Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Plant Physiol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365917

RESUMEN

Stress exerted by excess captured light energy in cyanobacteria is prevented by the photoprotective activity of the orange carotenoid protein (OCP). Under high light, the OCP converts from an orange, inactive form (OCPO) into the red form (OCPR) that binds to and quenches the phycobilisome (PBS). Structurally, the OCP consists of two domains: the N-terminal effector domain and a C-terminal regulatory domain. Structural analysis of the OCP-PBS complex showed that the N-terminal domains of an OCP dimer interact with the PBS core. These N-terminal OCP domains have single domain protein paralogs known as Helical Carotenoid Proteins (HCPs). Using phycobilisome quenching assays, we show that the HCP4 and HCP5 homologs efficiently quench PBS fluorescence in vitro, surpassing the quenching ability of the OCP. This is consistent with computational quantum mechanics/molecular mechanics results. Interestingly, when using a maximum quenching concentration of OCP with phycobilisomes, HCP5 addition further increases phycobilisome quenching. Our results provide mechanistic insight into the quenching capacity and roles of HCP4 and HCP5 in cyanobacteria, suggesting that they are more than simply functionally redundant to the OCP.

2.
Plant Physiol Biochem ; 216: 109050, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39366200

RESUMEN

The exposure of autotrophs to high light intensities significantly impacts their photosynthetic performance. When combined with unpredictable climate changes, the lethality of these effects is exacerbated and, often surpassing the organisms' threshold for tolerance. In this regard, our study centres on examining the mitigating effects of mild osmotic stress induced by 2% Polyethylene Glycol (PEG) in conjunction with high-light conditions, using Chlamydomonas reinhardtii as a model system. Cells were cultivated under low PEG-induced osmotic stress at various light intensities, and their responses were analyzed through biochemical and biophysical approaches. Remarkably, cells grown under lower PEG concentrations exhibited superior growth, increased biomass, and enhanced photosynthetic efficiency under high light compared to non-PEG-treated cells. Surprisingly, their non-photochemical quenching (NPQ) levels were lower, indicating the operation of a distinct photoprotective mechanism in PEG-grown samples. The PEG-grown cells demonstrated higher chlorophyll content but lower carotenoid content, supporting the NPQ data. Circular dichroism analysis suggested that the macro-organization of super-complexes was minimally disrupted in PEG-grown samples, even under high light. This was further supported by Blue native PAGE, which showed greater stability of the super-complexes in PEG-grown cells, implying heightened stability in pigment-protein interactions. Immunoblot analysis revealed minimal differences in core reaction center proteins between PEG-grown and non-PEG cells. Notably, this protective mechanism was absent in the cell wall-deficient mutant CC503. We propose that the partial photoprotection observed is attributed to the PEG shielding the cell wall. This result holds promise for enhancing algal biomass production under natural environmental conditions influenced by fluctuating light intensity.

3.
Heliyon ; 10(16): e36366, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253166

RESUMEN

The escalating contamination caused by lead ions (Pb2⁺) and its harmful effects on all life forms has raised global concerns. Certain microalgae thrive in metal mining sites characterized by low pH and high concentrations of Pb2⁺, which are usually prohibitive for many microorganisms. Little is known about the mechanisms underlying the adaptation of such microalgae to these hostile conditions. In this study, we elucidated the adaptive strategies of the green microalga Micractinium belenophorum strain AUMW, isolated from a lead mining site, and its application for the removal of Pb+2. Results revealed that strain AUMW can efficiently tolerate up to 200 ppm of Pb+2 in an F/2 medium. Further experimental variables were optimized through response surface methodology (RSM), and 99.6 % removal of Pb2⁺ was achieved. Novel adaptive responses of strain AUMW to high levels of Pb2⁺ include: (i) activation of metal-protective response by modulation of quantum yield (F v /F m ) and non-photochemical quenching (NPQ) of photosystem II; (ii) extracellular silicification encapsulated cells of strain AUMW and altered cell morphology from oval to hexagonal; (iii) silicification prevented intracellular translocation of Pb+2; (iv) silicification boosted adsorption of Pb+2, thus enhanced its removal. This study offers new insights into the protective role of silicification in green microalgae and its potential for the removal of metals from metal-polluted sites, waste from energy storage battery industries, and spent batteries. It also provides a solid base to explore the genetic and metabolic pathways involved in the adaptation of strain AUMW to elevated levels of Pb+2.

