Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Plant J ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167634

RESUMEN

As a dynamic and reversible post-transcriptional marker, N6-methyladenosine (m6A) plays an important role in the regulation of biological functions, which are mediated by m6A pathway components including writers (MT-A70, FIP37, VIR and HAKAI family), erasers (ALKBH family) and readers (YTH family). There is an urgent need for a comprehensive analysis of m6A pathway components across species at evolutionary levels. In this study, we identified 4062 m6A pathway components from 154 plant species including green algae, utilizing large-scale phylogenetic to explore their origin and evolution. We discovered that the copy number of writers was conserved among different plant lineages, with notable expansions in the ALKBH and YTH families. Synteny network analysis revealed conserved genomic contexts and lineage-specific transpositions. Furthermore, we used Direct RNA Sequencing (DRS) to reveal the Poly(A) length (PAL) and m6A ratio profiles in six angiosperms species, with a particular focus on the m6A pathway components. The ECT1/2-Poeaece4 sub-branches (YTH family) with unique genomic contexts exhibited significantly higher expression level than genes of other ECT1/2 poeaece sub-branches (ECT1/2-Poeaece1-3), accompanied by lower m6A modification and PAL. Besides, conserved m6A sites distributed in CDS and 3'UTR were detected in the ECT1/2-Poaceae4, and the dual-luciferase assay further demonstrated that these conserved m6A sites in the 3'UTR negatively regulated the expression of Firefly luciferase (LUC) gene. Finally, we developed transcription factor regulatory networks for m6A pathway components, using yeast one-hybrid assay demonstrated that PheBPC1 could interact with the PheECT1/2-5 promoter. Overall, this study presents a comprehensive evolutionary and functional analysis of m6A pathway components and their modifications in plants, providing a valuable resource for future functional analysis in this field.

2.
Plant Commun ; : 101064, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155503

RESUMEN

The transcriptome serves as a bridge that links genomic variation and phenotype diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) in the last two decades emphasize the essential roles of plant transcriptome in response to developmental and environmental conditions, leading to numerous insights into the dynamic change, evolutionary trace and elaborate regulation of plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for the precise detection of native and full-length transcripts, which overcomes many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we reviewed recent advances in dissecting the complexity and diversity of plant transcriptome utilizing DRS as a main technological mean from many aspects of RNA metabolism, including novel isoforms, poly(A) tail and RNA modification, and proposed a comprehensive workflow for the data process of plants DRS. Many challenges concerning the application of DRS in plants, such as machine learning tools tailored to plant transcriptome, remain to be solved, and together we prospect the future biological questions that can be potentially answered by DRS such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of plant transcriptome.

3.
Hemoglobin ; : 1-5, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175389

RESUMEN

We report the molecular and hematological identifications of two novel δ-globin gene mutations found in Guangxi Zhuang Autonomous Region, China. Capillary electrophoresis of the proband showed 1.3% Hb A2, accompanied by a minor unknown peak (0.7%) within the Z1 zone. High-performance liquid chromatography also revealed the presence of 1.5% Hb A2 and a 0.6% unknown peak. Routine genetic testing (Gap-PCR and reverse dot-blot hybridization) for common α-thalassemia was performed, and no mutations were observed. Sanger sequencing identified a heterozygous mutation for GAC > AAC at codon 79 (HBD:c.238G > A) and G > A at polyA + 70 (HBD:c.*200G > A) of the δ-globin gene. This variant was named Hb A2-Guangxi [δ79 (EF3) Asp→Asn, HBD:c.238G > A] after the geographic origin of the proband.

4.
Clin Transl Oncol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172332

RESUMEN

PURPOSE: The dysregulation of the cytoplasmic poly(A)-binding protein 1 (PABPC1) is involved in a variety of tumors but little is known about its role in human breast cancer. Therefore, the effect of PABPC1 in the prognosis and regimen selection in breast cancer patients was evaluated. METHODS: A total of 791 cases of invasive breast cancer were included in this study, although only 416 were involved in subsequent analyses after the propensity score matching (PSM) test. PABPC1 expression was detected by immunohistochemistry. The relationship between PABPC1 expression and clinicopathological factors, postoperative regimens, and outcomes was determined. RESULTS: In the total 791 cases, 583 cases were positive for PABPC1, but only 212 (26.8%) showed high PABPC1 expression (PABPC1-HE). The overall survival (OS) and disease-free survival (DFS) of PABPC1-HE patients after PSM were significantly worse than those in patients with PABPC1 low expression (PABPC1-LE), regardless of age, molecular type, tumor size, nodal status, or pStage. Postoperative chemotherapy (CT) increased the OS of PABPC1-HE patients but not that of PABPC1-LE patients. Among patients receiving endocrine therapy, those in the PABPC-LE group had an extended OS, while CT or chemoradiotherapy (CT/CRT) only significantly extended the OS time of PABPC-HE patients. CT/CRT did not significantly extend the survival of PABPC1-LE HER2-positive patients but extended the OS of PABPC1-HE HER2-positive patients. However, the OS of patients treated with CT/CRT + trastuzumab therapy was significantly longer than that of other patients under other therapies in the PABPC1-HE group, suggesting that PABPC1-HE might be sensitive to trastuzumab-based therapy. The multivariate analysis revealed that PABPC1-HE was an independent prognostic factor for both poor OS and DFS in breast cancer except luminal A type. CONCLUSIONS: Our results revealed that PABPC1 might be considered as a biomarker to help in subtyping, as well as in the prognosis and regimen selection of breast cancer patients.

