Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725016

RESUMEN

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Embarazo , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Adulto , Estudios Transversales , Polimorfismo de Nucleótido Simple/genética , Nigeria/epidemiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Alelos , Adulto Joven , Complicaciones Parasitarias del Embarazo/parasitología , Complicaciones Parasitarias del Embarazo/genética , Complicaciones Parasitarias del Embarazo/diagnóstico , Resistencia a Múltiples Medicamentos/genética , Dihidropteroato Sintasa/genética , Tetrahidrofolato Deshidrogenasa/genética , Proteínas Protozoarias/genética , Adolescente
2.
Malar J ; 22(1): 375, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38072967

RESUMEN

BACKGROUND: Resistance against artemisinin-based combination therapy is one of the challenges to malaria control and elimination globally. Mutations in different genes (Pfdhfr, Pfdhps, Pfk-13 and Pfmdr1) confer resistance to artesunate and sulfadoxine-pyrimethamine (AS + SP) were analysed from Mandla district, Madhya Pradesh, to assess the effectiveness of the current treatment regimen against uncomplicated Plasmodium falciparum. METHODS: Dried blood spots were collected during the active fever survey and mass screening and treatment activities as part of the Malaria Elimination Demonstration Project (MEDP) from 2019 to 2020. Isolated DNA samples were used to amplify the Pfdhfr, Pfdhps, Pfk13 and Pfmdr1 genes using nested PCR and sequenced for mutation analysis using the Sanger sequencing method. RESULTS: A total of 393 samples were subjected to PCR amplification, sequencing and sequence analysis; 199, 215, 235, and 141 samples were successfully sequenced for Pfdhfr, Pfdhps, Pfk13, Pfmdr1, respectively. Analysis revealed that the 53.3% double mutation (C59R, S108N) in Pfdhfr, 89.3% single mutation (G437A) in Pfdhps, 13.5% single mutants (N86Y), and 51.1% synonymous mutations in Pfmdr1 in the study area. Five different non-synonymous and two synonymous point mutations found in Pfk13, which were not associated to artemisinin resistance. CONCLUSION: The study has found that mutations linked to SP resistance are increasing in frequency, which may reduce the effectiveness of this drug as a future partner in artemisinin-based combinations. No evidence of mutations linked to artemisinin resistance in Pfk13 was found, suggesting that parasites are sensitive to artemisinin derivatives in the study area. These findings are a baseline for routine molecular surveillance to proactively identify the emergence and spread of artemisinin-resistant parasites.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Malaria/tratamiento farmacológico , Biomarcadores , Resistencia a Medicamentos/genética , India , Combinación de Medicamentos , Malaria Falciparum/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
3.
Malar J ; 22(1): 240, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612601

RESUMEN

BACKGROUND: Artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) are the currently recommended first-and second-line therapies for uncomplicated Plasmodium falciparum infections in Chad. This study assessed the efficacy of these artemisinin-based combinations, proportion of day 3 positive patients, proportions of molecular markers associated with P. falciparum resistance to anti-malarial drugs and variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single-arm prospective study assessing the efficacy of AS-AQ and AL at three sites (Doba, Kelo and Koyom) was conducted between November 2020 to January 2021. Febrile children aged 6 to 59 months with confirmed uncomplicated P. falciparum infection were enrolled sequentially first to AS-AQ and then AL at each site and followed up for 28 days. The primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples collected on day 0 were analysed for mutations in pfkelch13, pfcrt, pfmdr-1, pfdhfr, pfdhps genes and deletions in pfhrp2/pfhrp3 genes. RESULTS: By the end of 28-day follow-up, per-protocol PCR corrected ACPR of 97.8% (CI 95% 88.2-100) in Kelo and 100% in Doba and Kayoma were observed among AL treated patients. For ASAQ, 100% ACPR was found in all sites. All, but one patient, did not have parasites detected on day 3. Out of the 215 day 0 samples, 96.7% showed pfkelch13 wild type allele. Seven isolates carried nonsynonymous mutations not known to be associated artemisinin partial resistance (ART-R). Most of samples had a pfcrt wild type allele (79% to 89%). The most prevalent pfmdr-1 allele detected was the single mutant 184F (51.2%). For pfdhfr and pfdhps mutations, the quintuple mutant allele N51I/C59R/S108N + G437A/540E responsible for SP treatment failures in adults and children was not detected. Single deletion in the pfhrp2 and pfhrp3 gene were detected in 10/215 (4.7%) and 2/215 (0.9%), respectively. Dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, were observed in 5/215 (2.3%) isolates. CONCLUSION: The results of this study confirm that AS-AQ and AL treatments are highly efficacious in study areas in Chad. The absence of known pfkelch13 mutations in the study sites and the high parasite clearance rate at day 3 suggest the absence of ART-R. The absence of pfdhfr/pfdhps quintuple or sextuple (quintuple + 581G) mutant supports the continued use of SP for IPTp during pregnancy. The presence of parasites with dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, warrants the continued surveillance. Trial registration ACTRN12622001476729.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Adulto , Femenino , Embarazo , Humanos , Artesunato , Antimaláricos/uso terapéutico , Amodiaquina/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Chad , Estudios Prospectivos , Arteméter , Malaria Falciparum/tratamiento farmacológico , Artemisininas/uso terapéutico
4.
Front Cell Infect Microbiol ; 12: 865814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583107

