Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros












Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124091, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447439

RESUMEN

We prepared a naturally occurring flavanoid namely quercetin from tea leaves and analyzed by Absorption, Emission, FT-IR, 1H, 13C nmr spectra and ESI-MS analysis. The inclusion behavior of quercetin in cyclodextrins like α-, ß-, γ-, per-6-ABCD and mono-6-ABCD cavities were supported such as UV-vis., Emission, FT-IR and ICD spectra and energy minimization studies. From the absorption and emission results, the type of complexes formed were found to depend on stoichiometry of Host:Guest. FT-IR data of CD complexes of quercetin supported inclusion complex formation of the substrate with α-, ß- and γ-CDs. The inclusion of host-guest complexation of quercetin with α-, ß-, γ-CDs, per-6-ABCD and mono-6-ABCDs provides very valuable information about the CD:quercetin complexes, the study also shows that ß-CD complexation improves water solubility, chemical stability and bioavailability of quercetin. Besides, phase solubility studies also supported the formation of 1:1 drug-CD soluble complexes. All these spectral results provide insight into the binding behavior of substrate into CD cavity in the order per-6-ABCD > Mono-6-ABCD > γ-CD > ß-CD > α-CD. The proposed model also finds strong support from the fact with excess CD this exciton coupling disappears indicates the formation of only 1:1 complex.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Quercetina/química , Espectroscopía Infrarroja por Transformada de Fourier , beta-Ciclodextrinas/química , Modelos Moleculares , Ciclodextrinas/química , Solubilidad
2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38004454

RESUMEN

Nisoldipine (NIS) is a calcium channel blocker that exhibits poor bioavailability (~5%) due to low aqueous solubility and presystemic metabolism in the gut wall. In this context, the present work aimed to develop NIS solid dispersion (NISSD)-based sublingual films using solvent casting technique to improve the dissolution. Phase solubility studies indicated that Soluplus® was the most effective carrier for improving the aqueous solubility of NIS. NISSDs were initially developed using the solvent evaporation method. Fourier transform infrared spectrometric studies were found to display the characteristic vibrational bands related to C=O stretching and N-H deformation in NISSDs, proving the chemical integrity of the drug in NISSDs. Subsequently, bioadhesive sublingual films of NISSDs were formulated using solvent casting method, using hydroxypropyl methyl cellulose (HPMC) E5, E15, and hydroxy ethyl cellulose (HEC EF) as hydrophilic polymers and polyethylene glycol 400 (PEG 400) as plasticizer. The incorporation of NISSDs was found to produce clear films that displayed uniform content. The sublingual film of NISSDs composed of HPMC E5 (2% w/v), was found to display the least thickness (0.29 ± 0.02 mm), the highest folding endurance (168.66 ± 4.50 times), and good bioadhesion strength (12.73 ± 0.503 g/cm2). This film was found to rapidly disintegrate (28.66 ± 3.05 sec) and display near-complete drug release (94.24 ± 1.22) in 30 min. Incorporating NISSDs into rapidly bioadhesive sublingual films considerably improves drug dissolution. Overall, these research outcomes underscored the potential of rapidly dissolving bioadhesive sublingual films to evade gut metabolism and resolve the bioavailability issues associated with oral administration of NIS.

3.
Mol Pharm ; 20(10): 5032-5042, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37688787

RESUMEN

One of the solubilization of poorly water-soluble drugs is the use of cyclodextrin (CD)-based inclusion complexes. On the other hand, few studies have investigated how CD functions on the solubility of drugs in the presence of multiple drugs that interact with each other. In this study, we used indomethacin (IND) and diclofenac (DIC) as acidic drugs, famotidine (FAM) and cimetidine (CIM) as basic drugs, and imidazole (IMZ), histidine (HIS), and arginine (ARG) as compounds structurally similar to basic drugs. We attempted to clarify the effect of ß-CD on the solubility change of each drug in the presence of multiple drugs. IND and DIC formed a eutectic mixture in the presence of CIM, IMZ, and ARG, which greatly increased the intrinsic solubility of the drugs as well as their affinity for ß-CD. Furthermore, the addition of high concentrations of ß-CD to the DIC-FAM combination, which causes a decrease in solubility due to the interaction, improved the solubility of FAM, which was decreased in the presence of DIC. These results indicate that ß-CD synergistically improves the solubility of drugs in drug-drug combinations, where the solubility is improved, whereas it effectively improves the dissolution rate of drugs in situations where the solubility is reduced by drug-drug interactions, such as FAM-DIC. This indicates that ß-CD can be used to improve the physicochemical properties of drugs, even when they are administered in combination with drugs that interact with each other.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Antiinflamatorios no Esteroideos , Solubilidad , 2-Hidroxipropil-beta-Ciclodextrina/química , Ácidos
4.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569665

