose of this study was to develop a pathomics signature to evaluate CTLA4 expression and predict clinical outcomes in clear cell renal cell carcinoma (ccRCC) patients. Methods: A total of 354 patients from the TCGA-KIRC dataset were enrolled in this study. The patients were stratified into two groups based on the level of CTLA4 expression, and overall survival rates were analyzed between groups. Pathological features were identified using machine learning algorithms, and a gradient boosting machine (GBM) was employed to construct the pathomics signatures for predicting prognosis and CTLA4 expression. The predictive performance of the model was subsequently assessed. Enrichment analysis was performed on diferentially expressed genes related to the pathomics score (PS). Additionally, correlations between PS and TMB, as well as immune infiltration profiles associated with different PS values, were explored. In vitro experiments, CTLA4 knockdown was performed to investigate its impact on cell proliferation, migration, invasion, TGF-ß signaling pathway, and macrophage polarization. Results: High expression of CTLA4 was associated with an unfavorable prognosis in ccRCC patients. The pathomics signature displayed good performance in the validation set (AUC = 0.737; P < 0.001 in the log-rank test). The PS was positively correlated with CTLA4 expression. We next explored the underlying mechanism and found the associations between the pathomics signature and TGF-ß signaling pathways, TMB, and Tregs. Further in vitro experiments demonstrated that CTLA4 knockdown inhibited cell proliferation, migration, invasion, TGF-ß expression, and macrophage M2 polarization. Conclusion: High expression of CTLA4 was found to correlate with poor prognosis in ccRCC patients. The pathomics signature established by our group using machine learning effectively predicted both patient prognosis and CTLA4 expression levels in ccRCC cases.

5.
Pflugers Arch ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095655

RESUMEN

Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.

6.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125668

RESUMEN

Pyrroline-5-carboxylate reductase (PYCR) is pivotal in converting pyrroline-5-carboxylate (P5C) to proline, the final step in proline synthesis. Three isoforms, PYCR1, PYCR2, and PYCR3, existed and played significant regulatory roles in tumor initiation and progression. In this study, we first assessed the molecular and immune characteristics of PYCRs by a pan-cancer analysis, especially focusing on their prognostic relevance. Then, a kidney renal clear cell carcinoma (KIRC)-specific prognostic model was established, incorporating pathomics features to enhance predictive capabilities. The biological functions and regulatory mechanisms of PYCR1 and PYCR2 were investigated by in vitro experiments in renal cancer cells. The PYCRs' expressions were elevated in diverse tumors, correlating with unfavorable clinical outcomes. PYCRs were enriched in cancer signaling pathways, significantly correlating with immune cell infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). In KIRC, a prognostic model based on PYCR1 and PYCR2 was independently validated statistically. Leveraging features from H&E-stained images, a pathomics feature model reliably predicted patient prognosis. In vitro experiments demonstrated that PYCR1 and PYCR2 enhanced the proliferation and migration of renal carcinoma cells by activating the mTOR pathway, at least in part. This study underscores PYCRs' pivotal role in various tumors, positioning them as potential prognostic biomarkers and therapeutic targets, particularly in malignancies like KIRC. The findings emphasize the need for a broader exploration of PYCRs' implications in pan-cancer contexts.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Pirrolina Carboxilato Reductasas , Humanos , Pirrolina Carboxilato Reductasas/metabolismo , Pirrolina Carboxilato Reductasas/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Pronóstico , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , delta-1-Pirrolina-5-Carboxilato Reductasa , Proliferación Celular , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Transducción de Señal
7.
Bioengineering (Basel) ; 11(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39061760

RESUMEN

The purpose of this investigation is to develop and initially assess a quantitative image analysis scheme that utilizes histopathological images to predict the treatment effectiveness of bevacizumab therapy in ovarian cancer patients. As a widely accessible diagnostic tool, histopathological slides contain copious information regarding underlying tumor progression that is associated with tumor prognosis. However, this information cannot be readily identified by conventional visual examination. This study utilizes novel pathomics technology to quantify this meaningful information for treatment effectiveness prediction. Accordingly, a total of 9828 features were extracted from segmented tumor tissue, cell nuclei, and cell cytoplasm, which were categorized into geometric, intensity, texture, and subcellular structure features. Next, the best performing features were selected as the input for SVM (support vector machine)-based prediction models. These models were evaluated on an open dataset containing a total of 78 patients and 288 whole slides images. The results indicated that the sufficiently optimized, best-performing model yielded an area under the receiver operating characteristic (ROC) curve of 0.8312. When examining the best model's confusion matrix, 37 and 25 cases were correctly predicted as responders and non-responders, respectively, achieving an overall accuracy of 0.7848. This investigation initially validated the feasibility of utilizing pathomics techniques to predict tumor responses to chemotherapy at an early stage.