RESUMEN

Introduction: After being used vigorously for the previous two decades to treat P. falciparum, chloroquine and sulfadoxine-pyrimethamine were replaced in 2009 with an artemisinin-based combination therapy (artesunate-sulfadoxine-pyrimethamine) in an effort to combat multidrug-resistant parasites. Methods: We set out to assess the genetic variants of sulfadoxine-pyrimethamine resistance and the effectiveness of its treatment in eastern India prior to, during, and 6 to 8 years following the introduction of the new pharmacological regime. In 2008-2009, 318 P. falciparum-positive patients got the recommended doses of sulfadoxine-pyrimethamine. We used 379 additional isolates from 2015 to 2017 in addition to the 106 isolates from 2010. All 803 isolates from two study sites underwent in vitro sulfadoxine-pyrimethamine sensitivity testing and genomic characterisation of sulfadoxine-pyrimethamine resistance (pfdhfr and pfdhps). Results: In Kolkata and Purulia, we observed early treatment failure in 30.7 and 14.4% of patients, respectively, whereas recrudescence was found in 8.1 and 13.4% of patients, respectively, in 2008-2009. In 2017, the proportion of in vitro pyrimethamine and sulfadoxine resistance steadily grew in Kolkata and Purulia despite a single use of sulfadoxine-pyrimethamine. Treatment failures with sulfadoxine-pyrimethamine were linked to quintuple or quadruple pfdhfr- pfdhps mutations (AICII-AGKAT, AICII-AGKAA, AICII-SGKGT, AICII-AGKAA, AICNI-AGKAA) in 2008-2009 (p < 0.001). The subsequent spread of mutant-haplotypes with higher in vitro sulfadoxine-pyrimethamine resistance (p < 0.001), such as the sextuple (dhfr-AIRNI+dhps-AGEAA, dhfr-ANRNL+dhps-AGEAA) and septuple (dhfr-AIRNI+dhps-AGEAT), mutations were observed in 2015-2017. Discussion: This successive spread of mutations with high in vitro sulfadoxine-pyrimethamine resistance confirmed the progressive increase in antifolate resistance even after an 8-year withdrawal of sulfadoxine-pyrimethamine.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Resistencia a Medicamentos/genética , Mutación , Genómica , Resultado del Tratamiento , Tetrahidrofolato Deshidrogenasa/genética , Combinación de Medicamentos
5.
Heliyon ; 8(11): e11861, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36451747

RESUMEN

The emergence and spread of Plasmodium falciparum (P.f) drug resistance is still a major concern in Sub-Saharan Africa and warrants that its evolution be monitored continuously. The present study aimed at determining the distribution of key P.f drug resistance-mediating alleles in circulating malaria parasites in the West region of Cameroon. A cross sectional hospital-based study was conducted in Dschang and Ngounso in the West region of Cameroon. The Pfcrt, Pfmdr1, and the Pfdhps genes were amplified through nested PCR in 208 malaria-infected samples of the 301 febrile outpatients enrolled. The presence or absence of mutations in the K76T, N86Y, A437G and A581G codons of these P.f. genes respectively were determined through restriction digestion analysis. The proportion of different alleles were estimated as percentages and compared between two study sites using the Chi square test. A p value <0.05 was considered significant. A high prevalence (75.6%) of the 437G allele was observed. It was significantly different between Dschang and Ngounso (62% vs. 89.2%, X2 = 19.6, P = 0.00005). Equally observed was a 19.2% (95%CI: 13.3-25.6) of the dhps-581G mutant allele. Furthermore, we observed the Pfcrt-76T, Pfmdr1-N86 mutations in 73.0% (67.5-79.7) and 87.2% (83.2-91.9), and 3.0% (0.0-9.6) and 12.8% was observed for the Pfcrt-K76T and Pfmdr1-N86Y respectively. When biallelic haplotypes were constructed from alleles of the three genes, same pattern was seen. Overall, 73% and 87% of circulating P. falciparum isolates carried wild type alleles at Pfmdr1-N86Y and Pfcrt-K76T. On the other hand, we found more parasites with mutant alleles at dhps (437G and 581G) loci which may reflect possible drug-related selection of this mutant in the parasite population. Continuous monitoring of these mutations is recommended to pre-empt a loss in sulphadoxine-pyrimethamine efficacy in malaria chemoprevention programs.