5.
Mol Cell Probes ; 77: 101975, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39111403

RESUMEN

Recently, it has been discovered surprisingly that tRNA can be cleaved into specific small fragments under certain conditions. Most importantly, these tRNA-derived fragments (tRFs) participate in the regulation of gene expression, playing pivotal roles in various physiological and pathological processes and thus attracting widespread attention. Detecting tRF expression in tissues and cells often involves using tRF-specific stem-loop primers for reverse transcription. However, the high specificity offered by this method limits it to transcribing only one specific tRF sequence per reaction, necessitating separate reverse transcription and qPCR steps for multiple tRFs, leading to substantially increased time and resource consumption. This becomes especially challenging in precious samples with limited RNA availability. To address these issues, there is an urgent need for a universal and cost-effective tRF identification method. This study introduces a versatile tRF detection approach based on the uniform polyadenylation of all tRFs, allowing reverse transcription with a universal oligo(dT) primer. This method enables simultaneous reverse transcription of all target tRFs in one reaction, greatly facilitating subsequent qPCR analysis. Furthermore, it demonstrates exceptional sensitivity and specificity, offering significant value in tRF-related research.

6.
Genome Biol Evol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162337

RESUMEN

Sequencing the mitochondrial genome of the tunicate Oikopleura dioica is a challenging task due to the presence of long poly-A/T homopolymer stretches, which impair sequencing and assembly. Here, we report on the sequencing and annotation of the majority of the mitochondrial genome of O. dioica by means of combining several DNA and amplicon reads obtained by Illumina and MinIon Oxford Nanopore Technologies (ONT) with public RNA sequences. We document extensive RNA editing, since all homopolymer stretches present in the mitochondrial DNA correspond to 6U-regions in the mitochondrial RNA. Out of the 13 canonical protein-coding genes, we were able to detect eight, plus an unassigned ORF that lacked sequence similarity to canonical mitochondrial protein-coding genes. We show that the nad3 gene has been transferred to the nucleus and acquired a mitochondria-targeting signal. In addition to two very short rRNAs, we could only identify a single tRNA (tRNA-Met), suggesting multiple losses of tRNA genes, supported by a corresponding loss of mitochondrial aminoacyl-tRNA synthetases in the nuclear genome. Based on the eight canonical protein-coding genes identified, we reconstructed maximum likelihood and Bayesian phylogenetic trees and inferred an extreme evolutionary rate of this mitochondrial genome. The phylogenetic position of appendicularians among tunicates, however, could not be accurately determined.

7.
RNA Biol ; 21(1): 7-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39016322

RESUMEN

La-related proteins (LARPs) are a family of RNA-binding proteins that share a conserved La motif (LaM) domain. LARP1 plays a role in regulating ribosomal protein synthesis and stabilizing mRNAs and has a unique structure without an RNA binding RRM domain adjoining the LaM domain. In this study, we investigated the physical basis for LARP1 specificity for poly(A) sequences and observed an unexpected bias for sequences with single guanines. Multiple guanine substitutions did not increase the affinity, demonstrating preferential recognition of singly guanylated sequences. We also observed that the cyclic di-nucleotides in the cCAS/STING pathway, cyclic-di-GMP and 3',3'-cGAMP, bound with sub-micromolar affinity. Isothermal titration measurements were complemented by high-resolution crystal structures of the LARP1 LaM with six different RNA ligands, including two stereoisomers of a phosphorothioate linkage. The selectivity for singly substituted poly(A) sequences suggests LARP1 may play a role in the stabilizing effect of poly(A) tail guanylation. [Figure: see text].


