Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.261
Filtrar
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39095324

RESUMEN

The Entomological Society of America (ESA) Student Debates is an annual student competition at the ESA Annual Meeting organized by Student Debates Subcommittee (SDS) members of the ESA Student Affairs Committee. In conjunction with the 2023 ESA Annual Meeting theme, 'Insects and influence: Advancing entomology's impact on people and policy', the theme of this year's student debate was 'Addressing emerging issues in entomology'. With the aid of ESA membership, the SDS selected the following debate topics: (1) Should disclosure of artificial intelligence large language models in scientific writing always be required? and (2) Is it more important to prioritize honey bee or native pollinator health for long-term food security within North America? Four student teams from across the nation, composed of 3-5 student members and a professional advisor, were assigned a topic and stance. Over the course of 5 months, all team members researched and prepared for their assigned topic before debating live with an opposing team at the 2023 ESA Annual Meeting in National Harbor, Maryland. SDS members additionally prepared and presented introductions for each debate topic to provide unbiased backgrounds to the judges and audience for context in assessing teams' arguments. The result was an engaging discussion between our teams, judges, and audience members on emerging issues facing entomology and its impact on people and policy, such as scientific communication and food security, that brought attention to the complexities involved when debating topics concerning insects and influence.


Asunto(s)
Entomología , Entomología/métodos , Estudiantes , Animales , Sociedades Científicas , Inteligencia Artificial
2.
PNAS Nexus ; 3(8): pgae297, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39131914

RESUMEN

Whether and how community structure variation affects plant sexual reproduction is crucial for understanding species' local adaptation and plant community assembly, but remains unrevealed. In Qinghai-Tibetan grassland communities that differed in aboveground biomass (AGB) and species diversity, we found significant influence of AGB on both species' reproductive biomass allocation (RBA) and flowering and fruiting time, but of species diversity only on species' reproductive time. In high-AGB or high-diversity communities, smaller and earlier flowering species generally advanced their reproductive phenology and increased their reproductive allocation for maximizing their reproductive success, whereas larger and later flowering species delayed their reproductive phenology and decreased their reproductive allocation for maximizing their vegetative growth and resource competition. This change in reproductive allocation with the variation in community structures was more pronounced in nonclonal as compared to clonal plant species. Thus, we evidence an important influence of community structure on plant sexual reproduction strategies, and the pattern of the influence depends largely on species biological attributes.

3.
New Phytol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117354

RESUMEN

The globally changing climatic condition is increasing the incidences of drought in several parts of the world. This is predicted and already shown to not only impact plant growth and flower development, but also plant-pollinator interactions and the pollination success of entomophilous plants. However, there is a large gap in our understanding of how drought affects the different flowers and pollen transfer among flowers in sexually polymorphic species. Here, we evaluated in monoecious Styrian oil pumpkin, and separately for female and male flowers, the responses of drought stress on flower production, petal size, nectar, floral scent and visitation by bumblebee pollinators. Drought stress adversely affected all floral traits studied, except floral scent. Although both flower sexes were adversely affected by drought stress, the effects were more severe on female flowers, with most of the female flowers even aborted before opening. The drought had negative effects on floral visitation by the pollinators, which generally preferred female flowers. Overall, our study highlights that the two flower sexes of a monoecious plant species are differently affected by drought stress and calls for further investigations to better understand the cues used by the pollinators to discriminate against male flowers and against flowers of drought-stressed plants.

4.
J Econ Entomol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137237

RESUMEN

The genus Bombus (bumble bees) includes approximately 265 species, many of which are in decline in North America and Europe. To estimate colony abundance of bumble bees in natural and agricultural habitats, sibship relationships are often reconstructed from genetic data with the assumption that colonies have 1 monandrous queen. However, some species such as the North American common eastern bumble bee (Bombus impatiens Cresson) can display low levels of polyandry, which may bias estimates of colony abundance based on monandrous sibship reconstructions. To accurately quantify rates of polyandry in wild and commercially mated queens of this species, we empirically estimated mating frequencies using a novel statistical model and genotypes from 730 bees. To genotype individuals, we used a highly polymorphic set of microsatellites on colonies established from 20 wild-caught gynes and 10 commercial colonies. We found multiple fathers in 3 of the wild colonies and 3 of the commercial colonies. This resulted in average effective mating frequencies of 1.075 ±â€…0.18 and 1.154 ±â€…0.25 for wild and commercial colonies, respectively. These findings agree with previous reports of low rates of polyandry for B. impatiens. Using a large empirical dataset, we demonstrate that assuming monandry for colony abundance estimation in species that violate this assumption results in an overestimation of the number of colonies. Our results emphasize the importance of studying mating frequencies in social species of conservation concern and economic importance for the accuracy of colony abundance estimation and for understanding their ecology and sociobiology.