6.
Trop Med Infect Dis ; 7(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36006247

RESUMEN

The effectiveness of artemisinin-based combination therapies (ACTs) depends not only on that of artemisinin but also on that of partner molecules. This study aims to evaluate the prevalence of mutations in the Pfdhfr, Pfdhps, and Pfmdr1 genes from isolates collected during a clinical study. Plasmodium genomic DNA samples extracted from symptomatic malaria patients from Dogondoutchi, Niger, were sequenced by the Sanger method to determine mutations in the Pfdhfr (codons 51, 59, 108, and 164), Pfdhps (codons 436, 437, 540, 581, and 613), and Pfmdr1 (codons 86, 184, 1034, and 1246) genes. One hundred fifty-five (155) pre-treatment samples were sequenced for the Pfdhfr, Pfdhps, and Pfmdr1 genes. A high prevalence of mutations in the Pfdhfr gene was observed at the level of the N51I (84.97%), C59R (92.62%), and S108N (97.39%) codons. The key K540E mutation in the Pfdhps gene was not observed. Only one isolate was found to harbor a mutation at codon I431V. The most common mutation on the Pfmdr1 gene was Y184F in 71.43% of the mutations found, followed by N86Y in 10.20%. The triple-mutant haplotype N51I/C59R/S108N (IRN) was detected in 97% of the samples. Single-mutant (ICS and NCN) and double-mutant (IRS, NRN, and ICN) haplotypes were prevalent at 97% and 95%, respectively. Double-mutant haplotypes of the Pfdhps (581 and 613) and Pfmdr (86 and 184) were found in 3% and 25.45% of the isolates studied, respectively. The study focused on the molecular analysis of the sequencing of the Pfdhfr, Pfdhps, and Pfmdr1 genes. Although a high prevalence of mutations in the Pfdhfr gene have been observed, there is a lack of sulfadoxine pyrimethamine resistance. There is a high prevalence of mutation in the Pfmdr184 codon associated with resistance to amodiaquine. These data will be used by Niger's National Malaria Control Program to better monitor the resistance of Plasmodium to partner molecules in artemisinin-based combination therapies.

7.
Molecules ; 28(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615340

RESUMEN

The continual rise in sulfadoxine (SDX) resistance affects the therapeutic efficacy of sulfadoxine-pyrimethamine; therefore, careful monitoring will help guide its prolonged usage. Mutations in Plasmodium falciparum dihydropteroate synthase (Pfdhps) are being surveilled, based on their link with SDX resistance. However, there is a lack of continuous analyses and data on the potential effect of molecular markers on the Pfdhps structure and function. This study explored single-nucleotide polymorphisms (SNPs) in Pfdhps that were isolated in Africa and other countries, highlighting the regional distribution and its link with structure. In total, 6336 genomic sequences from 13 countries were subjected to SNPs, haplotypes, and structure-based analyses. The SNP analysis revealed that the key SDX resistance marker, A437G, was nearing fixation in all countries, peaking in Malawi. The mutation A613S was rare except in isolates from the Democratic Republic of Congo and Malawi. Molecular docking revealed a general loss of interactions when comparing mutant proteins to the wild-type protein. During MD simulations, SDX was released from the active site in mutants A581G and A613S before the end of run-time, whereas an unstable binding of SDX to mutant A613S and haplotype A437A/A581G/A613S was observed. Conformational changes in mutant A581G and the haplotypes A581G/A613S, A437G/A581G, and A437G/A581G/A613S were seen. The radius of gyration revealed an unfolding behavior for the A613S, K540E/A581G, and A437G/A581G systems. Overall, tracking such mutations by the continuous analysis of Pfdhps SNPs is encouraged. SNPs on the Pfdhps structure may cause protein-drug function loss, which could affect the applicability of SDX in preventing malaria in pregnant women and children.


Asunto(s)
Antimaláricos , Dihidropteroato Sintasa , Malaria Falciparum , Plasmodium falciparum , Niño , Femenino , Humanos , Embarazo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Simulación del Acoplamiento Molecular , Mutación , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética
8.
Front Cell Infect Microbiol ; 11: 644576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968801

RESUMEN

Malaria remains a major public health issue in Nigeria, and Nigeria is one of the main sources of imported malaria in China. Antimalarial drug resistance is a significant obstacle to the control and prevention of malaria globally. The molecular markers associated with antimalarial drug resistance can provide early warnings about the emergence of resistance. The prevalence of antimalarial drug resistant genes and mutants, including PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, was evaluated among the imported Plasmodium falciparum isolates from Nigeria in Henan, China, from 2012 to 2019. Among the 167 imported P. falciparum isolates, the wild-type frequency of PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps was 98.7, 63.9, 34.8, 3.1, and 3.1%, respectively. The mutation of PfK13 was rare, with just two nonsynonymous (S693F and Q613H) and two synonymous mutations (C469C and G496G) identified from four isolates. The prevalence of Pfcrt mutation at codon 74-76 decreased year-by-year, while the prevalence of pfmdr1 86Y also decreased significantly with time. The prevalence of Pfdhfr and Pfdhps mutants was high. Combined mutations of Pfdhfr and Pfdhps had a high prevalence of the quadruple mutant I51R59N108-G437 (39.0%), followed by the octal mutant I51R59N108-V431A436G437G581S613 (17.0%). These molecular findings update the known data on antimalarial drug-resistance genes and provide supplemental information for Nigeria.