RESUMEN

We sought to determine the cyclodextrins (CDs) best suited to solubilize a patented succinimido-ferrocidiphenol (SuccFerr), a compound from the ferrociphenol family having powerful anticancer activity but low water solubility. Phase solubility experiments and computational modelling were carried out on various CDs. For the latter, several CD-SuccFerr complexes were built starting from combinations of one or two CD(s) where the methylation of CD oxygen atoms was systematically changed to end up with a database of ca. 13 k models. Modelling and phase solubility experiments seem to indicate the predominance of supramolecular assemblies of SuccFerr with two CDs and the superiority of randomly methylated ß-cyclodextrins (RAMEßCDs). In addition, modelling shows that there are several competing combinations of inserted moieties of SuccFerr. Furthermore, the models show that ferrocene can contribute to high stabilization by making atypical hydrogen bonds between Fe and the hydroxyl groups of CDs (single bond with one OH or clamp with two OH of the same glucose unit).


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Ciclodextrinas/química , Enlace de Hidrógeno , Simulación por Computador , Solubilidad
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259394

RESUMEN

Inadequate aqueous solubilities of bioactive compounds hinder their ability to be developed for medicinal applications. The potent antioxidant pterostilbene (PTB) is a case in point. The aim of this study was to use a series of modified water-soluble cyclodextrins (CDs), namely, hydroxypropyl ß-CD (HPßCD), dimethylated ß-CD (DIMEB), randomly methylated ß-CD (RAMEB), and sulfobutyl ether ß-CD sodium salt (SBECD) to prepare inclusion complexes of PTB via various solid, semi-solid, and solution-based treatments. Putative CD-PTB products generated by solid-state co-grinding, kneading, irradiation with microwaves, and the evaporative treatment of CD-PTB solutions were considered to have potential for future applications. Primary analytical methods for examining CD-PTB products included differential scanning calorimetry and Fourier transform infrared spectroscopy to detect the occurrence of binary complex formation. Phase solubility analysis was used to probe CD-PTB complexation in an aqueous solution. Complexation was evident in both the solid-state and in solution. Complex association constants (K1:1) in an aqueous solution spanned the approximate range of 15,000 to 55,000 M-1; the values increased with the CDs in the order HPßCD < DIMEB < RAMEB < SBECD. Significant PTB solubility enhancement factors were recorded at 100 mM CD concentrations, the most accurately determined values being in the range 700-fold to 1250-fold.

6.
Pharm Res ; 40(6): 1519-1540, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37138135

RESUMEN

Despite numerous research efforts, drug delivery through the oral route remains a major challenge to formulation scientists. The oral delivery of drugs poses a significant challenge because more than 40% of new chemical entities are practically insoluble in water. Low aqueous solubility is the main problem encountered during the formulation development of new actives and for generic development. A complexation approach has been widely investigated to address this issue, which subsequently improves the bioavailability of these drugs. This review discusses the various types of complexes such as metal complex (drug-metal ion), organic molecules (drug-caffeine or drug-hydrophilic polymer), inclusion complex (drug-cyclodextrin), and pharmacosomes (drug-phospholipids) that improves the aqueous solubility, dissolution, and permeability of the drug along with the numerous case studies reported in the literature. Besides improving solubility, drug-complexation provides versatile functions like improving stability, reducing the toxicity of drugs, increasing or decreasing the dissolution rate, and enhancing bioavailability and biodistribution. Apart, various methods to predict the stoichiometric ratio of reactants and the stability of the developed complex are discussed.