8.
Heliyon ; 10(12): e33107, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022022

RESUMEN

Objective: This study aimed to develop quantitative feature-based models from histopathological images to assess aurora kinase A (AURKA) expression and predict the prognosis of patients with lung adenocarcinoma (LUAD). Methods: A dataset of patients with LUAD was derived from the cancer genome atlas (TCGA) with information on clinical characteristics, RNA sequencing and histopathological images. The TCGA-LUAD cohort was randomly divided into training (n = 229) and testing (n = 98) sets. We extracted quantitative image features from histopathological slides of patients with LUAD using computational approaches, constructed a predictive model for AURKA expression in the training set, and estimated their predictive performance in the test set. A Cox proportional hazards model was used to assess whether the pathomic scores (PS) generated by the model independently predicted LUAD survival. Results: High AURKA expression was an independent risk factor for overall survival (OS) in patients with LUAD (hazard ratio = 1.816, 95 % confidence intervals = 1.257-2.623, P = 0.001). The model based on histopathological image features had significant predictive value for AURKA expression: the area under the curve of the receiver operating characteristic curve in the training set and validation set was 0.809 and 0.739, respectively. Decision curve analysis showed that the model had clinical utility. Patients with high PS and low PS had different survival rates (P = 0.019). Multivariate analysis suggested that PS was an independent prognostic factor for LUAD (hazard ratio = 1.615, 95 % confidence intervals = 1.071-2.438, P = 0.022). Conclusion: Pathomics models based on machine learning can accurately predict AURKA expression and the PS generated by the model can predict LUAD prognosis.

9.
Front Oncol ; 14: 1432212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040448

RESUMEN

Background: Pathomics has emerged as a promising biomarker that could facilitate personalized immunotherapy in lung cancer. It is essential to elucidate the global research trends and emerging prospects in this domain. Methods: The annual distribution, journals, authors, countries, institutions, and keywords of articles published between 2018 and 2023 were visualized and analyzed using CiteSpace and other bibliometric tools. Results: A total of 109 relevant articles or reviews were included, demonstrating an overall upward trend; The terms "deep learning", "tumor microenvironment", "biomarkers", "image analysis", "immunotherapy", and "survival prediction", etc. are hot keywords in this field. Conclusion: In future research endeavors, advanced methodologies involving artificial intelligence and pathomics will be deployed for the digital analysis of tumor tissues and the tumor microenvironment in lung cancer patients, leveraging histopathological tissue sections. Through the integration of comprehensive multi-omics data, this strategy aims to enhance the depth of assessment, characterization, and understanding of the tumor microenvironment, thereby elucidating a broader spectrum of tumor features. Consequently, the development of a multimodal fusion model will ensue, enabling precise evaluation of personalized immunotherapy efficacy and prognosis for lung cancer patients, potentially establishing a pivotal frontier in this domain of investigation.

10.
Tissue Eng Part A ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39041628

RESUMEN

Oral squamous cell carcinoma (OSCC) is a highly unpredictable disease with devastating mortality rates that have not changed over the past decades, in the face of advancements in treatments and biomarkers, which have improved survival for other cancers. Delays in diagnosis are frequent, leading to more disfiguring treatments and poor outcomes for patients. The clinical challenge lies in identifying those patients at the highest risk of developing OSCC. Oral epithelial dysplasia (OED) is a precursor of OSCC with highly variable behavior across patients. There is no reliable clinical, pathological, histological, or molecular biomarker to determine individual risk in OED patients. Similarly, there are no robust biomarkers to predict treatment outcomes or mortality in OSCC patients. This review aims to highlight advancements in artificial intelligence (AI)-based methods to develop predictive biomarkers of OED transformation to OSCC or predictive biomarkers of OSCC mortality and treatment response. Biomarkers such as S100A7 demonstrate promising appraisal for the risk of malignant transformation of OED. Machine learning-enhanced multiplex immunohistochemistry workflows examine immune cell patterns and organization within the tumor immune microenvironment to generate outcome predictions in immunotherapy. Deep learning (DL) is an AI-based method using an extended neural network or related architecture with multiple "hidden" layers of simulated neurons to combine simple visual features into complex patterns. DL-based digital pathology is currently being developed to assess OED and OSCC outcomes. The integration of machine learning in epigenomics aims to examine the epigenetic modification of diseases and improve our ability to detect, classify, and predict outcomes associated with epigenetic marks. Collectively, these tools showcase promising advancements in discovery and technology, which may provide a potential solution to addressing the current limitations in predicting OED transformation and OSCC behavior, both of which are clinical challenges that must be addressed in order to improve OSCC survival.