Asunto(s)
Antimaláricos , Malaria Falciparum , China , Humanos , Nigeria , Plasmodium falciparum , Proteínas Protozoarias
9.
J Infect Dis ; 224(9): 1605-1613, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33684211

RESUMEN

Mutations in the Plasmodium falciparum genes Pfdhfr and Pfdhps, particularly the sextuple mutant haplotype threatens the antimalarial effectiveness of sulfadoxine-pyrimethamine (SP) as intermittent preventive treatment during pregnancy (IPTp). To explore the impact of sextuple mutant haplotype infections on outcome measures after provision of IPTp with SP, we monitored birth outcomes in women followed up from before conception or from the first trimester until delivery. Women infected with sextuple haplotypes, in the early second trimester specifically, delivered newborns with a lower birth weight compared with women who did not have malaria during pregnancy (difference, -267 g; 95% confidence interval, -454 to -59; P = .01) and women infected with less SP-resistant haplotypes (-461 g; -877 to -44; P = .03). Thus, sextuple haplotype infections seem to affect the effectiveness of SP for IPTp and directly affect birth outcome by lowering birth weight. Close monitoring and targeted malaria control during early pregnancy is therefore crucial to improving birth outcomes.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Sulfadoxina/uso terapéutico , Adulto , Antimaláricos/farmacología , Peso al Nacer , Combinación de Medicamentos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Femenino , Humanos , Recién Nacido , Masculino , Plasmodium falciparum/genética , Embarazo , Complicaciones Parasitarias del Embarazo/diagnóstico , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Resultado del Embarazo , Segundo Trimestre del Embarazo , Pirimetamina/uso terapéutico
10.
Malar J ; 20(1): 152, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731134

RESUMEN

BACKGROUND: Anti-malarial drug resistance remains a key concern for the global fight against malaria. In Ghana sulfadoxine-pyrimethamine (SP) is used for intermittent preventive treatment of malaria in pregnancy and combined with amodiaquine for Seasonal Malaria Chemoprevention (SMC) during the high malaria season. Thus, surveillance of molecular markers of SP resistance is important to guide decision-making for these interventions in Ghana. METHODS: A total of 4469 samples from uncomplicated malaria patients collected from 2009 to 2018 was submitted to the Wellcome Trust Sanger Institute, UK for DNA sequencing using MiSeq. Genotypes were successfully translated into haplotypes in 2694 and 846 mono infections respectively for pfdhfr and pfdhps genes and the combined pfhdfr/pfdhps genes across all years. RESULTS: At the pfdhfr locus, a consistently high (> 60%) prevalence of parasites carrying triple mutants (IRNI) were detected from 2009 to 2018. Two double mutant haplotypes (NRNI and ICNI) were found, with haplotype NRNI having a much higher prevalence (average 13.8%) than ICNI (average 3.2%) across all years. Six pfdhps haplotypes were detected. Of these, prevalence of five fluctuated in a downward trend over time from 2009 to 2018, except a pfdhps double mutant (AGKAA), which increased consistently from 2.5% in 2009 to 78.2% in 2018. Across both genes, pfdhfr/pfdhps combined triple (NRNI + AAKAA) mutants were only detected in 2009, 2014, 2015 and 2018, prevalence of which fluctuated between 3.5 and 5.5%. The combined quadruple (IRNI + AAKAA) genotype increased in prevalence from 19.3% in 2009 to 87.5% in 2011 before fluctuating downwards to 19.6% in 2018 with an average prevalence of 37.4% within the nine years. Prevalence of parasites carrying the quintuple (IRNI + AGKAA or SGEAA) mutant haplotypes, which are highly refractory to SP increased over time from 14.0% in 2009 to 89.0% in 2016 before decreasing to 78.9 and 76.6% in 2017 and 2018 respectively. Though quintuple mutants are rising in prevalence in both malaria seasons, together these combined genotypes vary significantly within season but not between seasons. CONCLUSIONS: Despite high prevalence of pfdhfr triple mutants and combined pfdhfr/pfdhps quadruple and quintuple mutants in this setting SP may still be efficacious. These findings are significant as they highlight the need to continuously monitor SP resistance, particularly using deep targeted sequencing to ascertain changing resistance patterns.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Variación Genética , Genotipo , Malaria Falciparum/prevención & control , Plasmodium falciparum/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Adolescente , Niño , Preescolar , Combinación de Medicamentos , Femenino , Variación Genética/efectos de los fármacos , Ghana , Humanos , Masculino , Plasmodium falciparum/efectos de los fármacos , Estaciones del Año , Adulto Joven
11.
Malar J ; 20(1): 72, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33546703