5.
Proc Biol Sci ; 291(2028): 20232837, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137885

RESUMEN

We analysed the wild bee community sampled from 1921 to 2018 at a nature preserve in southern Michigan, USA, to study long-term community shifts in a protected area. During an intensive survey in 1972 and 1973, Francis C. Evans detected 135 bee species. In the most recent intensive surveys conducted in 2017 and 2018, we recorded 90 species. Only 58 species were recorded in both sampling periods, indicating a significant shift in the bee community. We found that the bee community diversity, species richness and evenness were all lower in recent samples. Additionally, 64% of the more common species exhibited a more than 30% decline in relative abundance. Neural network analysis of species traits revealed that extirpation from the reserve was most likely for oligolectic ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-nesting bees were more likely to persist. Having longer phenological ranges also increased the chance of persistence in polylectic species. Further analysis suggests a climate response as bees in the contemporary sampling period had a more southerly overall distribution compared to the historic community. Results exhibit the utility of both long-term data and machine learning in disentangling complex indicators of bee population trajectories.


Asunto(s)
Biodiversidad , Animales , Abejas/fisiología , Michigan , Redes Neurales de la Computación , Conservación de los Recursos Naturales
6.
Artículo en Inglés | MEDLINE | ID: mdl-39141266

RESUMEN

Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and "cocktail" effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.

7.
PeerJ ; 12: e17647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948210

RESUMEN

Background: Anthropogenic activities significantly impact natural ecosystems, leading to alterations in plant and pollinator diversity and abundance. These changes often result in shifts within interacting communities, potentially reshaping the structure of plant-pollinator interaction networks. Given the escalating human footprint on habitats, evaluating the response of these networks to anthropization is critical for devising effective conservation and management strategies. Methods: We conducted a comprehensive review of the plant-pollinator network literature to assess the impact of anthropization on network structure. We assessed network metrics such as nestedness measure based on overlap and decreasing fills (NODF), network specialization (H2'), connectance (C), and modularity (Q) to understand structural changes. Employing a meta-analytical approach, we examined how anthropization activities, such as deforestation, urbanization, habitat fragmentation, agriculture, intentional fires and livestock farming, affect both plant and pollinator richness. Results: We generated a dataset for various metrics of network structure and 36 effect sizes for the meta-analysis, from 38 articles published between 2010 and 2023. Studies assessing the impact of agriculture and fragmentation were well-represented, comprising 68.4% of all studies, with networks involving interacting insects being the most studied taxa. Agriculture and fragmentation reduce nestedness and increase specialization in plant-pollinator networks, while modularity and connectance are mostly not affected. Although our meta-analysis suggests that anthropization decreases richness for both plants and pollinators, there was substantial heterogeneity in this regard among the evaluated studies. The meta-regression analyses helped us determine that the habitat fragment size where the studies were conducted was the primary variable contributing to such heterogeneity. Conclusions: The analysis of human impacts on plant-pollinator networks showed varied effects worldwide. Responses differed among network metrics, signaling nuanced impacts on structure. Activities like agriculture and fragmentation significantly changed ecosystems, reducing species richness in both pollinators and plants, highlighting network vulnerability. Regional differences stressed the need for tailored conservation. Despite insights, more research is crucial for a complete understanding of these ecological relationships.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Polinización , Animales , Agricultura , Biodiversidad , Conservación de los Recursos Naturales , Insectos/fisiología , Plantas
8.
Ecol Evol ; 14(7): e70026, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39015879

