Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Zool ; 21(1): 13, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711088

RESUMEN

BACKGROUND: Various morphological adaptations are associated with symbiotic relationships between organisms. One such adaptation is seen in the nemertean genus Malacobdella. All species in the genus are commensals of molluscan hosts, attaching to the surface of host mantles with a terminal sucker. Malacobdella possesses several unique characteristics within the order Monostilifera, exhibiting the terminal sucker and the absence of eyes and apical/cerebral organs, which are related to their adaptation to a commensal lifestyle. Nevertheless, the developmental processes that give rise to these morphological characteristics during their transition from free-living larvae to commensal adults remain uncertain. RESULTS: In the present study, therefore, we visualized the developmental processes of the internal morphologies during postembryonic larval stages using fluorescent molecular markers. We demonstrated the developmental processes, including the formation of the sucker primordium and the functional sucker. Furthermore, our data revealed that sensory organs, including apical/cerebral organs, formed in embryonic and early postembryonic stages but degenerated in the late postembryonic stage prior to settlement within their host using a terminal sucker. CONCLUSIONS: This study reveals the formation of the terminal sucker through tissue invagination, shedding light on its adhesion mechanism. Sucker muscle development likely originates from body wall muscles. Notably, M. japonica exhibits negative phototaxis despite lacking larval ocelli. This observation suggests a potential role for other sensory mechanisms, such as the apical and cerebral organs identified in the larvae, in facilitating settlement and adhesive behaviors. The loss of sensory organs during larval development might reflect a transition from planktonic feeding to a stable, host-associated lifestyle. This study also emphasizes the need for further studies to explore the phylogenetic relationships within the infraorder Amphiporiina and investigate the postembryonic development of neuromuscular systems in closely related taxa to gain a more comprehensive understanding of ecological adaptations in Nemertea.

2.
Cell Tissue Res ; 395(3): 299-311, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38305882

RESUMEN

Acoel flatworms possess epidermal sensory-receptor cells on their body surfaces and exhibit behavioral repertoires such as geotaxis and phototaxis. Acoel epidermal sensory receptors should be mechanical and/or chemical receptors; however, the mechanisms of their sensory reception have not been elucidated. We examined the three-dimensional relationship between epidermal sensory receptors and their innervation in an acoel flatworm, Praesagittifera naikaiensis. The distribution of the sensory receptors was different between the ventral and dorsal sides of worms. The nervous system was mainly composed of a peripheral nerve net, an anterior brain, and three pairs of longitudinal nerve cords. The nerve net was located closer to the body surface than the brain and the nerve cords. The sensory receptors have neural connections with the nerve net in the entire body of worms. We identified five homologs of polycystic kidney disease (PKD): PKD1-1, PKD1-2, PKD1-3, PKD1-4, and, PKD2, from the P. naikaiensis genome. All of these PKD genes were implied to be expressed in the epidermal sensory receptors of P. naikaiensis. PKD1-1 and PKD2 were dispersed across the entire body of worms. PKD1-2, PKD1-3, and PKD1-4 were expressed in the anterior region of worms. PKD1-4 was also expressed around the mouth opening. Our results indicated that P. naikaiensis possessed several types of epidermal sensory receptors to convert various environmental stimuli into electrical signals via the PKD channels and transmit the signals to afferent nerve and/or effector cells.


Asunto(s)
Platelmintos , Animales , Canales Catiónicos TRPP/genética , Células Receptoras Sensoriales , Genoma , Encéfalo , Mutación
3.
Appl Microsc ; 54(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165512

RESUMEN

There has been an increase in the demand for purified protein as a result of recent developments in the structural biology of myosin 2. Although promising, current practices in myosin purification are usually time-consuming and cumbersome. The reported increased actin to myosin ratio in smooth muscles adds to the complexity of the purification process. Present study outlines a streamlined approach to isolate smooth muscle myosin 2 molecules from actomyosin suspension of chicken gizzard tissues. The procedure entails treating actomyosin for a brief period with actin-binding peptide phalloidin, followed by co-sedimentation and short column size exclusion chromatography. Typical myosin molecule with heavy and light chains and approximately 95% purity was examined using gel electrophoresis. Negative staining electron microscopy and image processing showed intact 10S myosin 2 molecules, proving that phalloidin is effective at eliminating majority of actin in the form of F-actin without dramatic alteration in the structure of myosin. The entire purification discussed here can be completed in a few hours, and further analysis can be done the same day. Thus, by offering quick and fresh supplies of native myosin molecules suited for structural research, specially cryo-electron microscopy, this innovative approach can be adapted to get around the drawbacks of time-intensive myosin purifying processes.