RESUMEN

BACKGROUND: In 2004, in response to high levels of treatment failure associated with sulfadoxine-pyrimethamine (SP) resistance, Benin changed its first-line malaria treatment from SP to artemisinin-based combination therapy for treatment of uncomplicated Plasmodium falciparum malaria. Resistance to SP is conferred by accumulation of single nucleotide polymorphisms (SNPs) in P. falciparum genes involved in folate metabolism, dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. Because SP is still used for intermittent preventive treatment in pregnant women (IPTp) and seasonal malaria chemoprevention (SMCP) in Benin, the prevalence of Pfdhfr and Pfdhps SNPs in P. falciparum isolates collected in 2017 were investigated. METHODS: This study was carried out in two sites where the transmission of P. falciparum malaria is hyper-endemic: Klouékanmey and Djougou. Blood samples were collected from 178 febrile children 6-59 months old with confirmed uncomplicated P. falciparum malaria and were genotyped for SNPs associated with SP resistance. RESULTS: The Pfdhfr triple mutant IRN (N51I, C59R, and S108N) was the most prevalent (84.6%) haplotype and was commonly found with the Pfdhps single mutant A437G (50.5%) or with the Pfdhps double mutant S436A and A437G (33.7%). The quintuple mutant, Pfdhfr IRN/Pfdhps GE (A437G and K540E), was rarely observed (0.8%). The A581G and A613S mutant alleles were found in 2.6 and 3.9% of isolates, respectively. Six isolates (3.9%) were shown to harbour a mutation at codon I431V, recently identified in West African parasites. CONCLUSIONS: This study showed that Pfdhfr triple IRN mutants are near fixation in this population and that the highly sulfadoxine-resistant Pfdhps alleles are not widespread in Benin. These data support the continued use of SP for chemoprevention in these study sites, which should be complemented by periodic nationwide molecular surveillance to detect emergence of resistant genotypes.


Asunto(s)
Antimaláricos/farmacología , Dihidropteroato Sintasa/genética , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Sulfadoxina/farmacología , Alelos , Benin/epidemiología , Preescolar , Dihidropteroato Sintasa/metabolismo , Combinación de Medicamentos , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Masculino , Plasmodium falciparum/enzimología , Prevalencia , Pirimetamina/farmacología
12.
J Infect Dis ; 223(6): 985-994, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33146722

RESUMEN

BACKGROUND: In Uganda, artemether-lumefantrine is recommended for malaria treatment and sulfadoxine-pyrimethamine for chemoprevention during pregnancy, but drug resistance may limit efficacies. METHODS: Genetic polymorphisms associated with sensitivities to key drugs were characterized in samples collected from 16 sites across Uganda in 2018 and 2019 by ligase detection reaction fluorescent microsphere, molecular inversion probe, dideoxy sequencing, and quantitative polymerase chain reaction assays. RESULTS: Considering transporter polymorphisms associated with resistance to aminoquinolines, the prevalence of Plasmodium falciparum chloroquine resistance transporter (PfCRT) 76T decreased, but varied markedly between sites (0-46% in 2018; 0-23% in 2019); additional PfCRT polymorphisms and plasmepsin-2/3 amplifications associated elsewhere with resistance to piperaquine were not seen. For P. falciparum multidrug resistance protein 1, in 2019 the 86Y mutation was absent at all sites, the 1246Y mutation had prevalence ≤20% at 14 of 16 sites, and gene amplification was not seen. Considering mutations associated with high-level sulfadoxine-pyrimethamine resistance, prevalences of P. falciparum dihydrofolate reductase 164L (up to 80%) and dihydropteroate synthase 581G (up to 67%) were high at multiple sites. Considering P. falciparum kelch protein propeller domain mutations associated with artemisinin delayed clearance, prevalence of the 469Y and 675V mutations has increased at multiple sites in northern Uganda (up to 23% and 41%, respectively). CONCLUSIONS: We demonstrate concerning spread of mutations that may limit efficacies of key antimalarial drugs.


Asunto(s)
Aminoquinolinas , Antimaláricos , Artemisininas , Resistencia a Medicamentos , Antagonistas del Ácido Fólico , Plasmodium falciparum/efectos de los fármacos , Aminoquinolinas/farmacología , Antimaláricos/farmacología , Artemisininas/farmacología , Femenino , Antagonistas del Ácido Fólico/farmacología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Embarazo , Prevalencia , Uganda/epidemiología
13.
Malar J ; 19(1): 304, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854686