Asunto(s)
Ciclodextrinas , Preparaciones Farmacéuticas/química , Distribución Tisular , Ciclodextrinas/química , Disponibilidad Biológica , Solubilidad , Agua/química
7.
Int J Pharm ; 638: 122913, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37024067

RESUMEN

This study aimed to establish a new method for determining the stability constants of drug/ß-cyclodextrin (ß-CD) complexes when multiple drugs interacting with each other coexist in the solution of complexation. The basic drug famotidine (FAM) and the acidic drug diclofenac (DIC) were used as model drugs, their solubility decreasing owing to their mutual interaction. The dissolution of both FAM and DIC was characterized by AL-type phase solubility diagrams in the presence of the other's 1:1 complex with ß-CD. When the stability constant was calculated from the slope of the phase solubility diagram using the conventional phase solubility diagram method, it was modified in the presence of the other drug. However, by performing optimization calculations that considered the interactions between the drug/ß-CD complex and the drug, drug/ß-CD complexes, and drugs, we were able to accurately calculate the stability constant of DIC/ß-CD and FAM/ß-CD complexes even in the presence of FAM and DIC, respectively. The results of the solubility profile indicated that various molecular species, which are attributed to drug-drug and drug/ß-CD interactions, interfere with the values of the dissolution rate constants and saturated concentration in the solubility profiles.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Famotidina , Diclofenaco , Solubilidad
8.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901859

RESUMEN

α-tocopherol is the physiologically most active form of vitamin E, with numerous biological activities, such as significant antioxidant activity, anticancer capabilities, and anti-aging properties. However, its low water solubility has limited its potential use in the food, cosmetic, and pharmaceutical industries. One possible strategy for addressing this issue is the use of a supramolecular complex with large-ring cyclodextrins (LR-CDs). In this study, the phase solubility of the CD26/α-tocopherol complex was investigated to assess the possible ratios between host and guest in the solution phase. Next, the host-guest association of the CD26/α-tocopherol complex at different ratios of 1:2, 1:4, 1:6, 2:1, 4:1, and 6:1 was studied by all-atom molecular dynamics (MD) simulations. At 1:2 ratio, two α-tocopherol units interact spontaneously with CD26, forming an inclusion complex, as supported by the experimental data. In the 2:1 ratio, a single α-tocopherol unit was encapsulated by two CD26 molecules. In comparison, increasing the number of α-tocopherol or CD26 molecules above two led to self-aggregation and consequently limited the solubility of α-tocopherol. The computational and experimental results indicate that a 1:2 ratio could be the most suitable stoichiometry to use in the CD26/α-tocopherol complex to improve α-tocopherol solubility and stability in inclusion complex formation.


Asunto(s)
Ciclodextrinas , alfa-Tocoferol , Dipeptidil Peptidasa 4 , Antioxidantes , Solubilidad
9.
Biomolecules ; 12(12)2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36551190

RESUMEN

Piperine (PN), the primary pungent alkaloid in black pepper shows several biological activities such as antioxidant, antimicrobial and anti-cancerogenic effects. Similar to other alkaloids, PN is characterized by poor water solubility. One way to improve its solubility and thus its biological activities is by forming inclusion complexes with suitable cyclodextrins. In this work PN inclusion complexes in native ß-cyclodextrin (ß-CD), its methylated (randomly methylated (RM-ß-CD), heptakis-(2,6-di-O-methyl)-ß-CD (DM-ß-CD) and heptakis-(2,3,6-tri-O-methyl)-ß-CD (TM-ß-CD)) and 2-hydroxypropylated (HP-ß-CD) derivatives are investigated using physicochemical methods, such as phase solubility study and X-ray crystallography complemented by theoretical (molecular dynamics simulations) studies. The determination of the crystal structure of the PN inclusion complexes in ß-CD, DM-ß-CD and TM-ß-CD, reveals the formation of 1:2 guest:host inclusion complexes in the crystalline state. The guest PN molecule threads the hydrophobic cavities of the hosts which are arranged as couples in a tail-to-tail mode in the case of PN/ß-CD and in a head-to-tail mode in the cases of PN/DM-ß-CD and PN/TM-ß-CD. MD studies based on the crystallographically determined structures and docked models show the stability of the examined complexes in an aqueous environment whereas the binding affinity of PN for the host molecules is calculated by the MM/GBSA method. Finally, phase-solubility studies of PN with ß-CD, RM-ß-CD and HP-ß-CD are presented, indicating a Bs-type for the PN/ß-CD complex and an AL-type for the PN/RM-ß-CD and PN/HP-ß-CD complexes with 1:1 guest:host stoichiometry.