4.
Tissue Barriers ; 12(1): 2210051, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37162265

RESUMEN

Defects of tight junction (TJ) are involved in many diseases related to epithelial cell functions, including kidney stone disease (KSD), which is a common disease affecting humans for over a thousand years. This review provides brief overviews of KSD and TJ, and summarizes the knowledge on crystal-induced defects of TJ in renal tubular epithelial cells (RTECs) in KSD. Calcium oxalate (CaOx) crystals, particularly COM, disrupt TJ via p38 MAPK and ROS/Akt/p38 MAPK signaling pathways, filamentous actin (F-actin) reorganization and α-tubulin relocalization. Stabilizing p38 MAPK signaling, reactive oxygen species (ROS) production, F-actin and α-tubulin by using SB239063, N-acetyl-L-cysteine (NAC), phalloidin and docetaxel, respectively, successfully prevent the COM-induced TJ disruption and malfunction. Additionally, genetic disorders of renal TJ, including mutations and single nucleotide polymorphisms (SNPs) of CLDN2, CLDN10b, CLDN14, CLDN16 and CLDN19, also affect KSD. Finally, the role of TJ as a potential target for KSD therapeutics and prevention is also discussed.


Asunto(s)
Cálculos Renales , Uniones Estrechas , Humanos , Uniones Estrechas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Cálculos Renales/etiología , Cálculos Renales/química , Cálculos Renales/metabolismo , Oxalato de Calcio/química , Oxalato de Calcio/metabolismo , Oxalato de Calcio/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
ACS Nano ; 17(20): 20589-20600, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37787755

RESUMEN

Expansion microscopy (ExM) revolutionized the field of super-resolution microscopy by allowing for subdiffraction resolution fluorescence imaging on standard fluorescence microscopes. However, it has been found that it is hard to visualize actin filaments efficiently using ExM. To improve actin imaging, multifunctional molecules have been designed with moderate success. Here, we present optimized methods for phalloidin conjugate grafting that have a high efficiency for both cellular and tissue samples. Our optimized strategy improves anchoring and signal retention by ∼10 times. We demonstrate the potential of optimized trifunctional linkers (TRITON) for actin imaging in combination with immunolabeling using different ExM protocols. 10X ExM of actin labeled with optimized TRITON enabled us to visualize the periodicity of actin rings in cultured hippocampal neurons and brain slices by Airyscan confocal microscopy. Thus, TRITON linkers provide an efficient grafting method, especially in cases in which the concentration of target-bound monomers is insufficient for high-quality ExM.


Asunto(s)
Citoesqueleto de Actina , Actinas , Microscopía Fluorescente/métodos , Microscopía Confocal/métodos
6.
J Mol Histol ; 54(6): 715-723, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37755618

RESUMEN

In order to demonstrate the intricate interconnection of pulmonary lymphatic vessels, blood vessels, and nerve fibers, the rat lung was selected as the target and sliced at the thickness of 100 µm for multiply immunofluorescence staining with lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), alpha smooth muscle actin (α-SMA), phalloidin, cluster of differentiation 31 (CD31), and protein gene product 9.5 (PGP9.5) antibodies. Taking the advantages of the thicker tissue section and confocal microscopy, the labeled pulmonary lymphatic vessels, blood vessels, and nerve fibers were demonstrated in rather longer distance, which was more convenient to reconstruct a three-dimensional (3D) view for analyzing their spatial correlation in detail. It was clear that LYVE-1+ lymphatic vessels were widely distributed in pulmonary lobules and closely to the lobar bronchus. Through 3D reconstruction, it was also demonstrated that LYVE-1+ lymphatic vessels ran parallel to or around the α-SMA+ venules, phalloidin+ arterioles and CD31+ capillaries, with PGP9.5+ nerve fibers traversing alongside or wrapping around them, forming a lymphatic, vascular and neural network in the lung. By this study, we provide a detailed histological view to highlight the spatial correlation of pulmonary lymphatic, vascular and neural network, which may help us for insight into the functional role of this network under the physiological and pathological conditions.