RESUMEN

BACKGROUND: Currently, artemisinin-based combination therapy (ACT) is the first-line anti-malarial treatment in malaria-endemic areas. However, resistance in Plasmodium falciparum to artemisinin-based combinations emerging in the Greater Mekong Sub-region is a major problem hindering malaria elimination. To continuously monitor the potential spread of ACT-resistant parasites, this study assessed the efficacy of artemether-lumefantrine (AL) for falciparum malaria in western Myanmar. METHODS: Ninety-five patients with malaria symptoms from Paletwa Township, Chin State, Myanmar were screened for P. falciparum infections in 2015. After excluding six patients with a parasite density below 100 or over 150,000/µL, 41 P. falciparum patients were treated with AL and followed for 28 days. Molecular markers associated with resistance to 4-amino-quinoline drugs (pfcrt and pfmdr1), antifolate drugs (pfdhps and pfdhfr) and artemisinin (pfk13) were genotyped to determine the prevalence of mutations associated with anti-malarial drug resistance. RESULTS: For the 41 P. falciparum patients (27 children and 14 adults), the 28-day AL therapeutic efficacy was 100%, but five cases (12.2%) were parasite positive on day 3 by microscopy. For the pfk13 gene, the frequency of NN insert after the position 136 was 100% in the day-3 parasite-positive group as compared to 50.0% in the day-3 parasite-negative group, albeit the difference was not statistically significant (P = 0.113). The pfk13 K189T mutation (10.0%) was found in Myanmar for the first time. The pfcrt K76T and A220S mutations were all fixed in the parasite population. In pfmdr1, the Y184F mutation was present in 23.3% of the parasite population, and found in both day-3 parasite-positive and -negative parasites. The G968A mutation of pfmdr1 gene was first reported in Myanmar. Prevalence of all the mutations in pfdhfr and pfdhps genes assessed was over 70%, with the exception of the pfdhps A581G mutation, which was 3.3%. CONCLUSIONS: AL remained highly efficacious in western Myanmar. Pfk13 mutations associated with artemisinin resistance were not found. The high prevalence of mutations in pfcrt, pfdhfr and pfdhps suggests high-degree resistance to chloroquine and antifolate drugs. The pfmdr1 N86/184F/D1246 haplotype associated with selection by AL in Africa reached > 20% in this study. The detection of > 10% patients who were day-3 parasite-positive after AL treatment emphasizes the necessity of continuously monitoring ACT efficacy in western Myanmar.


Asunto(s)
Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Adolescente , Adulto , Niño , Femenino , Humanos , Malaria Falciparum/prevención & control , Masculino , Persona de Mediana Edad , Mianmar , Plasmodium falciparum/efectos de los fármacos , Adulto Joven
14.
Infect Genet Evol ; 85: 104503, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32805431

RESUMEN

Intermittent preventive treatment in pregnancy with sulphadoxine-pyrimethamine (IPTp-SP) is one of the main strategies for protecting pregnant women, fetus, and their new-born against adverse effects of P. falciparum infection. The development of the drug resistance linked to mutations in P. falciparum dihydrofolate reductase gene (pfdhfr) and P. falciparum dihydropteroate synthase gene (pfdhps), is currently threatening the IPTp-SP approach. This study determined the prevalence of pfdhfr and pfdhps mutations in isolates obtained from pregnant women with asymptomatic P. falciparum infection in Nigerian. Additionally, P. falciparum genetic diversity and multiplicity of infection (MOI) was assessed by genotyping the P. falciparum merozoite surface Protein 1 and 2 (pfmsp-1 and pfmsp-2) genes. The pfdhfr and pfdhps were genotyped by direct sequencing, and the pfmsp-1 and pfmsp-2 fragment analysis by polymerase chain reaction was used to determine P. falciparum genetic diversity. Of the 406 pregnant women recruited, 123 had P. falciparum infection by PCR, and of these, 52 were successfully genotyped for pfdhfr and 42 for pfdhps genes. The pfdhfr triple-mutant parasites (N51I, C59R, and S108N) or the IRN haplotype were predominant (98%), whereas pfdhfr mutations C50R and I164L did not occur. For pfdhps gene, the prevalence of A437G, A581G, A436A, and A613S mutations were 98, 71, 55, and 36%, respectively. Nineteen (44%) isolates with quintuple mutations (CIRNI- SGKGA) had the highest combined pfdhfr-pfdhps haplotype. Isolates with sextuple mutants; CIRNI- AGKAS and CIRNI- AGKGA had a prevalence of 29 and 14%, respectively. High genetic diversity (7 pfmsp-1 alleles and 10 pfmsp-2 alleles) and monoclonal infection rate (76%) was observed. This study demonstrated a continuous high prevalence of pfdhfr mutation and an increase in pfdhps mutations associated with SP-resistance in southwest Nigeria. Continuous surveillance of IPTp-SP effectiveness and consideration of alternative IPTp strategies is recommended.


Asunto(s)
Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Adulto , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Femenino , Genotipo , Humanos , Mutación , Nigeria , Polimorfismo Genético , Embarazo , Mujeres Embarazadas , Análisis de Secuencia de ADN , Tetrahidrofolato Deshidrogenasa/genética
15.
Malar J ; 19(1): 290, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795288