4.
Plant Physiol Biochem ; 215: 109078, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226762

RESUMEN

-Action potential (AP) of excitable plant cells is an important signaling event that can differentially alter physicochemical and physiological processes in various parts of the same cell. In giant cells of characean algae, the AP propagation has minor effect on photosynthetic electron transport in areas with high activity of plasmalemmal H+-pump but inhibits linear electron flow in regions featuring high passive H+/OH- conductance of the plasma membrane (PM). Uneven spatial distributions of local periplasmic and cytoplasmic pH facilitate the operation of distinct (CO2-dependent and O2-mediated) pathways of photoinduced electron flow, which presumably accounts for differential influence of AP on photosynthesis. The excitation of Chara australis cell in the presence of methyl viologen (MV), a redox mediator with the prooxidant action, provides a convenient model system to clarify the influence of voltage-dependent ion fluxes across PM on photosynthetic activity of chloroplasts. This study shows that permeation of MV to their target sites in chloroplasts is restricted by PM in resting cells, but MV easily passes through ionic channels opened during the PM depolarization. This gated permeation of MV gives rise to strong non-photochemical quenching, decrease in the effective quantum yield of linear electron flow, apparent O2 uptake, and, finally, the enhanced ROS production, as detected by the fluorescent probe dichlorofluorescein. Taken together, the results indicate that the AP generation in the presence of MV acts as trigger for instant redirection of photosynthetic linear electron flow from CO2-dependent route to the path of O2 reduction with the eventual formation of H2O2 as a dominant and most stable ROS form.


Asunto(s)
Membrana Celular , Chara , Oxígeno , Paraquat , Fotosíntesis , Fotosíntesis/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Paraquat/farmacología , Membrana Celular/metabolismo , Oxígeno/metabolismo , Chara/metabolismo , Chara/efectos de los fármacos , Oxidación-Reducción , Cloroplastos/metabolismo
5.
Plants (Basel) ; 13(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39339565

RESUMEN

Melatonin (MT) is considered as an antistress molecule that plays a constructive role in the acclimation of plants to both biotic and abiotic stress conditions. In the present study, we assessed the impact of 10 and 100 µM MT foliar spray, on chlorophyll content, and photosystem II (PSII) function, under moderate drought stress, on oregano (Origanum vulgare L.) plants. Our aim was to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process. Foliar spray with 100 µM MT was more effective in mitigating the negative impact of moderate drought stress on PSII function, compared to 10 µM MT. MT foliar spray significantly improved the reduced efficiency of the oxygen-evolving complex (OEC), and PSII photoinhibition (Fv/Fm), which were caused by drought stress. Under moderate drought stress, foliar spray with 100 µM MT, compared with the water sprayed (WA) leaves, increased the non-photochemical quenching (NPQ) by 31%, at the growth irradiance (GI, 205 µmol photons m-2 s-1), and by 13% at a high irradiance (HI, 1000 µmol photons m-2 s-1). However, the lower NPQ increase at HI was demonstrated to be more effective in decreasing the singlet-excited oxygen (1O2) production at HI (-38%), in drought-stressed oregano plants sprayed with 100 µM MT, than the corresponding decrease in 1O2 production at the GI (-20%), both compared with the respective WA-sprayed leaves under moderate drought. The reduced 1O2 production resulted in a significant increase in the quantum yield of PSII photochemistry (ΦPSII), and the electron transport rate (ETR), in moderate drought-stressed plants sprayed with 100 µM MT, compared with WA-sprayed plants, but only at the HI (+27%). Our results suggest that the enhancement of PSII functionality, with 100 µM MT under moderate drought stress, was initiated by the NPQ mechanism, which decreased the 1O2 production and increased the fraction of open PSII reaction centers (qp), resulting in an increased ETR.