Asunto(s)
Imagenología Tridimensional , Vasos Linfáticos , Ratas , Animales , Faloidina , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Microscopía Confocal , Redes Neurales de la Computación
7.
Food Chem Toxicol ; 179: 113994, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37598851

RESUMEN

Phalloidin, a bicyclic heptapeptide found in Amanita mushroom, specifically binds to F-actin in the liver causing cholestatic hepatotoxicity. However, the toxicokinetics and tissue distribution properties of phalloidin as well as their underlying mechanisms have to be studied further. The area under the plasma concentration curve (AUC) of phalloidin increased in proportion to the doses (0.2, 0.4, and 0.8 mg/kg for intravenous injection and 2, 5, and 10 mg/kg for oral administration). Phalloidin exhibited dose-independent low volume of distribution (395.6-456.9 mL/kg) and clearance (21.4-25.5 mL/min/kg) and low oral bioavailability (2.4%-3.3%). This could be supported with its low absorptive permeability (0.23 ± 0.05 × 10-6 cm/s) in Caco-2 cells. The tissue-to-plasma AUC ratios of intravenously injected and orally administered phalloidin were the highest in the liver and intestines, respectively, and also high in the kidneys, suggesting that the liver, kidneys, and intestines could be susceptible to phalloidin exposure and that active transport via the hepatic and renal organic anion transporters (OATP1B1, OATP1B3, and OAT3) may contribute to the higher distribution of phalloidin in the liver and kidneys.


Asunto(s)
Amanita , Animales , Ratones , Humanos , Toxicocinética , Células CACO-2 , Faloidina , Distribución Tisular
8.
ACS Biomater Sci Eng ; 9(6): 3193-3205, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171982

RESUMEN

Natural polymers are extensively utilized as scaffold materials in tissue engineering and 3D disease modeling due to their general features of cytocompatibility, biodegradability, and ability to mimic the architecture and mechanical properties of the native tissue. A major limitation of many polymeric scaffolds is their autofluorescence under common imaging methods. This autofluorescence, a particular challenge with silk fibroin materials, can interfere with the visualization of fluorescently labeled cells and proteins grown on or in these scaffolds, limiting the assessment of outcomes. Here, Sudan Black B (SBB) was successfully used prefixation prior to cell seeding, in various silk matrices and 3D model systems to quench silk autofluorescence for live cell imaging. SBB was also trialed postfixation in silk hydrogels. We validated that multiple silk scaffolds pretreated with SBB (hexafluoro-2-propanol-silk scaffolds, salt-leached sponges, gel-spun catheters, and sponge-gel composite scaffolds) cultured with fibroblasts, adipose tissue, neural cells, and myoblasts demonstrated improved image resolution when compared to the nonpretreated scaffolds, while also maintaining normal cell behavior (attachment, growth, proliferation, differentiation). SBB pretreatment of silk scaffolds is an option for scaffold systems that require autofluorescence suppression.


Asunto(s)
Fibroínas , Fibroínas/farmacología , Andamios del Tejido , Ingeniería de Tejidos/métodos , Seda
9.
Methods Mol Biol ; 2669: 1-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37247051

RESUMEN

In the healthy liver, quiescent hepatic stellate cells (HSCs) are found in the perisinusoidal space (i.e., the space of Dissé) in close proximity to endothelial cells and hepatocytes. HSCs represent 5-8% of the total number of liver cells and are characterized by numerous fat vacuoles that store vitamin A in the form of retinyl esters. Upon liver injury caused by different etiologies, HSCs become activated and acquire a myofibroblast (MFB) phenotype in a process called transdifferentiation. In contrast to quiescent HSC, MFB become highly proliferative and are characterized by an imbalance in extracellular matrix (ECM) homeostasis, by producing an excess of collagen and blocking its turnover by synthesis of protease inhibitors. This leads to a net accumulation of ECM during fibrosis. In addition to HSC, there are fibroblasts in the portal fields (pF), which also have the potency to acquire a myofibroblastic phenotype (pMF). The contributions of these two fibrogenic cell types (i.e., MFB and pMF) vary based on the etiology of liver damage (parenchymal vs. cholestatic). Based on their importance to hepatic fibrosis, the isolation and purification protocols of these primary cells are in great demand. Moreover, established cell lines may offer only limited information about the in vivo behavior of HSC/MFB and pF/pMF.Here we describe a method for high-purity isolation of HSC from mice. In the first step, the liver is digested with pronase and collagenase, and the cells are dissociated from the tissue. In the second step, HSCs are enriched by density gradient centrifugation of the crude cell suspension using a Nycodenz gradient. The resulting cell fraction can be further optionally purified by flow cytometric enrichment to generate ultrapure HSC.


