Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurospine ; 20(1): 308-316, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37016878

RESUMEN

OBJECTIVE: Pedicle-based dynamic stabilization (DS) has gained popularity outside of America. Although pedicle screw (PS) loosening has always been a concern, it is reportedly innocuous. Cortical bone trajectory (CBT) screw is an emerging option with less invasiveness and similar effectiveness to PS in short-segment lumbar fusion. This study aimed to verify the use of CBT for DS by comparing the outcomes between pedicle- and CBT-based DS. METHODS: Consecutive patients with lumbar spondylosis or low-grade spondylolisthesis who underwent 1- or 2-level DS between L3-5 with a minimum follow-up of 24 months were reviewed. Screw loosening was determined by computed tomography and the incidences were compared. RESULTS: A total of 291 patients who underwent Dynesys DS (235 pedicle- and 56 CBT-based, respectively) were compared. The demographics and preoperative conditions were similar. All the clinical outcomes improved at 24-month postoperation, while the CBT-based group had less operation time and blood loss than the pedicle-based group. The rates of screw loosening were lower in the CBT-based (5.4% per screw and 12.5% per patient) than the pedicle-based group (9% per screw and 26.4% per patient). Furthermore, there were no differences in the clinical outcomes and complication profiles. CONCLUSION: The CBT-based DS for 1- or 2-level lumbar degeneration demonstrated equivalent clinical improvement as the pedicle-based DS. The adaption of CBT-based screws for DS could be a less invasive approach (shorter operation time and less blood loss), with lower chances of screw loosening than the conventional PS-based DS.

2.
J Neurosurg Spine ; 27(6): 643-649, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28937328

RESUMEN

OBJECTIVE Pedicle screw-rod-based hybrid stabilization (PH) and interspinous device-based hybrid stabilization (IH) have been proposed to prevent adjacent-segment degeneration (ASD) and their effectiveness has been reported. However, a comparative study based on sound biomechanical proof has not yet been reported. The aim of this study was to compare the biomechanical effects of IH and PH on the transition and adjacent segments. METHODS A validated finite element model of the normal lumbosacral spine was used. Based on the normal model, a rigid fusion model was immobilized at the L4-5 level by a rigid fixator. The DIAM or NFlex model was added on the L3-4 segment of the fusion model to construct the IH and PH models, respectively. The developed models simulated 4 different loading directions using the hybrid loading protocol. RESULTS Compared with the intact case, fusion on L4-5 produced 18.8%, 9.3%, 11.7%, and 13.7% increments in motion at L3-4 under flexion, extension, lateral bending, and axial rotation, respectively. Additional instrumentation at L3-4 (transition segment) in hybrid models reduced motion changes at this level. The IH model showed 8.4%, -33.9%, 6.9%, and 2.0% change in motion at the segment, whereas the PH model showed -30.4%, -26.7%, -23.0%, and 12.9%. At L2-3 (adjacent segment), the PH model showed 14.3%, 3.4%, 15.0%, and 0.8% of motion increment compared with the motion in the IH model. Both hybrid models showed decreased intradiscal pressure (IDP) at the transition segment compared with the fusion model, but the pressure at L2-3 (adjacent segment) increased in all loading directions except under extension. CONCLUSIONS Both IH and PH models limited excessive motion and IDP at the transition segment compared with the fusion model. At the segment adjacent to the transition level, PH induced higher stress than IH model. Such differences may eventually influence the likelihood of ASD.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Vértebras Lumbares/cirugía , Tornillos Pediculares , Rango del Movimiento Articular/fisiología , Fusión Vertebral/instrumentación , Cadáver , Humanos , Región Lumbosacra/patología , Región Lumbosacra/fisiopatología , Riesgo , Rotación , Fusión Vertebral/métodos
3.
J Neurosurg Spine ; 25(6): 706-712, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27341057

RESUMEN

OBJECTIVE Pedicle screw-based dynamic spinal stabilization systems (PDSs) were devised to decrease, theoretically, the risk of long-term complications such as adjacent-segment degeneration (ASD) after lumbar fusion surgery. However, to date, there have been few studies that fully proved that a PDS can reduce the risk of ASD. The purpose of this study was to examine whether a PDS can influence the incidence of ASD and to discuss the surgical coping strategy for L5-S1 segmental spondylosis with preexisting L4-5 degeneration with no related symptoms or signs. METHODS This study retrospectively compared 62 cases of L5-S1 segmental spondylosis in patients who underwent posterior lumbar interbody fusion (n = 31) or K-Rod dynamic stabilization (n = 31) with a minimum of 4 years' follow-up. The authors measured the intervertebral heights and spinopelvic parameters on standing lateral radiographs and evaluated preexisting ASD on preoperative MR images using the modified Pfirrmann grading system. Radiographic ASD was evaluated according to the results of radiography during follow-up. RESULTS All 62 patients achieved remission of their neurological symptoms without surgical complications. The Kaplan-Meier curve and Cox proportional-hazards model showed no statistically significant differences between the 2 surgical groups in the incidence of radiographic ASD (p > 0.05). In contrast, the incidence of radiographic ASD was 8.75 times (95% CI 1.955-39.140; p = 0.005) higher in the patients with a preoperative modified Pfirrmann grade higher than 3 than it was in patients with a modified Pfirrmann grade of 3 or lower. In addition, no statistical significance was found for other risk factors such as age, sex, and spinopelvic parameters. CONCLUSIONS Pedicle screw-based dynamic spinal stabilization systems were not found to be superior to posterior lumbar interbody fusion in preventing radiographic ASD (L4-5) during the midterm follow-up. Preexisting ASD with a modified Pfirrmann grade higher than 3 was a risk factor for radiographic ASD. In the treatment of degenerative diseases of the lumbosacral spine, the authors found that both of these methods are feasible. Also, the authors believe that no extra treatment, other than observation, is needed for preexisting degeneration in L4-5 without any clinical symptoms or signs.


Asunto(s)
Degeneración del Disco Intervertebral/cirugía , Vértebras Lumbares/cirugía , Tornillos Pediculares , Sacro/cirugía , Fusión Vertebral/métodos , Espondilosis/cirugía , Adulto , Cuidados Posteriores , Femenino , Humanos , Incidencia , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/epidemiología , Vértebras Lumbares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sacro/diagnóstico por imagen , Fusión Vertebral/instrumentación , Espondilosis/diagnóstico por imagen , Espondilosis/epidemiología , Resultado del Tratamiento , Adulto Joven
4.
Comput Methods Biomech Biomed Engin ; 18(11): 1252-1261, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24708377

RESUMEN

Pedicle screw-based dynamic constructs either benefit from a dynamic (flexible) interconnecting rod or a dynamic (hinged) screw. Both types of systems have been reported in the literature. However, reports where the dynamic system is composed of two dynamic components, i.e. a dynamic (hinged) screw and a dynamic rod, are sparse. In this study, the biomechanical characteristics of a novel pedicle screw-based dynamic stabilisation system were investigated and compared with equivalent rigid and semi-rigid systems using in vitro testing and finite element modelling analysis. All stabilisation systems restored stability after decompression. A significant decrease in the range of motion was observed for the rigid system in all loadings. In the semi-rigid construct the range of motion was significantly less than the intact in extension, lateral bending and axial rotation loadings. There were no significant differences in motion between the intact spine and the spine treated with the dynamic system (P>0.05). The peak stress in screws was decreased when the stabilisation construct was equipped with dynamic rod and/or dynamic screws.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...