RESUMEN

Many plants have evolved nutrient rewards to attract pollinators to flowers, but most research has focused on the sugar content of floral nectar resources. Concentrations of sodium in floral nectar (a micronutrient in low concentrations in nectar) can vary substantially both among and within co-occurring species. It is hypothesized that sodium concentrations in floral nectar might play an important and underappreciated role in plant-pollinator interactions, especially because many animals, including pollinators, are sodium limited in nature. Yet, the consequences of variation in sodium concentrations in floral nectar remain largely unexplored. Here, we investigate whether enriching floral nectar with sodium influences the composition, diversity, and frequency of plant-pollinator interactions. We experimentally enriched sodium concentrations in four plant species in a subalpine meadow in Colorado, USA. We found that flowers with sodium-enriched nectar received more visits from a greater diversity of pollinators throughout the season. Different pollinator species foraged more frequently on flowers enriched with sodium and showed evidence of other changes to foraging behavior, including greater dietary evenness. These findings are consistent with the "salty nectar hypothesis," providing evidence for the importance of sodium limitation in pollinators and suggesting that even small nectar constituents can shape plant-pollinator interactions.

9.
Am J Bot ; 111(7): e16375, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39004802

RESUMEN

PREMISE: Cross-fertilization in most flowering plants is facilitated by mobile animals that transport pollen while foraging for floral rewards. The contributions of different visitors can vary widely, depending on the amount of pollen transferred during a single visit and on the frequency and timing of the visits of each pollinator taxon. METHODS: We used three approaches to measure the pollination value of bees that visit Mimulus ringens: pollinator interviews, field population observations, and caging studies. RESULTS: The single-visit effectiveness of small bees (primarily Halictidae) was only half that of larger bees (primarily Bombus) for pollen delivery and removal. In five field populations, we found substantial temporal and spatial variation in visitation and pollination. In most sites big bees were active before 08:00 hours, and by 10:00-11:00 hours, stigmas were usually fully pollinated and closed, and little pollen remained in anthers. Small bees seldom visited before 10:00 hours. Excluding big bees from plants confirmed that pollination is reduced and delayed in this ecological context. CONCLUSIONS: Big bees are the primary pollinators of M. ringens, accounting for at least 75% of seed production. Not only are they more effective per visit, in most situations they also visit before small bees become active. Although small bees are not usually important pollinators of M. ringens, they have the potential to partially replace them as a "fail-safe" pollinator in contexts where big bees are not abundant. In a world where pollinator abundance is declining, such backup pollinators may be important for maintaining plant reproduction.


Asunto(s)
Mimulus , Polinización , Animales , Polinización/fisiología , Abejas/fisiología , Mimulus/fisiología , Flores/fisiología , Polen/fisiología , Factores de Tiempo
10.
Ann Bot ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084677

RESUMEN

BACKGROUND AND AIMS: The impact of urbanization on plant evolution, particularly the evolution of reproductive traits, remains largely unknown. In this study, we aimed to investigate the consequences of urbanization on the reproductive traits of Portulaca oleracea in the Kanto region of Japan. Portulaca oleracea has a unique cleistogamous reproductive system, which consists of genetically determined chasmogamous (open, CH) and cleistogamous (closed, CL) plants. METHODS: We collected seeds of P. oleracea from ten populations in rural areas and ten populations in urban areas. In a common garden experiment, we recorded the type of flowers (CH or CL), reproductive phenology and seed production. KEY RESULTS: All individuals produced either CH or CL flowers, allowing us to classify them as either CH or CL plants. We observed a significant difference in the prevalence of CH and CL plants between rural and urban populations: the number of CH plants was generally low and was particularly low among urban individuals. Compared to CH plants, CL plants showed earlier phenology and produced heavier seeds, which is consistent with stress avoidance in response to heat and drought stress conditions in urban areas. CONCLUSIONS: Our findings suggest that urbanization may drive an evolutionary change in the cleistogamous reproductive system of P. oleracea. CL plants with earlier phenology and larger seeds might be better adapted to urban environments, where they are subjected to harsh heat and drought stress.

11.
Environ Toxicol Pharmacol ; 110: 104516, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032582

RESUMEN

Partamona helleri is an important pollinator in the Neotropics. However, this bee faces an increased risk of pesticide exposure, potentially affecting both individual bees and entire colonies. Thus, this study aimed to evaluate the effects of the herbicide tebuthiuron on behavior, antioxidant activity, midgut morphology, and signaling pathways related to cell death, cell proliferation and differentiation in P. helleri workers. tebuthiuron significantly reduced locomotor activity and induced morphological changes in the midgut. The activity of the detoxification enzymes superoxide dismutase and glutathione S-transferase increased after exposure, indicating a detoxification mechanism. Furthermore, the herbicide led to alterations in the number of positive cells for signaling-pathway proteins in the midgut of bees, suggesting induction of apoptotic cell death and disruption of midgut epithelial regeneration. Therefore, tebuthiuron may negatively impact the behavior, antioxidant activity, morphology, and physiology of P. helleri workers, potentially posing a threat to the survival of this non-target organism.