Asunto(s)
Células Endoteliales , Células Estrelladas Hepáticas , Ratones , Animales , Cirrosis Hepática/metabolismo , Hepatocitos
10.
Methods Mol Biol ; 2669: 55-66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37247054

RESUMEN

During the development of liver fibrosis, hepatic stellate cells undergo a transition from a quiescent phenotype into a proliferative, fibrogenic, and contractile, α-smooth muscle actin-positive myofibroblast. These cells acquire properties that are strongly associated with the reorganization of the actin cytoskeleton. Actin possesses a unique ability to polymerize into filamentous actin (F-actin) form its monomeric globular state (G-actin). F-actin can form robust actin bundles and cytoskeletal networks by interacting with a number of actin-binding proteins that provide important mechanical and structural support for a multitude of cellular processes including intracellular transport, cell motility, polarity, cell shape, gene regulation, and signal transduction. Therefore, stains with actin-specific antibodies and phalloidin conjugates for actin staining are widely used to visualize actin structures in myofibroblasts. Here we present an optimized protocol for F-actin staining for hepatic stellate cells using a fluorescent phalloidin.


Asunto(s)
Actinas , Células Estrelladas Hepáticas , Actinas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Faloidina/metabolismo , Citoesqueleto de Actina/metabolismo , Coloración y Etiquetado
11.
Methods Mol Biol ; 2604: 327-335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773247

RESUMEN

Trichomes are unique polarized cells of the plant epidermis that provide an excellent model system for studying the plant cytoskeleton. Unlike Arabidopsis trichomes that are unicellular with a typical three-branch shape, the trichomes in tomato (Solanum lycopersicum) are multicellular with additional morphology and function diversity. Technically, it is hard to image tomato trichomes at the subcellular level because of their size and because they can be easily damaged. Here, we describe the methods we have used for the visualization and quantification of cytoskeletal arrangements in tomato trichomes which are at different developmental stages, using both live-cell imaging and phalloidin staining after fixation.


Asunto(s)
Solanum lycopersicum , Tricomas , Citoesqueleto de Actina , Epidermis de la Planta , Microtúbulos
12.
Methods Mol Biol ; 2626: 179-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715905

RESUMEN

The follicular epithelial cells of the Drosophila egg chamber have become a premier model to study how cells globally orient their actin-based machinery for collective migration. The basal surface of each follicle cell has lamellipodial and filopodial protrusions that extend from its leading edge and an array of stress fibers that mediate its adhesion to the extracellular matrix; these migratory structures are all globally aligned in the direction of tissue movement. To understand how this global alignment is achieved, one must be able to reliably visualize the underlying F-actin; however, dynamic F-actin networks can be difficult to preserve in fixed tissues. Here, we describe an optimized protocol for the fixation and phalloidin staining of the follicular epithelium. We also provide a brief primer on relevant aspects of the image acquisition process to ensure high quality data are collected.


