Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.622
Filtrar
1.
Foodborne Pathog Dis ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258750

RESUMEN

Lactiplantibacillus plantarum is a member of lactic acid bacteria that improves the quality of fermented foods while also having a positive impact on human health. In this study, L. plantarum F2 was studied for characteristics such as biochemical and genetic identification, metabolite production, antimicrobial activity, and plasmid content. This strain exerts antimicrobial activity against some Gram-positive and Gram-negative pathogens (Listeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli) with inhibition zone diameters ranging between 17.0 and 29.0 mm; it can ferment glucose, arabinose, galactose, lactose, and demonstrated the ability to grow at high temperature (50°C). Another physiological specification of the strain was the morphology of the isolate in selective medium, the de Man, Rogosa, Sharpe medium (MRS medium containing triphenyl tetrazolium chloride), which exhibits a chromogenic colony (characterized as purple colonies) on the modified-MRS (mMRS) medium. Metabolites such as lactic acid and diacetyl production of the strain F2 were also investigated using chromatography and found to be 10.07 and 0.05 µg/mL, respectively. The peptides of the isolate's cell-free supernatant were determined to be ∼80 kDa, and finally, the plasmid isolated from the strain F2 was identified as L. plantarum strain KLDS1.0386 plasmid p4, which may be responsible for some characteristic properties, such as antimicrobial peptide production of the strain.

2.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39282447

RESUMEN

Foundational techniques in molecular biology-such as cloning genes, tagging biomolecules for purification or identification, and overexpressing recombinant proteins-rely on introducing non-native or synthetic DNA sequences into organisms. These sequences may be recognized by the transcription and translation machinery in their new context in unintended ways. The cryptic gene expression that sometimes results has been shown to produce genetic instability and mask experimental signals. Computational tools have been developed to predict individual types of gene expression elements, but it can be difficult for researchers to contextualize their collective output. Here, we introduce CryptKeeper, a software pipeline that visualizes predictions of bacterial gene expression signals and estimates the translational burden possible from a DNA sequence. We investigate several published examples where cryptic gene expression in E. coli interfered with experiments. CryptKeeper accurately postdicts unwanted gene expression from both eukaryotic virus infectious clones and individual proteins that led to genetic instability. It also identifies off-target gene expression elements that resulted in truncations that confounded protein purification. Incorporating negative design using CryptKeeper into reverse genetics and synthetic biology workflows can help to mitigate cloning challenges and avoid unexplained failures and complications that arise from unintentional gene expression.

3.
Sci Rep ; 14(1): 21591, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284917

RESUMEN

This study introduces a novel cost-effective technique for cloning of linear DNA plasmid inserts, aiming to address the associated expenses linked with popular in vitro DNA assembly methods. Specifically, we introduce ECOLI (Efficient Cloning Of Linear Inserts), a method utilizing a PCR product-based site-directed mutagenesis. In comparison to other established in vitro DNA assembly methods, our approach is without the need for costly synthesis or specialized kits for recombination or restriction sites. ECOLI offers a fast, efficient, and economical alternative for cloning inserts up to several hundred nucleotides into plasmid constructs, thus enhancing cloning accessibility and efficiency. This method can enhance molecular biology research, as we briefly demonstrated on the Dishevelled gene from the WNT signaling pathway.


Asunto(s)
Clonación Molecular , Mutagénesis Sitio-Dirigida , Plásmidos , Plásmidos/genética , Clonación Molecular/métodos , Mutagénesis Sitio-Dirigida/métodos , Reacción en Cadena de la Polimerasa/métodos , ADN/genética
4.
Microbiol Res ; 288: 127889, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39217797

RESUMEN

Clostridium butyricum has emerged as a promising candidate for both industrial and medical biotechnologies, underscoring the key pursuit of stable gene overexpression in engineering C. butyricum. Unlike antibiotic-selective vectors, native-cryptic plasmids can be utilized for antibiotic-free expression systems in bacteria but have not been effectively exploited in C. butyricum to date. This study focuses on leveraging these plasmids, pCB101 and pCB102, in C. butyricum DSM10702 for stable gene overexpression without antibiotic selection via efficient gene integration using the SacB-based allelic exchange method. Integration of reporter IFP2.0 and glucuronidase generated sustained near-infrared fluorescence and robust enzyme activity across successive subcultures. Furthermore, successful secretion of a cellulase, Cel9M, and the human interleukin 10 from pCB102 highlights native-cryptic plasmids' potential in conferring stable gene products for industrial and medical applications in C. butyricum. This work appears to be the first study to harness the Clostridium native-cryptic plasmid for stable gene overexpression without antibiotics, thereby advancing the biotechnological prospects of C. butyricum.