12.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38973368

RESUMEN

This article describes a genome assembly and annotation for Bombus dahlbomii, the giant Patagonian bumble bee. DNA from a single, haploid male collected in Argentina was used for PacBio (HiFi) sequencing, and Hi-C technology was then used to map chromatin contacts. Using Juicer and manual curation, the genome was scaffolded into 18 main pseudomolecules, representing a high-quality, near chromosome-level assembly. The sequenced genome size is estimated at 265 Mb. The genome was annotated based on RNA sequencing data of another male from Argentina, and BRAKER3 produced 15,767 annotated genes. The genome and annotation show high completeness, with >95% BUSCO scores for both the genome and annotated genes (based on conserved genes from Hymenoptera). This genome provides a valuable resource for studying the biology of this iconic and endangered species, as well as for understanding the impacts of its decline and designing strategies for its preservation.


Asunto(s)
Especies en Peligro de Extinción , Genoma de los Insectos , Anotación de Secuencia Molecular , Animales , Abejas/genética , Masculino , Cromosomas de Insectos/genética
13.
Sci Total Environ ; 947: 174217, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971242

RESUMEN

The global challenge to increase agricultural production goes along with the need of decreasing pesticide risks. The European Union (EU) therefore evaluates and controls the risks posed by pesticides by regulating their authorisation through the science-based Risk Assessment process. Member States can however act in derogation to this process and grant the Emergency Authorisation (EA) of pesticides that are currently non-authorised. To protect the health of humans and the environment, Emergency Authorisations are only permitted in exceptional circumstances of agricultural emergency: their use should be limited (i.e., cannot exceed 120 days and one growing season) and concurrent research on alternative strategies must be enforced. Here, we assessed the impact of the Emergency Authorisations process to human and environmental health. Bees, bioindicators of environmental health, were used as model species. Our research demonstrates that i) Emergency Authorisations are widely used throughout EU Member States (annually granted Emergency Authorisationsmin-max, 2017-2021 = 593-660); ii) 12 % of Emergency Authorisations granted the use of pesticides for longer than prescribed by EU regulations; iii) 37 % of Emergency Authorisations were repeatedly granted over time by the same Member State for the same agricultural purpose (i.e., to control the same pest on the same crop); iv) 21 % of Emergency Authorisations granted the use of Active Substances non-approved by risk assessment (EA-ASs Type3) which consequently contaminate the environment (44 % of environmental biomonitoring studies found EA-AS Type3) while being significantly more toxic to pollinators than regularly approved ASs. To facilitate the implementation of sustainable control strategies towards a safer environment for humans and other animals, we identified the most frequent agricultural emergencies and the key research needs. This first quantitative assessment of the Emergency Authorisation process unveils an enduring state of agricultural emergency that acts in derogation of the EU Regulation, leading to broad human, animal, and environmental implications.


Asunto(s)
Agricultura , Exposición a Riesgos Ambientales , Unión Europea , Plaguicidas , Plaguicidas/toxicidad , Abejas/efectos de los fármacos , Humanos , Animales , Medición de Riesgo , Exposición a Riesgos Ambientales/estadística & datos numéricos
14.
Am J Bot ; 111(7): e16367, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956979