6.
Plant Physiol Biochem ; 215: 109002, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106767

RESUMEN

Cadmium (Cd) toxicity poses a significant threat to soil health and sustainable food production. Its bioaccumulation in plant tissues induces phytotoxicity by affecting physiological and biochemical attributes, leading to a reduction in plant biomass and production. Recently, nanotechnology has emerged as a promising approach for addressing heavy metal toxicity in an eco-friendly manner to enhance crop production. However, the comparative role of foliar applied calcium oxide nanoparticles (CaO-NPs) and bulk calcium fertilizer under Cd stress in alfalfa remains unexplored. Herein, we studied the ameliorative role of CaO-NPs and bulk calcium (50 and 100 mg L-1) to alleviate Cd stress (30 mg kg-1) in alfalfa seedlings. Plants exposed to Cd exhibited significant decreases in morpho-physiological traits, gas exchange attributes, and pigment contents as well as increase in Cd bioaccumulation in plant tissues. Notably, exogenous application of CaO-NPs ameliorates the toxic impact of Cd by enhancing plant biomass (45%), fluorescence efficiency and gaseous exchange attributes. The maximum dose of CaO-NPs induced Cd-tolerance response accompanied by a significant increase in antioxidative enzyme activities, such as superoxide dismutase (SOD; 29%), peroxidase (POD; 41%), catalase (CAT; 36%) and ascorbate peroxidase (APX; 49%), which play positive roles in ROS scavenging. TEM examination further revealed the protective role of these NPs in averting Cd-induced damage to leaf ultrastructure and mesophyll cells. Furthermore, CaO-NPs had a substantial influence on both Cd and Ca2+ accumulation in plant tissues, while qRT‒PCR analysis demonstrated higher expression of antioxidant defense genes viz. Cu/ZnSOD (0.38 fold change (FC)), MtPOD (0.51 FC), MtCAT (0.61 FC) and MtAPX (0.79 FC) under CaO-NPs application, over Cd control. Overall, our findings suggested that exogenous CaO-NPs could be effective in alleviating the adverse effects of Cd on alfalfa seedlings to ensure food safety and support sustainable agriculture.


Asunto(s)
Antioxidantes , Cadmio , Compuestos de Calcio , Fertilizantes , Medicago sativa , Nanopartículas , Estrés Oxidativo , Óxidos , Fotosíntesis , Medicago sativa/efectos de los fármacos , Medicago sativa/metabolismo , Medicago sativa/genética , Cadmio/toxicidad , Compuestos de Calcio/farmacología , Óxidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Calcio/metabolismo
7.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201620

RESUMEN

The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.


Asunto(s)
Productos Agrícolas , Edición Génica , Fotosíntesis , Fotosíntesis/genética , Edición Génica/métodos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Sistemas CRISPR-Cas , Ingeniería Genética
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125918

RESUMEN

In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 µmol photons m-2 s-1) and at high irradiance (HI) (1000 µmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Complejo de Proteína del Fotosistema II/metabolismo , Hidróxido de Calcio/química , Nanopartículas/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Hormesis , Transporte de Electrón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126029

RESUMEN

During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), ß-cyclocitral, a ß-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0-4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or ß-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES.


Asunto(s)
Chlamydomonas reinhardtii , Fotosíntesis , Transducción de Señal , Oxígeno Singlete , Oxígeno Singlete/metabolismo , Fotosíntesis/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Luz , Especies Reactivas de Oxígeno/metabolismo
10.
J Exp Bot ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171726