11.
Heliyon ; 10(11): e31882, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841483

RESUMEN

Background: TNFRSF4 plays a significant role in cancer progression, especially in hepatocellular carcinoma (HCC). This study aims to investigate the prognostic value of TNFRSF4 expression in patients with HCC and to develop a predictive pathomics model for its expression. Methods: A cohort of patients with HCC retrieved from the TCGA database was analyzed using RNA-seq analysis to determine TNFRSF4 expression and its impact on overall survival (OS). Additionally, hematoxylin-eosin staining analysis was performed to construct a pathomics model for predicting TNFRSF4 expression. Then, pathway enrichment analysis was conducted, immune checkpoint markers were investigated, and immune cell infiltration was examined to explore the underlying biological mechanism of the pathomics score. Results: TNFRSF4 expression was significantly higher in tumor tissues than in normal tissues. TNFRSF4 expression also exhibited significant correlations with various clinical variables, including pathologic stage III/IV and R1/R2/RX residual tumor. Furthermore, elevated TNFRSF4 expression was associated with unfavorable OS. Interestingly, in the subgroup analysis, elevated TNFRSF4 expression was identified as a significant risk factor for OS in male patients. The newly developed pathomics model successfully predicted TNFRSF4 expression with good performance and revealed a significant association between high pathomics scores and worse OS. In male patients, high pathomics scores were also associated with a higher risk of mortality. Moreover, pathomics scores were also involved in specific hallmarks, immune-related characteristics, and apoptosis-related genes in HCC, such as epithelial-mesenchymal transition, Tregs, and BAX expression. Conclusions: Our findings suggest that TNFRSF4 expression and the newly devised pathomics scores hold potential as prognostic markers for OS in patients with HCC. Additionally, gender influenced the association between these markers and patient outcomes.

12.
BMC Cancer ; 24(1): 710, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858612

RESUMEN

BACKGROUND: Papillary thyroid carcinoma (PTC) is globally prevalent and associated with an increased risk of lymph node metastasis (LNM). The role of cancer-associated fibroblasts (CAFs) in PTC remains unclear. METHODS: We collected postoperative pathological hematoxylin-eosin (HE) slides from 984 included patients with PTC to analyze the density of CAF infiltration at the invasive front of the tumor using QuPath software. The relationship between CAF density and LNM was assessed. Single-cell RNA sequencing (scRNA-seq) data from GSE193581 and GSE184362 datasets were integrated to analyze CAF infiltration in PTC. A comprehensive suite of in vitro experiments, encompassing EdU labeling, wound scratch assays, Transwell assays, and flow cytometry, were conducted to elucidate the regulatory role of CD36+CAF in two PTC cell lines, TPC1 and K1. RESULTS: A significant correlation was observed between high fibrosis density at the invasive front of the tumor and LNM. Analysis of scRNA-seq data revealed metastasis-associated myoCAFs with robust intercellular interactions. A diagnostic model based on metastasis-associated myoCAF genes was established and refined through deep learning methods. CD36 positive expression in CAFs can significantly promote the proliferation, migration, and invasion abilities of PTC cells, while inhibiting the apoptosis of PTC cells. CONCLUSION: This study addresses the significant issue of LNM risk in PTC. Analysis of postoperative HE pathological slides from a substantial patient cohort reveals a notable association between high fibrosis density at the invasive front of the tumor and LNM. Integration of scRNA-seq data comprehensively analyzes CAF infiltration in PTC, identifying metastasis-associated myoCAFs with strong intercellular interactions. In vitro experimental results indicate that CD36 positive expression in CAFs plays a promoting role in the progression of PTC. Overall, these findings provide crucial insights into the function of CAF subset in PTC metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Análisis de la Célula Individual , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Análisis de la Célula Individual/métodos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Proliferación Celular , Masculino , Antígenos CD36/metabolismo , Antígenos CD36/genética , Movimiento Celular , Femenino , Línea Celular Tumoral , Metástasis Linfática , Invasividad Neoplásica , Persona de Mediana Edad , Apoptosis
13.
Cancer Med ; 13(11): e7374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864473