RESUMEN

BACKGROUND: Artesunate plus sulfadoxine-pyrimethamine (ASP) is first-line treatment for uncomplicated Plasmodium falciparum malaria in most of India, except for six North-eastern provinces where treatment failure rates were high. In Ujjain, central India, the frequency of mutations associated with increased drug tolerance, but not overt resistance to sulfadoxine and pyrimethamine were 9% and > 80%, respectively, in 2009 and 2010, just prior to the introduction of ASP. The frequency of drug resistance associated mutations in Ujjain in 2015-2016 after 3-4 years of ASP use, are reported. METHODS: Blood samples from patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons pfdhfr 16-185, pfdhps 436-632 and K13 407-689 were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism. RESULTS: Sulfadoxine-pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 100/104 (96%) and 87/91 (96%) samples, respectively. Pfdhps 437G was found in 10/105 (10%) samples. Double mutant pfdhfr 59R + 108 N were found in 75/81 (93%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/78 (8%) samples. Chloroquine-resistance-associated pfcrt 76T was found in 102/102 (100%). Pfmdr1 N86 and 86Y were identified in 83/115 (72%) and 32/115 (28%) samples, respectively. CONCLUSION: The frequency of P. falciparum with reduced susceptibility to sulfadoxine-pyrimethamine remained high, but did not appear to have increased significantly since the introduction of ASP. No polymorphisms in K13 associated with decreased artemisinin susceptibility were found. ASP probably remained effective, supporting continued ASP use.


Asunto(s)
Antimaláricos/farmacología , Artesunato/farmacología , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Adolescente , Adulto , Anciano , Niño , Preescolar , Combinación de Medicamentos , Humanos , India , Lactante , Malaria Falciparum/prevención & control , Persona de Mediana Edad , Mutación , Plasmodium falciparum/efectos de los fármacos , Adulto Joven
16.
BMC Infect Dis ; 20(1): 530, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698764

RESUMEN

BACKGROUND: Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthetase (Pfdhps) mutations compromise the effectiveness of sulfadoxine-pyrimethamine (SP) for treatment of uncomplicated malaria, and are likely to impair the efficiency of intermittent preventive treatment during pregnancy (IPTp). This study was conducted to determine the level of Pfdhfr-Pfdhps mutations, a decade since SP was limited for IPTp use in pregnant women in Tanzania. METHODS: P. falciparum genomic DNA was extracted from dried blood spots prepared from a finger prick. Extracted DNA were sequenced using a single MiSeq lane by combining all PCR products. Genotyping of Pfdhfr and Pfdhps mutations were done using bcftools whereas custom scripts were used to filter and translate genotypes into SP resistance haplotypes. RESULTS: The Pfdhfr was analyzed from 445 samples, the wild type (WT) Pfdhfr haplotype NCSI was detected in 6 (1.3%) samples. Triple PfdhfrIRNI (mutations are bolded and underlined) haplotype was dominant, contributing to 84% (number [n] = 374) of haplotypes while 446 samples were studied for Pfdhps, WT for Pfdhps (SAKAA) was found in 6.7% (n = 30) in samples. Double Pfdhps haplotype (SGEAA) accounted for 83% of all mutations at Pfdhps gene. Of 447 Pfdhfr-Pfdhps combined genotypes, only 0.9% (n = 4) samples contained WT gene (SAKAA-NCSI). Quintuple (five) mutations, SGEAA-IRNI accounted for 71.4% (n = 319) whereas 0.2% (n = 1) had septuple (seven) mutations (AGKGS-IRNI). The overall prevalence of Pfdhfr K540E was 90.4% (n = 396) while Pfdhps A581G was 1.1% (n = 5). CONCLUSIONS: This study found high prevalence of Pfdhfr-Pfdhps quintuple and presence of septuple mutations. Mutations at Pfdhfr K540E and Pfdhps A581G, major predictors for IPTp-SP failure were within the recommended WHO range. Abandonment of IPTp-SP is recommended in settings where the Pfdhfr K540E prevalence is > 95% and Pfdhps A581G is > 10% as SP is likely to be not effective. Nonetheless, saturation in Pfdhfr and Pfdhps haplotypes is alarming, a search for alternative antimalarial drug for IPTp in the study area is recommended.


Asunto(s)
Antimaláricos/uso terapéutico , Dihidropteroato Sintasa/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Mutación , Plasmodium falciparum/genética , Complicaciones Parasitarias del Embarazo/epidemiología , Complicaciones Parasitarias del Embarazo/prevención & control , Proteínas Protozoarias/genética , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Combinación de Medicamentos , Farmacorresistencia Microbiana/genética , Femenino , Haplotipos , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/enzimología , Reacción en Cadena de la Polimerasa , Embarazo , Prevalencia , Tanzanía/epidemiología , Resultado del Tratamiento
17.
Malar J ; 19(1): 176, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380999