Asunto(s)
Alcaloides , Ciclodextrinas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , beta-Ciclodextrinas/química , Ciclodextrinas/química , Solubilidad
10.
Molecules ; 27(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080157

RESUMEN

Flavonoids are biologically active natural products of great interest for their potential applications in functional foods and pharmaceuticals. A hesperetin-7-O-glucoside inclusion complex with ß-cyclodextrin (HEPT7G/ßCD; SunActive® HCD) was formulated via the controlled enzymatic hydrolysis of hesperidin with naringinase enzyme. The conversion rate was nearly 98%, estimated using high-performance liquid chromatography analysis. The objective of this study was to investigate the stability, solubility, and spectroscopic features of the HEPT7G/ßCD inclusion complex using Fourier-transform infrared (FTIR), Raman, ultraviolet-visible absorption (UV-vis), 1H- and 13C- nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC-MS), scanning electron microscopy (SEM), and powdered X-ray diffraction (PXRD) spectroscopic techniques including zeta potential, Job's plot, and phase solubility measurements. The effects of complexation on the profiles of supramolecular interactions in analytic features, especially the chemical shifts of ß-CD protons in the presence of the HEPT7G moiety, were evaluated. The stoichiometric ratio, stability, and solubility constants (binding affinity) describe the extent of complexation of a soluble complex in 1:1 stoichiometry that exhibits a greater affinity and fits better into the ß-CD inner cavity. The NMR spectroscopy results identified two different configurations of the HEPT7G moiety and revealed that the HEPT7G/ßCD inclusion complex has both -2S and -2R stereoisomers of hesperetin-7-O-glucoside possibly in the -2S/-2R epimeric ratio of 1/1.43 (i.e., -2S: 41.1% and -2R: 58.9%). The study indicated that encapsulation of the HEPT7G moiety in ß-CD is complete inclusion, wherein both ends of HEPT7G are included in the ß-CD inner hydrophobic cavity. The results showed that the water solubility and thermal stability of HEPT7G were apparently increased in the inclusion complex with ß-CD. This could potentially lead to increased bioavailability of HEPT7G and enhanced health benefits of this flavonoid.


Asunto(s)
Hesperidina , beta-Ciclodextrinas , Rastreo Diferencial de Calorimetría , Flavonoides/química , Glucósidos , Protones , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X , beta-Ciclodextrinas/química
11.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889298

RESUMEN

The study aims to assess the interaction between fluconazole and sulfonatocalix[4]naphthalene towards enhancing its dissolution performance and antimycotic activity. A solubility study was carried out at different pH conditions, and the results revealed the formation of a 1:1 molar ratio fluconazole-sulfonatocalix[4]naphthalene inclusion complex with an AL type phase solubility diagrams. The solid powder systems of fluconazole-sulfonatocalix[4]naphthalene were prepared using kneaded and co-evaporation techniques and physical mixtures. DCS, PXRD, TGA-DTG, FT-IR, and in vitro dissolution performance characterize the prepared systems. According to physicochemical characterization, the co-evaporation approach produces an amorphous inclusion complex of the drug inside the cavity of sulfonatocalix[4]naphthalene. The co-evaporate product significantly increased the drug dissolution rate up to 93 ± 1.77% within 10 min, unlike other prepared solid powders. The antimycotic activity showed an increase substantially (p ≤ 0.05, t-test) antimycotic activity of fluconazole co-evaporate mixture with sulfonatocalix[4]naphthalene compared with fluconazole alone against clinical strains of Candida albicans and Candida glabrata. In conclusion, sulfonatocalix[4]naphthalene could be considered an efficient complexing agent for fluconazole to enhance its aqueous solubility, dissolution performance, and antimycotic activity.


Asunto(s)
Fluconazol , beta-Ciclodextrinas , Rastreo Diferencial de Calorimetría , Fluconazol/farmacología , Naftalenos/farmacología , Polvos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , beta-Ciclodextrinas/química
12.
Pharmaceutics ; 14(4)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35456540