Asunto(s)
Clostridium butyricum , Plásmidos , Clostridium butyricum/genética , Plásmidos/genética , Humanos , Expresión Génica , Biotecnología/métodos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Celulasa/genética , Celulasa/metabolismo , Genes Reporteros , Microbiología Industrial/métodos , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos
5.
Microbiol Res ; 288: 127884, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226667

RESUMEN

Synechococcus sp. PCC7002 has been considered as a photosynthetic chassis for the conversion of CO2 into biochemicals through genetic modification. However, conventional genetic manipulation techniques prove inadequate for comprehensive genetic modifications in this strain. Here, we present the development of a genome editing tool tailored for S. PCC7002, leveraging its endogenous type I-D CRISPR-Cas system. Utilizing this novel tool, we successfully deleted the glgA1 gene and iteratively edited the genome to obtain a double mutant of glgA1 and glgA2 genes. Additionally, large DNA fragments encompassing the entire type I-A (∼14 kb) or III-B CRISPR-Cas (∼21 kb) systems were completely knocked-out in S. PCC7002 using our tool. Furthermore, the endogenous pAQ5 plasmid, approximately 38 kb in length, was successfully cured from S. PCC7002. Our work demonstrates the feasibility of harnessing the endogenous CRISPR-Cas system for genome editing in S. PCC7002, thereby enriching the genetic toolkit for this species and providing a foundation for future enhancements in its biosynthetic efficiency.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma Bacteriano , Plásmidos , Synechococcus , Edición Génica/métodos , Synechococcus/genética , Plásmidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Eliminación de Gen
6.
Microbiol Spectr ; : e0100224, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320107

RESUMEN

blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, is thought to have emerged in India, as its initial detection in 2008 was linked to this country, and subsequent retrospective surveys had so far established the earliest blaNDM-positive strains to be isolated in India in 2005. Molecular dating and analyses suggest blaNDM emerged within Acinetobacter species decades prior to 2005 on a Tn125 transposon. Despite early reports of elevated rates of carbapenem-resistant Acinetobacter species in Israel starting in the 1990s, limited molecular data are available from this location. We searched for blaNDM among Acinetobacter species isolated in Israel between 2001 and 2006. One A. junii strain, Ajun-H1-3, isolated in January 2004, carried blaNDM-1 within a Tn125-like transposon on a 49-kb plasmid, pNDM-Ajun-H1-3, making Ajun-H1-3 the earliest NDM-positive isolate observed to date. The pNDM-Ajun-H1-3 plasmid matched numerous BJ01-like NDM-positive plasmids identified from 2005 onward in Acinetobacter species as well as Enterobacterales. These results indicate the need for further retrospective work on global strain archives to shed light on the conditions favoring the emergence as well as subsequent evolution and spread of blaNDM. IMPORTANCE: This study presents the earliest observation of blaNDM-1, isolated in a geographical region distant from where it is believed to have originated. In doing so, this study provides novel insights into the emergence and spread of blaNDM, the most prevalent carbapenemase among carbapenem-resistant Enterobacteriaceae, and its associated mobile genetic elements. It also sheds light on the conditions that foster the evolution of antimicrobial resistance, one of the greatest public health challenges we face.