Asunto(s)
Citoesqueleto de Actina , Actinas , Animales , Actinas/metabolismo , Faloidina , Movimiento Celular , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo
13.
Se Pu ; 41(1): 94-103, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36633081

RESUMEN

Food poisoning by toxic mushrooms occurs frequently worldwide. It is one of the most common food poisoning events and the main cause of death. Amanita peptide toxins are the most common lethal toxins in poisonous mushrooms. Presently, a novel method based on ultra performance liquid chromatography-quadrupole electrostatic field orbitrap high resolution mass spectrometry (UPLC-Q/Orbitrap HRMS) was developed for the determination of five amanitapeptide toxins (α-amanitin, ß-amanitin, γ-amanitin, phalloidin, and phallacidin). Because the isotope summit of α-amanitin affects the detection of ß-amanitin, it cannot be distinguished by low resolution mass spectrometry. Therefore, experimental conditions including chromatography and mass spectrometry were explored in detail. The five peptide toxins were extracted from poisonous mushrooms with pure water and filtered through a 0.22 µm teflon microporous membrane. The procedure was rapid, simple, and environmentally friendly. Chromatographic separation was performed on a strong polarity HSS T3 column (100 mm×2.0 mm, 2.1 µm) with gradient elution using acetonitrile and 5 mmol/L ammonium acetate containing 0.1% (v/v) formic acid as mobile phases at a flow rate of 0.3 mL/min. The column temperature was set to 40 ℃. The analytes were ionized using a heating electrospray ionization source and collected in positive ion mode. Full scanning/data-dependent secondary mass spectrometry (Full mass-ddMS2) mode was used for qualitative analysis of the targets within 10 min. The target ion selective scan (Targeted-SIM) mode was used for quantification by external standard calibration. The measured and theoretical values of the exact mass and the MS2 fragment ions of the five compounds were within an error of 5×10-6. Method validation was performed according to the criteria recommended by the Chinese National Standard. All the compounds showed an excellent linear relationship in the range of 1.0-20.0 µg/L. The correlation coefficients (r) ranged from 0.9974 to 0.9989. The limit of detection was 0.006 mg/kg for all five compounds. Recoveries ranged from 81.8% to 102.4%. There was no matrix effect in the blank mushroom sample for the five compounds, and the relative standard deviations ranged from 3.2% to 8.3%. This method provides abundant compound characteristic mass information, such as retention time, exact mass, fragment ions, and other information. The data can be used to identify suspected compounds based on the extracted ion flow diagram and isotope distribution information. Comparison between the actual exact mass and the theoretical exact mass, combined with the fragment ions enables identification of the structures of unknown compounds and collision methods, which can be confirmed in the absence of standard materials. In this study, the isomer of γ-amanitin was identified as amaninamide. The novel method is simple, accurate, specific, and sensitive. The method permits the rapid qualitative and quantitative detection of compound in public health emergency settings and will provide reliable technical support for the rapid screening of such toxic compounds and the structural locking of unknown toxins in the future.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Micotoxinas , Amanita , Alfa-Amanitina , Electricidad Estática , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Micotoxinas/análisis , Amanitinas/análisis , Cromatografía Liquida
14.
Methods Mol Biol ; 2593: 265-281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36513938

RESUMEN

Fluorescence microscopy of cytoskeletal proteins in situ using immunolabeling, fluorescent reagents, or expression of tagged proteins has been a common practice for decades but often with too little regard for what might not be visualized. This is especially true for assembled filamentous actin (F-actin), for which binding of fluorescently labeled phalloidin is taken as the gold standard for its quantification even though it is well known that F-actin saturated with cofilin (cofilactin) binds neither fluorescently labeled phalloidin nor genetically encoded F-actin reporters, such as LifeAct. Here, using expressed fluorescent cofilactin reporters, we show that cofilactin is the major component of some actin-containing structures in both normal and stressed neurons and present various fixation, permeabilization, and cryo-preservation methods for optimizing its observation.


Asunto(s)
Factores Despolimerizantes de la Actina , Actinas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Faloidina/metabolismo , Citoesqueleto de Actina/metabolismo , Técnica del Anticuerpo Fluorescente
15.
Polymers (Basel) ; 14(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36433106