RESUMEN

BACKGROUND: Malaria incidence has reached staggering numbers in Venezuela. Commonly, Bolívar State accounted for approximately 70% of the country cases every year. Most cases cluster in the Sifontes municipality, a region characterized by an extractive economy, including gold mining. An increase in migration to Sifontes, driven by gold mining, fueled a malaria spillover to the rest of the country and the region. Here samples collected in 2018 were compared with a previous study of 2003/2004 to describe changes in the parasites population structures and the frequency of point mutations linked to anti-malarial drugs. METHODS: A total of 88 Plasmodium falciparum and 94 Plasmodium vivax isolates were collected in 2018 and compared with samples from 2003/2004 (106 P. falciparum and 104 P. vivax). For P. falciparum, mutations linked to drug resistance (Pfdhfr, Pfdhps, and Pfcrt) and the Pfk13 gene associated with artemisinin delayed parasite clearance, were analysed. To estimate the multiplicity of infection (MOI), and perform P. falciparum and P. vivax population genetic analyses, the parasites were genotyped by using eight standardized microsatellite loci. RESULTS: The P. falciparum parasites are still harbouring drug-resistant mutations in Pfdhfr, Pfdhps, and Pfcrt. However, there was a decrease in the frequency of highly resistant Pfdhps alleles. Mutations associated with artemisinin delayed parasite clearance in the Pfk13 gene were not found. Consistent with the increase in transmission, polyclonal infections raised from 1.9% in 2003/2004 to 39% in 2018 in P. falciparum and from 16.3 to 68% in P. vivax. There is also a decrease in linkage disequilibrium. Bayesian clustering yields two populations linked to the time of sampling, showing that the parasite populations temporarily changed. However, the samples from 2003/2004 and 2018 have several alleles per locus in common without sharing multi-locus genotypes. CONCLUSIONS: The frequency of mutations linked with drug resistance in P. falciparum shows only changes in Pfdhps. Observations presented here are consistent with an increase in transmission from the previously circulating parasites. Following populations longitudinally, using molecular surveillance, provides valuable information in cases such as Venezuela with a fluid malaria situation that is affecting the regional goals toward elimination.


Asunto(s)
Resistencia a Medicamentos/genética , Genes Protozoarios/genética , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Plasmodium falciparum/genética , Plasmodium vivax/genética , Antimaláricos/farmacología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Repeticiones de Microsatélite/genética , Mutación Puntual , Prevalencia , Venezuela/epidemiología
18.
Malar J ; 19(1): 190, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448228

RESUMEN

BACKGROUND: Prevention and treatment of malaria during pregnancy is crucial in dealing with maternal mortality and adverse fetal outcomes. The World Health Organization recommendation to treat all pregnant women with sulfadoxine-pyrimethamine (SP) through antenatal care structures was implemented in Kenya in the year 1998, but concerns about its effectiveness in preventing malaria in pregnancy has arisen due to the spread of SP resistant parasites. This study aimed to determine the prevalence of SP resistance markers in Plasmodium falciparum parasites isolated from pregnant women seeking antenatal care at Msambweni County Referral Hospital, located in coastal Kenya, between the year 2013 and 2015. METHODS: This hospital-based study included 106 malaria positive whole blood samples for analysis of SP resistance markers within the Pfdhfr gene (codons 51, 59 and 108) and Pfdhps gene (codons 437 and 540). The venous blood collected from all pregnant women was tested for malaria via light microscopy, then the malaria positive samples were separated into plasma and red cells and stored in a - 86° freezer for further studies. Archived red blood cells were processed for molecular characterization of SP resistance markers within the Pfdhfr and Pfdhps genes using real time PCR platform and Sanger sequencing. RESULTS: All samples had at least one mutation in the genes associated with drug resistance; polymorphism prevalence of Pfdhfr51I, 59R and 108N was at 88.7%, 78.3% and 93.4%, respectively, while Pfdhps polymorphism accounted for 94.3% and 91.5% at 437G and 540E, respectively. Quintuple mutations (at all the five codons) conferring total SP resistance had the highest prevalence of 85.8%. Quadruple mutations were observed at a frequency of 10.4%, and 24.5% had a mixed outcome of both wildtype and mutant genotypes in the genes of interest. CONCLUSION: The data suggest a high prevalence of P. falciparum genetic variations conferring resistance to SP among pregnant women, which may explain reduced efficacy of IPTp treatment in Kenya. There is need for extensive SP resistance profiling in Kenya to inform IPTp drug choices for successful malaria prevention during pregnancy.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Adulto , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Femenino , Marcadores Genéticos , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Mutación , Embarazo , Prevalencia , Proteínas Protozoarias/metabolismo , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/metabolismo , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-32179528

RESUMEN

The continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRN I- A/FG K GS/Tpfdhfr/pfdhps haplotypes, including the pfdhps A581G and A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%) compared to those of first antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%; P = 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance of additional mutations associated with increased SP resistance as well as emergence of resistance against artemisinin derivatives.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Preparaciones Farmacéuticas , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Femenino , Ghana , Humanos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Embarazo , Mujeres Embarazadas , Proteínas Protozoarias/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética
20.
Malar J ; 19(1): 107, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127009

RESUMEN

BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples. METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated. RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification. CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Antagonistas del Ácido Fólico/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacología , Sulfadoxina/farmacología , Cambodia/epidemiología , ADN Protozoario/genética , Pruebas con Sangre Seca , Combinación de Medicamentos , Genotipo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Mutación , Prevalencia , Tailandia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...