7.
Food Sci Biotechnol ; 33(14): 3291-3297, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39328229

RESUMEN

The sugar beet is the second-largest sugar-producing crop. Genetically modified (GM) sugar beet, which have herbicide-resistant, have been developed to increase production and comprise over 90% of the market share. This study describes qualitative and quantitative PCR methods for the GM sugar beet H7-1 with reference plasmid (pUC_GM-SB) containing an endogenous gene (GS2) and an event-specific gene for H7-1 that served as a positive control for PCR. The detection limit of qualitative PCR was approximately 10 copies of the reference plasmid and 0.05% in spiked samples. In the case of quantitative PCR, the detection limit was five copies of the reference plasmid. Regarding repeatability, the standard deviation and relative standard deviation were found to range from 0.11 to 0.24 and from 0.23% to 0.99%, respectively. This study provides food safety assurance for imported GM sugar beet H7-1 using the reference plasmid and supports efficient detection methods. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01572-6.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39289248

RESUMEN

This study investigated the molecular characteristics of urinary carbapenemase-producing Klebsiella pneumoniae isolates (n = 194) in Gauteng, South Africa, using simple, cost-effective PCR methodologies. Extensively drug resistant (XDR) ST307 with blaOXA-181 on IncX3 plasmids was endemic in Gauteng community hospitals leaving limited options for treating in- and outpatient urinary tract infections. High-level ceftazidime/avibactam resistance was detected among isolates harbouring blaOXA-48-like including blaOXA-181. These findings highlighted the need for genomic methodologies suitable for lower- and middle-income countries to track XDR clones and plasmids in community hospitals. Such results will aid with treatment and stewardship strategies.

9.
Microbiol Spectr ; : e0052324, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287461

RESUMEN

The extended-spectrum ß-lactamase (ESBL) gene, blaVEB-1, was identified for the first time in an Escherichia coli clinical isolate, JARB-RN-0061, from blood cultures in a Japanese general hospital in 2021. The isolate exhibited high resistance to broad-spectrum cephalosporins, including ceftazidime (MIC >128 mg/L) and cefepime (MIC = 16 mg/L). blaVEB-1 was identified during whole-genome sequencing and characterization of the isolate. JARB-RN-0061 belonged to the B2-O2:K1:H7-ST95-fimH41 lineage and was classified as presumptive extraintestinal pathogenic E. coli (ExPEC) and uropathogenic E. coli (UPEC). Moreover, the strain harbored multiple virulence genes on the chromosome. The Col156/IncFIB(AP001918)/IncFII(29)-type plasmid (114,216 bp), with clbB and tcpC genes involved in bacteremia, was unique to the fimH41 subclone. The blaVEB-1 gene was located on a non-typeable and non-conjugative plasmid, pJARB-RN-0061_VEB-1 (17,093 bp). It was embedded in the class 1 integron In1883-like, with multidrug resistance gene cassettes for aacA4, aadB, cmlA5, qnrVC4, and dfrA14. Notably, comparative analysis of the complete sequence of plasmid pJARB-RN-0061_VEB-1 revealed that it was highly homologous to the blaVEB-1-harboring plasmid, pMS2H7VEB-1 (100% coverage and 99.99% identity), except for the Tn3 family transposon (4,931 bp) and the plasmid pRHBSTW-00138_5 (97% coverage and 100% identity) harbored by Klebsiella quasipneumoniae subsp. similipneumoniae strains from hospital sewage in Japan and wastewater influent in the United Kingdom, respectively. The emergence of a human pathogenic E. coli clinical isolate with the blaVEB-1-carrying plasmid in the B2-ST95 worldwide pandemic lineage, characterized by the virulence potential of ExPEC or UPEC but a low prevalence of antimicrobial resistance, would raise public health concerns. IMPORTANCE: ESBLs are plasmid-mediated enzymes that confer resistance to clinically significant antimicrobial agents, such as broad-spectrum cephalosporins. Recently, the rapid spread of CTX-M-type ESBL-producing E. coli has become a global issue, including in Japan, where ESBL production in human pathogenic E. coli, such as the ExPEC and UPEC lineages, which typically harbor several virulence genes, is a severe public health concern. To date, VEB (Vietnamese extended-spectrum ß-lactamase) producers have been found only in hospital wastewater and rivers in Japan. Thus, we describe the first detection of a very rare human-derived blaVEB-1 gene in the E. coli B2-ST95 pandemic clonal lineage that is highly associated with ExPEC and UPEC in a Japanese clinical setting. Furthermore, we characterized the genomic features of plasmids harboring the class 1 integron-borne blaVEB-1. Our findings highlight the significance of closely monitoring ESBL-producing E. coli isolates to prevent the potential dissemination of this resistance determinant in Japan.