RESUMEN

PURPOSE: Radical surgery, the first-line treatment for patients with hepatocellular cancer (HCC), faces the dilemma of high early recurrence rates and the inability to predict effectively. We aim to develop and validate a multimodal model combining clinical, radiomics, and pathomics features to predict the risk of early recurrence. MATERIALS AND METHODS: We recruited HCC patients who underwent radical surgery and collected their preoperative clinical information, enhanced computed tomography (CT) images, and whole slide images (WSI) of hematoxylin and eosin (H & E) stained biopsy sections. After feature screening analysis, independent clinical, radiomics, and pathomics features closely associated with early recurrence were identified. Next, we built 16 models using four combination data composed of three type features, four machine learning algorithms, and 5-fold cross-validation to assess the performance and predictive power of the comparative models. RESULTS: Between January 2016 and December 2020, we recruited 107 HCC patients, of whom 45.8% (49/107) experienced early recurrence. After analysis, we identified two clinical features, two radiomics features, and three pathomics features associated with early recurrence. Multimodal machine learning models showed better predictive performance than bimodal models. Moreover, the SVM algorithm showed the best prediction results among the multimodal models. The average area under the curve (AUC), accuracy (ACC), sensitivity, and specificity were 0.863, 0.784, 0.731, and 0.826, respectively. Finally, we constructed a comprehensive nomogram using clinical features, a radiomics score and a pathomics score to provide a reference for predicting the risk of early recurrence. CONCLUSIONS: The multimodal models can be used as a primary tool for oncologists to predict the risk of early recurrence after radical HCC surgery, which will help optimize and personalize treatment strategies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aprendizaje Automático , Recurrencia Local de Neoplasia , Tomografía Computarizada por Rayos X , Humanos , Carcinoma Hepatocelular/cirugía , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Pronóstico , Anciano , Hepatectomía , Adulto , Radiómica
14.
Endocrine ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753243

RESUMEN

BACKGROUND: The TNFRSF9 molecule is pivotal in thyroid carcinoma (THCA) development. This study utilizes Pathomics techniques to predict TNFRSF9 expression in THCA tissue and explore its molecular mechanisms. METHODS: Transcriptome data, pathology images, and clinical information from the cancer genome atlas (TCGA) were analyzed. Image segmentation and feature extraction were performed using the OTSU's algorithm and pyradiomics package. The dataset was split for training and validation. Features were selected using maximum relevance minimum redundancy recursive feature elimination (mRMR_RFE) and modeling conducted with the gradient boosting machine (GBM) algorithm. Model evaluation included receiver operating characteristic curve (ROC) analysis. The Pathomics model output a probabilistic pathomics score (PS) for gene expression prediction, with its prognostic value assessed in TNFRSF9 expression groups. Subsequent analysis involved gene set variation analysis (GSVA), immune gene expression, cell abundance, immunotherapy susceptibility, and gene mutation analysis. RESULTS: High TNFRSF9 expression correlated with worsened progression-free interval (PFI) and acted as an independent risk factor [hazard ratio (HR) = 2.178, 95% confidence interval (CI) 1.045-4.538, P = 0.038]. Nine pathohistological features were identified. The GBM Pathomics model demonstrated good prediction efficacy [area under the curve (AUC) 0.819 and 0.769] and clinical benefits. High PS was a PFI risk factor (HR = 2.156, 95% CI 1.047-4.440, P = 0.037). Patients with high PS potentially exhibited enriched pathways, increased TIGIT gene expression, Tregs infiltration (P < 0.0001), and higher rates of gene mutations (BRAF, TTN, TG). CONCLUSIONS: The GBM Pathomics model constructed based on the pathohistological features of H&E-stained sections well predicted the expression level of TNFRSF9 molecules in THCA.