RESUMEN

Accounting for the dynamic responses of photosynthesis and photoprotection to naturally fluctuating irradiance can improve predictions of plant performance in the field, but the variation of these dynamics within crop canopies is poorly understood. We conducted a detailed study of dynamic and steady-state photosynthesis, photoprotection, leaf pigmentation, and stomatal anatomy in four leaf layers (100, 150, 200 and 250 cm from the floor) of a fully-grown tomato canopy in the greenhouse. We found that leaves at the top of the canopy exhibited higher photosynthetic capacity and slightly faster photosynthetic induction compared to lower-canopy leaves, accompanied by higher stomatal conductance and a faster activation of carboxylation and linear electron transport capacities. In upper-canopy leaves, non-photochemical quenching showed faster induction and relaxation after in- and decreases in irradiance, allowing for more effective photoprotection in these leaves. Despite these observed differences in transient responses between leaf layers, steady-state rather than dynamic photosynthesis traits were more influential for predicting photosynthesis under fluctuating irradiance. Also, a model analysis revealed that time-averaged photosynthesis under fluctuating irradiance could be accurately predicted by one set of Rubisco activation/deactivation parameters across all four leaf layers, thereby greatly simplifying future modelling efforts of whole-canopy photosynthesis.

11.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928427

RESUMEN

Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning.


Asunto(s)
Apium , Clorofila , Complejo de Proteína del Fotosistema II , Hojas de la Planta , Ácido Salicílico , Complejo de Proteína del Fotosistema II/metabolismo , Ácido Salicílico/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Clorofila/metabolismo , Apium/metabolismo , Sequías , Agua/metabolismo , Fotosíntesis/efectos de los fármacos , Deshidratación/metabolismo , Estrés Fisiológico
12.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891916

RESUMEN

Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 µmol photons m-2 s-1) and high light (HL, 900 µmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.


Asunto(s)
Sequías , Ocimum basilicum , Complejo de Proteína del Fotosistema II , Hojas de la Planta , Ácido Salicílico , Estrés Fisiológico , Complejo de Proteína del Fotosistema II/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Ocimum basilicum/metabolismo , Ocimum basilicum/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Clorofila/metabolismo , Fotosíntesis/efectos de los fármacos , Tilacoides/metabolismo , Tilacoides/efectos de los fármacos , Luz
13.
Sci Rep ; 14(1): 13970, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886488

RESUMEN

Non-photochemical quenching (NPQ) is a protective mechanism for dissipating excess energy generated during photosynthesis in the form of heat. The accelerated relaxation of the NPQ in fluctuating light can lead to an increase in the yield and dry matter productivity of crops. Since the measurement of NPQ is time-consuming and requires specific light conditions, theoretical NPQ (NPQ(T)) was introduced for rapid estimation, which could be suitable for High-throughput Phenotyping. We investigated the potential of NPQ(T) to be used for testing plant genetic resources of chickpea under drought stress with non-invasive High-throughput Phenotyping complemented with yield traits. Besides a high correlation between the hundred-seed-weight and the Estimated Biovolume, significant differences were observed between the two types of chickpea desi and kabuli for Estimated Biovolume and NPQ(T). Desi was able to maintain the Estimated Biovolume significantly better under drought stress. One reason could be the effective dissipation of excess excitation energy in photosystem II, which can be efficiently measured as NPQ(T). Screening of plant genetic resources for photosynthetic performance could take pre-breeding to a higher level and can be implemented in a variety of studies, such as here with drought stress or under fluctuating light in a High-throughput Phenotyping manner using NPQ(T).


Asunto(s)
Cicer , Sequías , Fenotipo , Fotosíntesis , Complejo de Proteína del Fotosistema II , Estrés Fisiológico , Cicer/fisiología , Cicer/genética , Cicer/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
14.
Plant Physiol Biochem ; 212: 108780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850726

RESUMEN

The study evaluated the effects of treating irrigation water with a coaxial flow variator (CFV) on the morpho-physiology of pot-cultivated test species, including cucumber (Cucumis sativus, CU), lettuce (Lactuca sativa, LE), and sorghum (Sorghum vulgare, SO), in early stages of growth. CFV caused a lower oxidation reduction potential (ORP), increased pH and flow resistance and inductance. It induced changes in the absorbance characteristics of water in specific spectral regions, likely associated with greater stretching and reduced bending vibrations compared to untreated water. While assimilation rate and photosynthetic efficiency were not significantly affected at 60 days after sowing, treated water increased the stomatal conductance to water vapour gsw (+79%) and the electron transport rate ETR (+10%) in CU, as well as the non-photochemical quenching NPQ (+33%) in SO. Treated water also reduced leaf temperature in all species (-0.86 °C on average). This translated into improved plant biomass (leaves: +34%; roots: +140%) and reduced leaf-to-root biomass ratio (-42%) in SO, allowing both faster aerial growth and soil colonization, which can be exploited to improve plant tolerance against abiotic stresses. In the C3 species CU and LE, plant biomass was instead reduced, although significantly in LE only, while the leaf-to-root biomass ratio was generally enhanced, a result likely profitable in the cultivation of leafy vegetables. This is a preliminary trial on the effects of functionalized water and much remains to be investigated in other physiological processes, plant species, and growth stages for the full exploitation of this water treatment in agronomy.