10.
Mar Drugs ; 22(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39330295

RESUMEN

The aim of this research was to synthesize and characterize alginate-calcium composites using a freeze-drying method, with a focus on their potential applications in biomedicine. This study specifically explored the biochemical properties of these composites, emphasizing their role in blood coagulation and their capacity to interact with DNA. Additionally, the research aimed to assess how the cross-linking process influences the structural and chemical characteristics of the composites. Detailed analyses, including microscopic examination, surface area assessment, and atomic absorption spectrometry, yielded significant results. The objective of this study was to examine the impact of calcium chloride concentration on the calcium content in alginate composites. Specifically, the study assessed how varying concentrations of the cross-linking solution (ranging from 0.5% to 2%) influence the calcium ion saturation within the composites. This investigation is essential for understanding the physicochemical properties of the materials, including calcium content, porosity, and specific surface area. The results are intended to identify the optimal cross-linking conditions that maximize calcium enrichment efficiency while preserving the material's structural integrity. The study found that higher calcium chloride concentrations in alginate cross-linking improve the formation of a porous structure, enhanced by two-stage freeze-drying. Increased calcium levels led to a larger surface area and pore volume, and significantly higher calcium content. Furthermore, assays of activated partial thromboplastin time (aPTT) showed a reduction in clotting time for alginate composites containing calcium ions, indicating their potential as hemostatic agents. The aPTT test showed shorter clotting times with higher calcium ion concentrations, without enhanced activation of the extrinsic clotting pathway. The developed alginate material with calcium effectively supports hemostasis and reduces the risk of infection. The study also explored the capacity of these composites to interact with and modify the structure of plasmid DNA, underscoring their potential for future biomedical applications.


Asunto(s)
Alginatos , Coagulación Sanguínea , Calcio , ADN , Liofilización , Alginatos/química , Coagulación Sanguínea/efectos de los fármacos , ADN/química , Calcio/química , Cloruro de Calcio/química , Tiempo de Tromboplastina Parcial , Animales , Porosidad , Humanos , Reactivos de Enlaces Cruzados/química
11.
Foodborne Pathog Dis ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39330941

RESUMEN

This retrospective investigation (2019-2022) identified two plasmid-mediated mcr-10 from 6800 food samples in Shanghai, China and localized in a conjugative plasmid (pEC1918-mcr10) in Escherichia kobei from ready-to-eat food with high-level polymyxin B resistance, and a nonconjugative plasmid (pEC2001-mcr10) in E. coli from chicken. These genes were adjacent to ISEc36. This report highlights the emergence of mcr-10 from food samples in Shanghai, China. Active surveillance of vital resistance genes along food production chain should be performed.

12.
Heliyon ; 10(18): e37534, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315185

RESUMEN

Plasmid-mediated quinolone resistance (PMQR) in extended-spectrum ß-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) contributes to treatment failures, extended hospital stays, and increased mortality percentages. We aimed to determine the prevalence of PMQR genes in ESBL-producing K. pneumoniae isolates from clinical samples in Babol, North of Iran region. This is the first study in this region to investigate this specific association. A total of 95 K. pneumoniae isolates were obtained from hospitalized patients with various clinical infections during March 2022 to February 2023. Disk diffusion and Combination disk method were performed to identification of antimicrobial resistance profiles and ESBL-producing strains. The presence of ESBL and PMQR genes among K. pneumoniae isolates was assessed using polymerase chain reaction (PCR) method. Of the isolates, 68 (71.57 %) were considered as ESBL-producers. The bla TEM, bla SHV and bla CTX-M genes were detected in 74.73 %, 57.89 %, and 41.05 % of K. pneumoniae isolates, respectively. Among the PMQR encoding genes, the highest and lowest frequency was associated to qepA (67.3 %) and qnrA (4.2 %), respectively. The frequency of qnrA, qnrB, qnrS, acc (6')-Ib-cr, qepA, oqxA, and oqxB genes in 26 MDR-Kp isolates was 11.53 % (n; 3), 69.23 % (n; 18), 65.38 % (n; 17), 73.07 % (n; 19), 80.76 % (n; 21), 84.61 % (n; 22), and 76.92 % (n; 20), respectively. Our result revealed of the 68 ESBL gene-positive isolates, 60 (88.23 %) were positive for the PMQR gene. The co-occurrence of these genes within resistant isolates suggests potential linkage on mobile genetic elements such as plasmids. These findings highlight the significant burden of PMQR determinants in ESBL-producing K. pneumoniae and underscore the urgent need for effective control measures. Implementing robust antimicrobial stewardship programs and strengthening drug-resistance surveillance and control protocols are crucial to prevent the spread of resistant isolates.