RESUMEN

Actin plays a vital role in maintaining the stability and rigidity of biological cells while allowing for cell motility and shape change. The semiflexible nature of actin filaments-along with the myriad actin-binding proteins (ABPs) that serve to crosslink, bundle, and stabilize filaments-are central to this multifunctionality. The effect of ABPs on the structural and mechanical properties of actin networks has been the topic of fervent investigation over the past few decades. Yet, the combined impact of filament stabilization, stiffening and crosslinking via ABPs on the mechanical response of actin networks has yet to be explored. Here, we perform optical tweezers microrheology measurements to characterize the nonlinear force response and relaxation dynamics of actin networks in the presence of varying concentrations of α-actinin, which transiently crosslinks actin filaments, and phalloidin, which stabilizes filamentous actin and increases its persistence length. We show that crosslinking and stabilization can act both synergistically and antagonistically to tune the network resistance to nonlinear straining. For example, phalloidin stabilization leads to enhanced elastic response and reduced dissipation at large strains and timescales, while the initial microscale force response is reduced compared to networks without phalloidin. Moreover, we find that stabilization switches this initial response from that of stress stiffening to softening despite the increased filament stiffness that phalloidin confers. Finally, we show that both crosslinking and stabilization are necessary to elicit these emergent features, while the effect of stabilization on networks without crosslinkers is much more subdued. We suggest that these intriguing mechanical properties arise from the competition and cooperation between filament connectivity, bundling, and rigidification, shedding light on how ABPs with distinct roles can act in concert to mediate diverse mechanical properties of the cytoskeleton and bio-inspired polymeric materials.

16.
Bio Protoc ; 12(18)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36311348

RESUMEN

Understanding the molecular and structural mechanisms that govern the assembly and organization of higher-order actin architecture requires the use of in vitro actin binding and bundling assays. Crosslinking of actin filaments into bundles can be monitored in vitro via several techniques, including negative staining/electron microscopy, low-speed co-sedimentation assay/SDS-PAGE, and fluorescence staining/confocal microscopy. We and others have previously characterized the N-BAR domain of ASAP1, an ADP-ribosylation factor GTPase-activating protein, as an actin-bundling module; we further identified key lysine residues responsible for actin cross-linking. Here, we use the ASAP1 BAR domain as an example and describe a detailed procedure for observing the actin bundle formation by confocal microscopy. This protocol requires small reaction volumes and takes advantage of bright commercially available fluorescent phalloidins, making it an ideal choice for medium-throughput screening of mutants or domain truncations in their ability to bundle actin. Graphical abstract.

17.
Medicina (Kaunas) ; 58(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36143966

RESUMEN

Background and Objectives: In spite of the fact that antibiotics are considered to be the cornerstone of modern medicine, their use in the treatment of cancer remains controversial. In the present study, the main objective was to examine the effects of two antibiotics-tetracycline and ampicillin-on the viability, morphology, migration, and organization and structure of the nuclei and the actin fiber network of pharyngeal carcinoma cells-Detroit-562. Materials and Methods: In order to determine the viability of the cells, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was applied after the cells were stimulated with five concentrations of tetracycline and ampicillin (10, 25, 50, 75, and 100 µM) for 72 h. A scratch assay was used to assess the migration ability of the cells. For the visualization of the nuclei and actin fibers, 4,6-diamidino-2-phenylindole (Dapi) and Rhodamine-Phalloidin were used. Results: There are different effects of tetracycline and ampicillin. Thus, tetracycline: (i) exhibited a concentration-dependent cytotoxic effect, decreasing cell viability to approximately 46%; (ii) inhibits cellular migration up to 16% compared to 60% for control cells; and (iii) induces changes in cell morphology as well as apoptotic changes in the nucleus and F-actin fibers. In contrast, in the case of ampicillin, an increase in viability up to 113% was observed at 10 µM, while a decrease in viability up to approximately 94% was observed at the highest concentration tested (100 µM). Conclusions: The results indicated a different effect regarding the impact on pharyngeal carcinoma cells. Thus, tetracycline has a concentration-dependent cytotoxic effect, while in the case of ampicillin a slight stimulation of cell viability was observed.


Asunto(s)
Antineoplásicos , Carcinoma , Actinas , Ampicilina/farmacología , Ampicilina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Tetraciclina/farmacología
18.
Cells ; 11(18)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36139474