RESUMEN

Phytocannabinoids possess anticancer properties, as established in vitro and in vivo. However, they are characterized by high lipophilicity. To improve the properties of cannabidiol (CBD), such as solubility, stability, and bioavailability, CBD inclusion complexes with cyclodextrins (CDs) might be employed, offering targeted, faster, and prolonged CBD release. The aim of the present study is to investigate the in vitro effects of CBD and its inclusion complexes in randomly methylated ß-CD (RM-ß-CD) and 2-hyroxypropyl-ß-CD (HP-ß-CD). The enhanced solubility of CBD upon complexation with CDs was examined by phase solubility study, and the structure of the inclusion complexes of CBD in 2,6-di-O-methyl-ß-CD (DM-ß-CD) and 2,3,6-tri-O-methyl-ß-CD (TM-ß-CD) was determined by X-ray crystallography. The structural investigation was complemented by molecular dynamics simulations. The cytotoxicity of CBD and its complexes with RM-ß-CD and HP-ß-CD was tested on two cell lines, the A172 glioblastoma and TE671 rhabdomyosarcoma cell lines. Methylated ß-CDs exhibited the best inclusion ability for CBD. A dose-dependent effect of CBD on both cancer cell lines and improved efficacy of the CBD-CDs complexes were verified. Thus, cannabinoids may be considered in future clinical trials beyond their palliative use as possible inhibitors of cancer growth.

13.
Pharmaceutics ; 14(4)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35456614

RESUMEN

Spironolactone (SPL), a potent anti-aldosterone steroidal drug used to treat several diseases in paediatric patients (e.g., hypertension, primary aldosteronism, Bartter's syndrome, and congestive heart failure), is not available in child-friendly dosage forms, and spironolactone liquids have been reported to be unpalatable. Aiming to enhance SPL solubility in aqueous solution and overcome palatability, herein, the effects of (2-hydroxypropyl)-ß-cyclodextrin (HP-ß-CyD) were thoroughly investigated on solubilisation in water and on masking the unpleasant taste of SPL in vivo. Although the complexation of SPL with HP-ß-CyD was demonstrated through phase solubility studies, Job's plot, NMR and computational docking studies, our in vivo tests did not show significant effects on taste aversion. Our findings, on the one hand, suggest that the formation of an inclusion complex of SPL with HP-ß-CyD itself is not necessarily a good indicator for an acceptable degree of palatability, whereas, on the other hand, they constitute the basis for investigating other cyclodextrin-based formulations of the poorly water-soluble steroidal drug, including solid dosage forms, such as spray-dried powders and orodispersible tablets.

14.
Int J Pharm ; 617: 121591, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35183692

RESUMEN

A number of amino acids (AA) has been investigated as promising hydrotropes to improve the solubility of biopharmaceutics classification system (BCS) class II drugs carbamazepine (CBZ) and indomethacin (IND) via specific complexations in aqueous solution. The aim of this work is to understand the molecular basis of these hydrotropic interactions by investigating the two model drugs combined with 12 amino acids including phenylalanine, tryptophan, isoleucine, proline, valine, glycine, serine, threonine, arginine, lysine, histidine and aspartic acid in water at 25 °C, 30 °C and 45 °C. The amino acids were chosen based on their different side chains (neutral aromatic, aliphatic, polar charged or uncharged) to investigate their hydrotropic performance. A linear solubility curve was observed between indomethacin and mono-neutral hydrophobic amino acids (phenylalanine, tryptophan, isoleucine, proline and valine) well beyond 1:1 molar ratio indicating the interaction is predominantly non-ionic between the drug and the hydrotropes. Interestingly, the aqueous solubility of carbamazepine (a neutral compound) was enhanced by neutral, charged basic or acidic amino acids, confirming the presence of hydrophobic interactions that involve H-bonds, H/π and π/π stacking and the results were confirmed by UV-Vis spectroscopy. A combination of multiple neutral amino acids showed additive hydrotropic effect in indomethacin solubility with up to 7-folds increases. This study demonstrates for the first time the potential of amino acids as hydrotropes to improve aqueous solubility of poorly water-soluble drugs, which is important for pharmaceutical development.