13.
Microbiol Spectr ; : e0122024, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315784

RESUMEN

Despite the dissemination of multidrug resistance plasmids, including those carrying virulence genes in Salmonella spp., efficient plasmid curing tools are lacking. Plasmid partitioning and multimer resolution systems are attractive targets for plasmid cure. However, plasmid curing strategies targeting these systems are often hindered by the host addiction system through a process known as post-segregation killing. Here, we developed vector tools that can mutate the above systems while replenishing short-lived antitoxins. Cloning was performed using Gibson assembly. parAB or resolvase (res) genes on Incompatibility Group (Inc)FIB, IncA/C, IncX4, and plasmids carried by Salmonella species were deleted by first knocking in the N-terminal ß-galactosidase encoding gene (bgaB), followed by in-frame insertion of its C-terminal region using pDG1 and pDG2 vectors, respectively. pDG1 was used as a backbone to develop a vector, designated as pDG-At, expressing 13 antitoxins driven by strong promoters. Plasmid curing was achieved by transforming pDG-At to parAB or res mutants followed by blue-white screening and PCR; however, parAB mutant isolation with this method was low and often non-reproducible. To elucidate whether the prior presence of pDG-At in cells improves viable mutant isolation, we re-constructed pDG-At, designated as pDG-Atπ, using a vector with the R6Kϒ origin of replication with its π-factor required for replication under araBAD promoter. Results showed that pDG-Atπ can replicate in the absence of arabinose but can be cured by growing cells in glucose-rich media. Next, we repeated IncFIB's parAB deletion using pDG1 but in cells carrying pDG-Atπ. Many white colonies were detected on X-Gal-supplemented media but none of them carried the target parA mutation; however, ~80% of the white colonies lost IncFIB plasmid, while the others retained the wild-type plasmid. Similar results were obtained for IncX4 plasmid curing but also found that this method was not reproducible as the white colonies obtained after allelic replacement did not always result in plasmid curing or mutant isolation. This is the first report describing a simple blue/white screening method for plasmid curing that can avoid laborious screening procedures. IMPORTANCE: Plasmids play an important role in bacterial physiology, adaptation, evolution, virulence, and antibiotic resistance. An in-depth study of these roles partly depends on the generation of plasmid-free cells. This study shows that vector tools that target genes required for plasmid stability in the presence of an antitoxin-expressing helper plasmid are a viable approach to cure specific plasmids. Expression of bgaB from target plasmids can greatly facilitate visual detection of plasmid cured colonies avoiding time-consuming screening procedures. This approach can be refined for the development of a universal plasmid curing system that can be used to generate plasmid-free cells in other human bacterial pathogens including Gram positives and Gram negatives.