Asunto(s)
Cucumis sativus , Lactuca , Fotosíntesis , Agua , Agua/metabolismo , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Cucumis sativus/fisiología , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Riego Agrícola/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo
15.
Ann Bot ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946023

RESUMEN

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

16.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763078

RESUMEN

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Asunto(s)
Chlamydomonas reinhardtii , Complejos de Proteína Captadores de Luz , Presión Osmótica , Complejo de Proteína del Fotosistema II , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Fotosíntesis/efectos de la radiación , Luz , Clorofila/metabolismo
17.
J Plant Physiol ; 297: 154261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705078

RESUMEN

Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.


Asunto(s)
Clorofila A , Clorofila , Genotipo , Nitrógeno , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Clorofila/metabolismo , Clorofila A/metabolismo , Fotosíntesis
18.
Curr Res Struct Biol ; 7: 100141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736459

RESUMEN

Orange carotenoid proteins (OCPs) are unique photoreceptors that are critical for cyanobacterial photoprotection. Upon exposure to blue-green light, OCPs are activated from a stable orange form, OCPO, to an active red form, OCPR, which binds to phycobilisomes (PBSs) and performs photoprotective non-photochemical quenching (NPQ). OCPs can be divided into three main families: the most abundant and best studied OCP1, and two others, OCP2 and OCP3, which have different activation and quenching properties and are yet underexplored. Crystal structures have been acquired for the three OCP clades, providing a glimpse into the conformational underpinnings of their light-absorption and energy dissipation attributes. Recently, the structure of the PBS-OCPR complex has been obtained allowing for an unprecedented insight into the photoprotective action of OCPs. Here, we review the latest findings in the field that have substantially improved our understanding of how cyanobacteria protect themselves from the toxic consequences of excess light absorption. Furthermore, current research is applying the structure of OCPs to bio-inspired optogenetic tools, to function as carotenoid delivery devices, as well as engineering the NPQ mechanism of cyanobacteria to enhance their photosynthetic biomass production.

19.
J Exp Bot ; 75(13): 4005-4023, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636949

RESUMEN

The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.


Asunto(s)
Fotosíntesis , Dinoflagelados/fisiología , Respuesta al Choque Térmico , Calor
20.
Front Plant Sci ; 15: 1367795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645386

RESUMEN

Non-photochemical quenching (NPQ) is a protective mechanism used by plants to safely dissipate excess absorbed light energy as heat, minimizing photo-oxidative damage. Although the importance of NPQ as a safety valve for photosynthesis is well-known, the physiological and environmental effects of the heat produced remain unclear because the amount of heat produced by NPQ is considered negligible, and its physiological effects have not been directly observed. Here, we calculated the heat produced by NPQ and evaluated its impact on the leaf and global warming based on simplified models. Our evaluation showed that the heat produced by NPQ in a given leaf area is 63.9 W m-2 under direct sunlight. Under the standard condition, NPQ warms up the leaf at less than 0.1°C, but it could be 1°C under particular conditions with low thermal conductance. We also estimated the thermal radiation of vegetation's NPQ to be 2.2 W m-2 par global averaged surface area. It is only 0.55% of the thermal radiation by the Earth's surface, but still significant in the current climate change response. We further discuss the possible function of NPQ to plant physiology besides the safety valve and provide strategies with artificial modification of the NPQ mechanism to increase food production and mitigate global warming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...