Asunto(s)
Aminoácidos , Indometacina , Aminoácidos/metabolismo , Carbamazepina , Indometacina/química , Isoleucina , Leucina , Solubilidad , Agua
15.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36678517

RESUMEN

In the current study, diosmin (DSM)-loaded beta-cyclodextrin (ß-CD)-based nanosponges (NSPs) using diphenylcarbonate (DPC) as a cross-linker were prepared. Four different DSM-loaded NSPs (D-NSP1-NSP4) were developed by varying the molar ratio of ß-CD: DCP (1:15-1:6). Based on preliminary evaluations, NSPs (D-NSP3) were optimized for size (412 ± 6.1 nm), polydispersity index (PDI) (0.259), zeta potential (ZP) (-10.8 ± 4.3 mV), and drug loading (DL) (88.7 ± 8.5%), and were further evaluated by in vitro release, scanning electron microscopy (SEM), and in vitro antioxidant studies. The NSPs (D-NSP3) exhibited improved free radical scavenging activity (85.58% at 100 g/mL) compared to pure DSM. Dissolution efficiency (%DE) was enhanced to 71.50% (D-NSP3) from plain DSM (58.59%). The D-NSP3 formulation followed the Korsmeyer-Peppas kinetic model and had an n value of 0.529 indicating a non-Fickian and controlled release by diffusion and relaxation. The D-NSP3 showed cytotoxic activity against MCF-7 breast cancer, as evidenced by caspase 3, 9, and p53 activities. According to the findings, DSM-loaded NSPs might be a promising therapy option for breast cancer.

16.
Braz. J. Pharm. Sci. (Online) ; 58: e20013, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1394062

RESUMEN

The aim of the present study is to improve the solubility and antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin by formulating its inclusion complexes with 2-hydroxypropyl-ß-cyclodextrin in solution and in solid state. The phase solubility study was used to investigate the interactions between 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and 2-hydroxypropyl-ß-cyclodextrin and to estimate the molar ratio between them. The structural characterization of binary systems (prepared by physical mixing, kneading and solvent evaporation methods) was analysed using the FTIR-ATM spectroscopy. The antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and inclusion complexes prepared by solvent evaporation method was tested by the diffusion and dilution methods on various strains of microorganisms. The results of phase solubility studies showed that 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin formed the inclusion complexes with 2-hydroxypropyl-ß-cyclodextrin of AP type. The solubility of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin was increased 64.05-fold with 50% w/w of 2-hydroxypropyl-ß-cyclodextrin at 37 oC. The inclusion complexes in solid state, prepared by the solvent evaporation method, showed higher solubility in purified water and in phosphate buffer solutions in comparison with 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin alone. The inclusion complexes prepared by solvent evaporation method showed higher activity on Bacillus subtilis and Staphylococcus aureus compared to uncomplexed 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin due to improved aqueous solubility, thus increasing the amount of available 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin that crosses the bacterial membrane.


Asunto(s)
Solubilidad , Ciclodextrinas/agonistas , Antiinfecciosos , Análisis Espectral/instrumentación , Staphylococcus aureus/clasificación , Bacillus subtilis/clasificación , Espectroscopía Infrarroja por Transformada de Fourier , Dilución
17.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34577638

RESUMEN

This study was designed to investigate the effects of curcumin (CMN) soluble complex (SC) prepared by melt casting (HM) and hot-melt extrusion (HME) technology. Phase solubility (PS) study, in silico molecular modeling, aqueous solubility, drug release, and physicochemical investigation including a novel dyeing test was performed to obtain an optimized complex by a central composite design (CCD). The results show that the HME-SC produces better improvements towards solubility (0.852 ± 0.02), dissolution (91.87 ± 0.21% at 30 min), with an ideal stability constant (309 and 377 M-1 at 25 and 37 °C, respectively) and exhibits AL type of isotherm indicating 1:1 stoichiometry. Intermolecular hydrogen bonding involves the formation of SC, which does not undergo any chemical modification, followed by the complete conversion of the amorphous form which was identified by XRD. The in vitro cytotoxicity showed that IC50 was achieved in the SW480 (72 µM.mL-1) and Caco-2 (40 µM.mL-1) cells while that of pure CMN ranged from 146 to 116 µM/mL-1. Apoptosis studies showed that cell death is primarily due to apoptosis, with a low rate of necrosis. In vivo toxicity, confirmed by the zebrafish model, exhibited the safety of the HME-SC. In conclusion, the HME-SC potentially enhances the solubility and cytotoxicity to the treatment of colorectal cancer (CRC).