RESUMEN

PREMISE: Under pollinator limitations, specialized pollination syndromes may evolve toward contrasting responses: a generalized syndrome with increased pollinator attraction, pollinator reward, and pollen transfer capacity; or the selfing syndrome with increased self-pollen deposition, but reduced pollinator attraction and pollen transfer capacity. The buzz-pollination syndrome is specialized to explore female vibrating bees as pollinators. However, vibrating bees become less-active pollinators at montane areas of the Atlantic Forest (AF) domain. This study investigated whether the specialized buzz-pollination syndrome would evolve toward an alternative floral syndrome in montane areas of the AF domain, considering a generalized and the selfing syndromes as alternative responses. METHODS: We utilized a lineage within the buzz-pollinated Miconia as study system, contrasting floral traits between montane AF-endemic and non-endemic species. We measured and validated floral traits that were proxies for pollinator attraction, reward access, pollen transfer capacity, and self-pollen deposition. We inferred the evolution of floral trait via phylogenetic comparative methods. RESULTS: AF-endemic species have selectively evolved greater reward access and more frequently had generalist pollination. Nonetheless, AF-endemic species also have selectively evolved toward lower pollen transfer capacity and greater self pollination. These patterns indicated a complex evolutionary process that has jointly favored a generalized and the selfing syndromes. CONCLUSIONS: The buzz pollination syndrome can undergo an evolutionary disruption in montane areas of the AF domain. This floral syndrome is likely more labile than often assumed, allowing buzz-pollinated plants to reproduce in environments where vibrating bees are less-reliable pollinators.


Asunto(s)
Evolución Biológica , Flores , Polinización , Animales , Abejas/fisiología , Flores/fisiología , Filogenia , Polen/fisiología
15.
Am J Bot ; : e16363, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956859

RESUMEN

PREMISE: Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators. METHODS: In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant. RESULTS: NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators. CONCLUSIONS: Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.

16.
G3 (Bethesda) ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028118

RESUMEN

The Hunt bumble bee, Bombus huntii, is a widely distributed pollinator in western North America. The species produces large colony sizes in captive rearing conditions, experiences low parasite and pathogen loads, and has been demonstrated to be an effective pollinator of tomatoes grown in controlled environment agriculture systems. These desirable traits have galvanized producer efforts to develop commercial B. huntii colonies for growers to deliver pollination services to crops. To better understand B. huntii biology and support population genetic studies and breeding decisions, we sequenced and assembled the B. huntii genome from a single haploid male. High-fidelity sequencing of the entire genome using PacBio, along with HiC sequencing, led to a comprehensive contig assembly of high continuity. This assembly was further organized into a chromosomal arrangement, successfully identifying 18 chromosomes spread across the 317.4 Mb assembly with a BUSCO score indicating 97.6% completeness. Synteny analysis demonstrates shared chromosome number (n = 18) with B. terrestris, a species belonging to a different subgenus, matching the expectation that presence of 18 haploid chromosomes is an ancestral trait at least between the subgenera Pyrobombus and Bombus sensu stricto. In conclusion, the assembly outcome, alongside the minimal tissue sampled destructively, showcase efficient techniques for producing a comprehensive, highly contiguous genome.

17.
New Phytol ; 243(5): 2008-2020, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38952269

RESUMEN

The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.


Asunto(s)
Magnoliopsida , Néctar de las Plantas , Polinización , Néctar de las Plantas/metabolismo , Polinización/fisiología , Magnoliopsida/fisiología , Animales , Altitud , Flores/fisiología , Clima , Geografía
18.
J Insect Physiol ; 157: 104666, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969333

RESUMEN

Despite numerous aging studies, the relationship between oxidative stress, aging, and decline in functions such as locomotion is still debated. Insects offer a promising model for analyzing the relationship between oxidative stress and aging, because they exhibit vast differences in lifespan that may be affected by the environment, social factors, levels of activity, and aging interventions. In this study, we explore the effects of aging on oxidative stress and locomotion using the pollinator, Megachile rotundata, a species that is very mobile and active in the adult stage. Across the adult lifespan of M. rotundata, we assessed changes in walking, flight, oxidative damage, and antioxidant defenses. Our results suggest that M. rotundata experience age-related declines in flight, but not walking. Additionally, we found that oxidative damage and antioxidant capacity initially increase with age and physical activity, but then levels are maintained. Overall, these data show that M. rotundata, like some other organisms, may not perfectly follow the free radical theory of aging.


Asunto(s)
Locomoción , Estrés Oxidativo , Animales , Envejecimiento/fisiología , Antioxidantes/metabolismo , Vuelo Animal/fisiología , Femenino , Masculino
19.
Ecotoxicol Environ Saf ; 282: 116677, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971098

RESUMEN

Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.


Asunto(s)
Fungicidas Industriales , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Abejas/efectos de los fármacos , Abejas/fisiología , Fungicidas Industriales/toxicidad , Muerte Celular/efectos de los fármacos , Aminopiridinas
20.
Plants (Basel) ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931119

RESUMEN

Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, ß-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...