RESUMEN

Hepatic stellate cells (HSCs) are also known as lipocytes, fat-storing cells, perisinusoidal cells, or Ito cells. These liver-specific mesenchymal cells represent about 5% to 8% of all liver cells, playing a key role in maintaining the microenvironment of the hepatic sinusoid. Upon chronic liver injury or in primary culture, these cells become activated and transdifferentiate into a contractile phenotype, i.e., the myofibroblast, capable of producing and secreting large quantities of extracellular matrix compounds. Based on their central role in the initiation and progression of chronic liver diseases, cultured HSCs are valuable in vitro tools to study molecular and cellular aspects of liver diseases. However, the isolation of these cells requires special equipment, trained personnel, and in some cases needs approval from respective authorities. To overcome these limitations, several immortalized HSC lines were established. One of these cell lines is CFSC, which was originally established from cirrhotic rat livers induced by carbon tetrachloride. First introduced in 1991, this cell line and derivatives thereof (i.e., CFSC-2G, CFSC-3H, CFSC-5H, and CFSC-8B) are now used in many laboratories as an established in vitro HSC model. We here describe molecular features that are suitable for cell authentication. Importantly, chromosome banding and multicolor spectral karyotyping (SKY) analysis demonstrate that the CFSC-2G genome has accumulated extensive chromosome rearrangements and most chromosomes exist in multiple copies producing a pseudo-triploid karyotype. Furthermore, our study documents a defined short tandem repeat (STR) profile including 31 species-specific markers, and a list of genes expressed in CFSC-2G established by bulk mRNA next-generation sequencing (NGS).


Asunto(s)
Autenticación de Línea Celular , Hepatopatías , Animales , Tetracloruro de Carbono , Línea Celular , Marcadores Genéticos , Células Estrelladas Hepáticas/metabolismo , Repeticiones de Microsatélite , ARN Mensajero/metabolismo , Ratas
19.
Toxicon ; 217: 155-161, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998714

RESUMEN

Pseudosperma species are widely distributed worldwide. Many of them cause poisoning incidents every year, and the toxin responsible for poisoning is muscarine, which could stimulate the parasympathetic nervous system. This study established a method using multiwalled carbon nanotube purification and liquid chromatography-tandem mass spectrometry for the targeted screening of mushroom toxins (muscarine, isoxazole derivatives, tryptamine alkaloids, three amatoxins and three phallotoxins) from Pseudosperma umbrinellum, a common poisonous mushroom distributed in north and northwestern China. Surprisingly, in addition to muscarine, phalloidin was also detected in P. umbrinellum, and the contents were 3022.2 ± 604.4 to 4002.3 ± 804.6 mg/kg (k = 2; p = 95%) muscarine and 5.9 ± 1.2 to 9.3 ± 1.8 mg/kg (k = 2; p = 95%) phalloidin.


Asunto(s)
Agaricales , Intoxicación por Setas , Agaricales/química , Amanitinas/química , Muscarina , Intoxicación por Setas/diagnóstico , Faloidina
20.
Cells ; 11(11)2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35681478

RESUMEN

Immortalized hepatic stellate cells (HSCs) established from mouse, rat, and humans are valuable in vitro models for the biomedical investigation of liver biology. These cell lines are homogenous, thereby providing consistent and reproducible results. They grow more robustly than primary HSCs and provide an unlimited supply of proteins or nucleic acids for biochemical studies. Moreover, they can overcome ethical concerns associated with the use of animal and human tissue and allow for fostering of the 3R principle of replacement, reduction, and refinement proposed in 1959 by William M. S. Russell and Rex L. Burch. Nevertheless, working with continuous cell lines also has some disadvantages. In particular, there are ample examples in which genetic drift and cell misidentification has led to invalid data. Therefore, many journals and granting agencies now recommend proper cell line authentication. We herein describe the genetic characterization of the rat HSC line HSC-T6, which was introduced as a new in vitro model for the study of retinoid metabolism. The consensus chromosome markers, outlined primarily through multicolor spectral karyotyping (SKY), demonstrate that apart from the large derivative chromosome 1 (RNO1), at least two additional chromosomes (RNO4 and RNO7) are found to be in three copies in all metaphases. Additionally, we have defined a short tandem repeat (STR) profile for HSC-T6, including 31 species-specific markers. The typical features of these cells have been further determined by electron microscopy, Western blotting, and Rhodamine-Phalloidin staining. Finally, we have analyzed the transcriptome of HSC-T6 cells by mRNA sequencing (mRNA-Seq) using next generation sequencing (NGS).


Asunto(s)
Autenticación de Línea Celular , Células Estrelladas Hepáticas , Animales , Línea Celular , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Ratones , ARN Mensajero/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...