15.
Lab Invest ; 104(6): 102060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626875

RESUMEN

Precision medicine aims to provide personalized care based on individual patient characteristics, rather than guideline-directed therapies for groups of diseases or patient demographics. Images-both radiology- and pathology-derived-are a major source of information on presence, type, and status of disease. Exploring the mathematical relationship of pixels in medical imaging ("radiomics") and cellular-scale structures in digital pathology slides ("pathomics") offers powerful tools for extracting both qualitative and, increasingly, quantitative data. These analytical approaches, however, may be significantly enhanced by applying additional methods arising from fields of mathematics such as differential geometry and algebraic topology that remain underexplored in this context. Geometry's strength lies in its ability to provide precise local measurements, such as curvature, that can be crucial for identifying abnormalities at multiple spatial levels. These measurements can augment the quantitative features extracted in conventional radiomics, leading to more nuanced diagnostics. By contrast, topology serves as a robust shape descriptor, capturing essential features such as connected components and holes. The field of topological data analysis was initially founded to explore the shape of data, with functional network connectivity in the brain being a prominent example. Increasingly, its tools are now being used to explore organizational patterns of physical structures in medical images and digitized pathology slides. By leveraging tools from both differential geometry and algebraic topology, researchers and clinicians may be able to obtain a more comprehensive, multi-layered understanding of medical images and contribute to precision medicine's armamentarium.


Asunto(s)
Medicina de Precisión , Medicina de Precisión/métodos , Humanos , Radiología/métodos , Procesamiento de Imagen Asistido por Computador/métodos
16.
J Neurooncol ; 168(2): 283-298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38557926

RESUMEN

PURPOSE: To develop and validate a pathomics signature for predicting the outcomes of Primary Central Nervous System Lymphoma (PCNSL). METHODS: In this study, 132 whole-slide images (WSIs) of 114 patients with PCNSL were enrolled. Quantitative features of hematoxylin and eosin (H&E) stained slides were extracted using CellProfiler. A pathomics signature was established and validated. Cox regression analysis, receiver operating characteristic (ROC) curves, Calibration, decision curve analysis (DCA), and net reclassification improvement (NRI) were performed to assess the significance and performance. RESULTS: In total, 802 features were extracted using a fully automated pipeline. Six machine-learning classifiers demonstrated high accuracy in distinguishing malignant neoplasms. The pathomics signature remained a significant factor of overall survival (OS) and progression-free survival (PFS) in the training cohort (OS: HR 7.423, p < 0.001; PFS: HR 2.143, p = 0.022) and independent validation cohort (OS: HR 4.204, p = 0.017; PFS: HR 3.243, p = 0.005). A significantly lower response rate to initial treatment was found in high Path-score group (19/35, 54.29%) as compared to patients in the low Path-score group (16/70, 22.86%; p < 0.001). The DCA and NRI analyses confirmed that the nomogram showed incremental performance compared with existing models. The ROC curve demonstrated a relatively sensitive and specific profile for the nomogram (1-, 2-, and 3-year AUC = 0.862, 0.932, and 0.927, respectively). CONCLUSION: As a novel, non-invasive, and convenient approach, the newly developed pathomics signature is a powerful predictor of OS and PFS in PCNSL and might be a potential predictive indicator for therapeutic response.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma , Aprendizaje Automático , Humanos , Femenino , Masculino , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/mortalidad , Persona de Mediana Edad , Pronóstico , Linfoma/patología , Linfoma/diagnóstico , Linfoma/mortalidad , Anciano , Adulto , Curva ROC , Anciano de 80 o más Años , Tasa de Supervivencia , Adulto Joven , Estudios Retrospectivos , Biomarcadores de Tumor/metabolismo
17.
Cancer Med ; 13(7): e6947, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38545828

RESUMEN

OBJECTIVE: This retrospective observational study aims to develop and validate artificial intelligence (AI) pathomics models based on pathological Hematoxylin-Eosin (HE) slides and pathological immunohistochemistry (Ki67) slides for predicting the pathological staging of colorectal cancer. The goal is to enable AI-assisted accurate pathological staging, supporting healthcare professionals in making efficient and precise staging assessments. METHODS: This study included a total of 267 colorectal cancer patients (training cohort: n = 213; testing cohort: n = 54). Logistic regression algorithms were used to construct the models. The HE image features were used to build the HE model, the Ki67 image features were used for the Ki67 model, and the combined model included features from both the HE and Ki67 images, as well as tumor markers (CEA, CA724, CA125, and CA242). The predictive results of the HE model, Ki67 model, and tumor markers were visualized through a nomogram. The models were evaluated using ROC curve analysis, and their clinical value was estimated using decision curve analysis (DCA). RESULTS: A total of 260 deep learning features were extracted from HE or Ki67 images. The AUC for the HE model and Ki67 model in the training cohort was 0.885 and 0.890, and in the testing cohort, it was 0.703 and 0.767, respectively. The combined model and nomogram in the training cohort had AUC values of 0.907 and 0.926, and in the testing cohort, they had AUC values of 0.814 and 0.817. In clinical DCA, the net benefit of the Ki67 model was superior to the HE model. The combined model and nomogram showed significantly higher net benefits compared to the individual HE model or Ki67 model. CONCLUSION: The combined model and nomogram, which integrate pathomics multi-modal data and clinical-pathological variables, demonstrated superior performance in distinguishing between Stage I-II and Stage III colorectal cancer. This provides valuable support for clinical decision-making and may improve treatment strategies and patient prognosis. Furthermore, the use of immunohistochemistry (Ki67) slides for pathomics modeling outperformed HE slide, offering new insights for future pathomics research.