18.
Molecules ; 26(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34361579

RESUMEN

Inclusion complexes between cyclodextrins (CDs) and active pharmaceutical ingredients (APIs) have potential for pharmaceutical formulation. Since crystallization of a given complex may result in the isolation of multiple crystal forms, it is essential to characterize these forms with respect to their structures and physicochemical properties to optimize pharmaceutical candidate selection. Here, we report the preparation and characterization of two crystallographically distinct hydrated forms of an inclusion complex between ß-cyclodextrin (ß-CD) and the antifungal API fluconazole (FLU) as well as temperature-concentration conditions required for their individual isolation. Determination of crystal water contents was achieved using thermoanalytical methods. X-ray analyses revealed distinct structural differences between the triclinic (TBCDFLU, space group P1) and monoclinic (MBCDFLU, space group C2) crystal forms. Removal of the crystals from their mother liquors led to rapid dehydration of the MBCDFLU crystal, while the TBCDFLU crystal was stable, a result that could be reconciled with the distinct packing arrangements in the respective crystals. This study highlights (a) the importance of identifying possible multiple forms of a cyclodextrin API complex and controlling the crystallization conditions, and (b) the need to characterize such crystal forms to determine the extent to which their physicochemical properties may differ.


Asunto(s)
Fluconazol/química , Modelos Moleculares , beta-Ciclodextrinas/química , Cristalografía por Rayos X
19.
Pharmaceutics ; 13(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209201

RESUMEN

The interaction between meloxicam and sulfonatocalix [4] naphthalene was investigated to improve the meloxicam solubility and its dissolution performance. Solubility behavior was investigated in distilled water (DW) and at different pH conditions. Besides, solid systems were prepared in a 1:1 molar ratio using coevaporate, kneading, and simple physical mixture techniques. Further, they were characterized by PXRD, FT-IR, DCS, and TGA. In vitro dissolution rate for coevaporate, kneaded, and physical mixture powders were also investigated. Solubility study revealed that meloxicam solubility significantly increased about 23.99 folds at phosphate buffer of pH 7.4 in the presence of sulfonatocalix [4] naphthalene. The solubility phase diagram was classified as AL type, indicating the formation of 1:1 stoichiometric inclusion complex. PXRD, FT-IR, DCS, and TGA pointed out the formation of an inclusion complex between meloxicam and sulfonatocalix [4] naphthalene solid powders prepared using coevaporate technique. In addition, in vitro meloxicam dissolution studies revealed an improvement of the drug dissolution rate. Furthermore, a significantly higher drug release (p ≤ 0.05) and a complete dissolution was achieved during the first 10 min compared with the other solid powders and commercial meloxicam product. The coevaporate product has the highest increasing dissolution fold and RDR10 in the investigated media, with average values ranging from 5.4-65.28 folds and 7.3-90.7, respectively. In conclusion, sulfonatocalix [4] naphthalene is a promising host carrier for enhancing the solubility and dissolution performance of meloxicam with an anticipated enhanced bioavailability and fast action for acute and chronic pain disorders.

20.
Pharm Res ; 38(7): 1157-1168, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34145531

RESUMEN

PURPOSE: Cyclodextrin (CD) is commonly used to enhance the solubility of oral drugs. However, with the increase of CD concentrations, the fraction of free drug molecules decreases, which may potentially impede drug absorption. This study aims to predict the optimal ratio between drug and CD to achieve the best absorption efficiency by computational simulation. METHODS: First, a physiologically based pharmacokinetic (PBPK) model was developed. This model can continuously adjust absorption according to free drug fraction and was validated against two model drugs, progesterone (PG) and andrographolide (AG). The further analysis involves 3-D surface graphs to investigate the relationship between free drug amount, theoretically absorbable concentration, and contents of drug and CD in the formulation. RESULTS: The PBPK model predicted the PK behavior of two drugs well. The concentration ratio of drug to CD, leading to maximal free drug amount and the best absorption efficiency, is nearly the same as the slope determined in the phase solubility test. The new modified PBPK model and 3-D surface graph can easily predict the absorption difference of formulations with various drug/CD ratios. CONCLUSION: This PBPK model and 3-D surface graph can predict the absorption and determine the optimal concentration ratio of CD formulation, which could accelerate the R&D of CD formulation.


Asunto(s)
Ciclodextrinas/química , Excipientes/química , Absorción Intestinal , Modelos Biológicos , Administración Oral , Química Farmacéutica , Simulación por Computador , Diterpenos/administración & dosificación , Diterpenos/química , Diterpenos/farmacocinética , Composición de Medicamentos/métodos , Humanos , Progesterona/administración & dosificación , Progesterona/química , Progesterona/farmacocinética , Solubilidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...