14.
Front Microbiol ; 15: 1467847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301187

RESUMEN

Actinobacillus pleuropneumoniae, a significant respiratory pig pathogen, is causing substantial losses in the global swine industry. The resistance spectrum of A. pleuropneumoniae is expanding, and multidrug resistance is a severe issue. Horizontal gene transfer (HGT) plays a crucial role in the development of the bacterial genome by facilitating the dissemination of resistance determinants. However, the horizontal transfer of resistance genes via A. pleuropneumoniae-derived outer membrane vesicles (OMVs) has not been previously reported. In this study, we used Illumina NovaSeq and PacBio SequeI sequencing platforms to determine the whole genome sequence of A. pleuropneumoniae GD2107, a multidrug-resistant (MDR) isolate from China. We detected a plasmid in the isolate named pGD2107-1; the plasmid was 5,027 bp in size with 7 putative open reading frames (ORF) and included the floR resistance genes. The carriage of resistance genes in A. pleuropneumoniae OMVs was identified using a polymerase chain reaction (PCR) assay, and then we thoroughly evaluated the influence of OMVs on the horizontal transfer of drug-resistant plasmids. The transfer of the plasmid to recipient bacteria via OMVs was confirmed by PCR. In growth competition experiments, all recipients carrying the pGD2107-1 plasmid exhibited a fitness cost compared to the corresponding original recipients. This study revealed that OMVs could mediate interspecific horizontal transfer of the resistance plasmid pGD2107-1 into Escherichia coli recipient strains and significantly enhance the resistance of the transformants. In summary, A. pleuropneumoniae-OMVs play the pivotal role of vectors for dissemination of the floR gene spread and may contribute to more antimicrobial resistance gene transfer in other Enterobacteriaceae.

15.
J Appl Microbiol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304528

RESUMEN

AIMS: Klebsiella michiganensis is a medically-important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes including plasmid stability ("addiction") and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC). METHODS AND RESULTS: The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC. CONCLUSIONS: We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyze the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically-relevant group of bacteria.

16.
J Microbiol Methods ; 226: 107047, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303991

RESUMEN

We report the creation of 17 Escherichia coli strains harboring the conjugative plasmid pLCasCureT with a CRISPR-Cas9 system to surgically "cure" the most common plasmids among Enterobacterales species. This approach can create isogenic pairs of strains to study host-plasmid interactions, correlate plasmid genotype and phenotype, and create plasmid-free cloning strains.

17.
Orphanet J Rare Dis ; 19(1): 349, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304915

RESUMEN

BACKGROUND: Usher syndrome type 3 (USH3) is an autosomal recessive inherited disorder caused by pathogenic variants in the CLRN1 gene. OBJECT: To evaluate the genotype-phenotype correlation of Usher syndrome type 3 (USH3) in a deaf-blind Chinese family of 3 generations with 2 patients. METHODS: We collected blood samples and clinical data from all of the pedigree family members. Genomic DNA was isolated from peripheral leukocytes using standard method. Targeted next generation sequencing and Sanger sequencing were performed to find the pathogenic variants in this family. Digital PCR and plasmid overexpression assay were used to verify the pathogenicity of variant sites in different transcripts. RESULTS: All patients developed bilateral sensorineural hearing loss (SHL), progressive vision loss and nyctalopia. NGS of genes for Usher syndrome, deafness and retinal dystrophy identified a locus mutation in CLRN1 that caused completely different amino acid changes in different transcripts[CLRN1:c.474T > A(P.Cys158Ter) at NM_001256819.2 or c.302T > A(p.Val101Asp) at NM_174878.3], and plasmid overexpression experiments confirmed that the c.474T > A(P.Cys158Ter, NM_001256819.2) was a pathogenic variant which has never been associated with Usher syndrome in China, and the transcript of this mutation was not the version commonly found worldwide. CONCLUSIONS: The CLRN1c.474T > A(NM_001256819.2) mutation is the causative variant in the Chinese family with USH3. The pathogenicity of different transcripts should be particularly considered in pathogenicity analysis.