Asunto(s)
Inteligencia Artificial , Neoplasias Colorrectales , Humanos , Antígeno Ki-67 , Algoritmos , Biomarcadores de Tumor , Neoplasias Colorrectales/diagnóstico , Eosina Amarillenta-(YS) , Nomogramas , Estudios Retrospectivos
18.
Front Oncol ; 14: 1287995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549937

RESUMEN

Purpose: Patients with advanced prostate cancer (PCa) often develop castration-resistant PCa (CRPC) with poor prognosis. Prognostic information obtained from multiparametric magnetic resonance imaging (mpMRI) and histopathology specimens can be effectively utilized through artificial intelligence (AI) techniques. The objective of this study is to construct an AI-based CRPC progress prediction model by integrating multimodal data. Methods and materials: Data from 399 patients diagnosed with PCa at three medical centers between January 2018 and January 2021 were collected retrospectively. We delineated regions of interest (ROIs) from 3 MRI sequences viz, T2WI, DWI, and ADC and utilized a cropping tool to extract the largest section of each ROI. We selected representative pathological hematoxylin and eosin (H&E) slides for deep-learning model training. A joint combined model nomogram was constructed. ROC curves and calibration curves were plotted to assess the predictive performance and goodness of fit of the model. We generated decision curve analysis (DCA) curves and Kaplan-Meier (KM) survival curves to evaluate the clinical net benefit of the model and its association with progression-free survival (PFS). Results: The AUC of the machine learning (ML) model was 0.755. The best deep learning (DL) model for radiomics and pathomics was the ResNet-50 model, with an AUC of 0.768 and 0.752, respectively. The nomogram graph showed that DL model contributed the most, and the AUC for the combined model was 0.86. The calibration curves and DCA indicate that the combined model had a good calibration ability and net clinical benefit. The KM curve indicated that the model integrating multimodal data can guide patient prognosis and management strategies. Conclusion: The integration of multimodal data effectively improves the prediction of risk for the progression of PCa to CRPC.

19.
BMC Bioinformatics ; 25(1): 98, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443821

RESUMEN

BACKGROUND: Pathomics facilitates automated, reproducible and precise histopathology analysis and morphological phenotyping. Similar to molecular omics, pathomics datasets are high-dimensional, but also face large outlier variability and inherent data missingness, making quick and comprehensible data analysis challenging. To facilitate pathomics data analysis and interpretation as well as support a broad implementation we developed tRigon (Toolbox foR InteGrative (path-)Omics data aNalysis), a Shiny application for fast, comprehensive and reproducible pathomics analysis. RESULTS: tRigon is available via the CRAN repository ( https://cran.r-project.org/web/packages/tRigon ) with its source code available on GitLab ( https://git-ce.rwth-aachen.de/labooratory-ai/trigon ). The tRigon package can be installed locally and its application can be executed from the R console via the command 'tRigon::run_tRigon()'. Alternatively, the application is hosted online and can be accessed at https://labooratory.shinyapps.io/tRigon . We show fast computation of small, medium and large datasets in a low- and high-performance hardware setting, indicating broad applicability of tRigon. CONCLUSIONS: tRigon allows researchers without coding abilities to perform exploratory feature analyses of pathomics and non-pathomics datasets on their own using a variety of hardware.


Asunto(s)
Aplicaciones Móviles , Análisis de Datos
20.
BMC Cancer ; 24(1): 368, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519974

RESUMEN

OBJECTIVE: This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). METHODS: This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). RESULTS: A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. CONCLUSION: The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagen , Inteligencia Artificial , Algoritmos , Eosina Amarillenta-(YS) , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...