Asunto(s)
Proteínas de la Membrana , Síndromes de Usher , Femenino , Humanos , Masculino , China , Pueblos del Este de Asia , Homocigoto , Proteínas de la Membrana/genética , Mutación , Linaje , Síndromes de Usher/genética
18.
Int J Food Microbiol ; 426: 110890, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241546

RESUMEN

Salmonella enterica subsp. enterica serovar Typhimurium variant 4,[5],12:i:- (referred to as S. 4,[5],12:i:-) has emerged rapidly as the predominant Salmonella serovar in pigs, often associated with the acquisition of antibiotic resistance (ABR) and heavy metal resistance (HMR) genes. Our study analysed 78 strains of S. 4,[5],12:i:- (n = 57) and S. Typhimurium (n = 21), collected from 1999 to 2021, to investigate the evolution of mobile genetic elements (MGEs) containing HMR and ABR genes. Five MGEs harbouring HMR genes were identified: pUO-STVR2, pSTM45, pUO-STmRV1, SGI-4 and MREL. Among the strains, 91.23 % (52/57) of S. 4,[5],12:i:- carried at least one of these elements, compared to only 14.29 % (3/21) of S. Typhimurium. Since 2008, S. 4,[5],12:i:- have shifted from predominantly carrying pUO-STmRV1 to the emergence of SGI-4 and MREL, reducing ABR genes, reflecting the European Union ban on the use of antibiotics as feed additives. Increased resistance to copper and silver in S. 4,[5],12:i:-, conferred by SGI-4 and MREL, reflected that their acquisition was linked to the ongoing use of heavy metals in food-animal production. However, strains carrying SGI-4 and MREL still exhibit multidrug resistance, emphasising the need for targeted interventions to mitigate multidrug-resistant Salmonella spread in veterinary and public health settings.

19.
Microbiol Res ; 289: 127896, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39260133

RESUMEN

Klebsiella pneumoniae (Kp) is increasingly recognized as a reservoir for a range of antibiotic resistance genes and a pathogen that frequently causes severe infections in both hospital and community settings. In this study, we have identified a novel mechanism of conjugative transfer of a non-conjugative virulence plasmid through the formation of a fusion plasmid between the virulence plasmid and a novel 59,162 bp IncN- plasmid. This plasmid was found to be a multidrug-resistance (MDR) plasmid and carried a T4SS cluster, which greatly facilitated the efficient horizontal transfer of the fusion plasmid between Kp strains. The fused virulence plasmid conferred the resistance of serum killing and macrophage phagocytosis to the transconjugants. Importantly, this plasmid was shown to be essential for Kp virulence in a mouse model. Mechanistic analysis revealed that the virulence factors encoded by this virulence plasmid contributed to resistance to in vivo clearance and induced a high level of proinflammatory cytokine IL-1ß, which acts as an inducer for more neutrophil recruitment. The transmission of the fusion plasmid in Kp has the potential to convert it into both MDR and hypervirulent Kp, accelerating its evolution, and posing a serious threat to human health. The findings of this study provide new insights into the rapid evolution of MDR and hypervirulent Kp in recent years.

20.
One Health ; 19: 100880, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39263320

RESUMEN

Klebsiella pneumoniae plays a significant role in nosocomial infections and spreading antibiotic resistance, and therefore forms a major threat to public health. In this study, we investigated the role of the wastewater pathway in the spread of pathogenic bacteria and more specifically, in the spread of antibiotic resistant Klebsiella pneumoniae subspecies. Whole-genome sequencing was performed of 185 K. pneumoniae isolates collected from hospital, nursing home, and community wastewater, the receiving wastewater treatment plant (WWTP), and clinical isolates from the investigated hospital. K. pneumoniae isolates from different sources were not genetically related, except for WWTP influent (46.5%) and effluent (62.5%), revealing survival of bacteria from wastewater treatment. The content of antibiotic resistance (ARGs), virulence, and plasmid replicon genes differed between K. pneumoniae subspecies and their origin. While chromosomal bla genes were specific for each K. pneumoniae subspecies, bla genes predicted in plasmid contigs were found in several K. pneumoniae subspecies, implying possible gene transfer between subspecies. Transferable ARGs were most abundant in patients and hospital isolates (70%), but the average number of plasmid replicon genes per isolate was similar across all sources, showing plasmid content being more relevant than plasmid quantity. Most patient (90%) and hospital wastewater (34%) isolates were K. pneumoniae subsp. pneumoniae, and the yersiniabactin cluster genes ybt, fyuA, and irp12 were only found in this subspecies, as were the IncFII(pECLA), IncHI2A, and IncHI2 plasmid replicon genes, suggesting the clinical origin of these type of plasmids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...