Asunto(s)
Poli A , Unión Proteica , Ribonucleoproteínas , Antígeno SS-B , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Poli A/metabolismo , Poli A/química , Humanos , Modelos Moleculares , Sitios de Unión , Autoantígenos/metabolismo , Autoantígenos/química , Autoantígenos/genética , Cristalografía por Rayos X , Dominios Proteicos , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , ARN Mensajero/metabolismo , ARN Mensajero/química , ARN Mensajero/genética
8.
Mol Cell ; 84(14): 2765-2784.e16, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964322

RESUMEN

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.


Asunto(s)
Núcleo Celular , Cromatina , ARN Helicasas DEAD-box , ARN Mensajero , Animales , Humanos , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Cromatina/metabolismo , Cromatina/genética , Citoplasma/metabolismo , Citoplasma/genética , Estabilidad del ARN , Transporte Activo de Núcleo Celular , Polirribosomas/metabolismo , Polirribosomas/genética , Aprendizaje Automático , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Exosomas/metabolismo , Exosomas/genética
9.
Viruses ; 16(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39066231

RESUMEN

Foodborne diseases are major public health problems globally. Metagenomics has emerged as a widely used tool for pathogen screening. In this study, we conducted an updated Tn5 transposase-assisted RNA/DNA hybrid co-tagmentation (TRACE) library construction approach. To address the detection of prevalent known foodborne viruses and the discovery of unknown pathogens, we employed both specific primers and oligo-T primers during reverse transcription. The method was validated using clinical samples confirmed by RT-qPCR and compared with standard RNA-seq library construction methods. The mapping-based approach enabled the retrieval of nearly complete genomes (>95%) for the majority of virus genome segments (86 out of 88, 97.73%), with a mean coverage depth of 21,494.53× (ranging from 77.94× to 55,688.58×). Co-infection phenomena involving prevalent genotypes of Norovirus with Astrovirus and Human betaherpesvirus 6B were observed in two samples. The updated TRACE-seq exhibited superior performance in viral reads percentages compared to standard RNA-seq library preparation methods. This updated method has expanded its target pathogens beyond solely Norovirus to include other prevalent foodborne viruses. The feasibility and potential effectiveness of this approach were then evaluated as an alternative method for surveilling foodborne viruses, thus paving the way for further exploration into whole-genome sequencing of viruses.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Genoma Viral , Metagenómica , Transposasas , Transposasas/genética , Transposasas/metabolismo , Enfermedades Transmitidas por los Alimentos/virología , Humanos , Metagenómica/métodos , Viroma/genética , ARN Viral/genética , Norovirus/genética , Norovirus/clasificación , Biblioteca de Genes , ADN Viral/genética , Virus/genética , Virus/clasificación
10.
Mol Ther Oncol ; 32(2): 200816, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948919

RESUMEN

The presence of a poly(A) tail is indispensable for the post-transcriptional regulation of gene expression in cancer. This dynamic and modifiable feature of transcripts is under the control of various nuclear and cytoplasmic proteins. This study aimed to develop a novel cytoplasmic poly(A)-related signature for predicting prognosis, clinical attributes, tumor immune microenvironment (TIME), and treatment response in hepatocellular carcinoma (HCC). Utilizing RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), non-negative matrix factorization (NMF), and principal-component analysis (PCA) were employed to categorize HCC patients into three clusters, thus demonstrating the pivotal prognostic role of cytoplasmic poly(A) tail regulators. Furthermore, machine learning algorithms such as least absolute shrinkage and selection operator (LASSO), survival analysis, and Cox proportional hazards modeling were able to distinguish distinct cytoplasmic poly(A) subtypes. As a result, a 5-gene signature derived from TCGA was developed and validated using International Cancer Genome Consortium (ICGC) HCC datasets. This novel classification based on cytoplasmic poly(A) regulators has the potential to improve prognostic predictions and provide guidance for chemotherapy, immunotherapy, and transarterial chemoembolization (TACE) in HCC.

11.
Plant Methods ; 20(1): 99, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951818

RESUMEN

BACKGROUND: Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS: In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION: The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.

12.
Trends Biochem Sci ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39004583

RESUMEN

The poly(A) tail is an essential structural component of mRNA required for the latter's stability and translation. Recent technologies have enabled transcriptome-wide profiling of the length and composition of poly(A) tails, shedding light on their overlooked regulatory capacities. Notably, poly(A) tails contain not only adenine but also uracil, cytosine, and guanine residues. These findings strongly suggest that poly(A) tails could encode a wealth of regulatory information, similar to known reversible RNA chemical modifications. This review aims to succinctly summarize our current knowledge on the composition, dynamics, and regulatory functions of RNA poly(A) tails. Given their capacity to carry rich regulatory information beyond the genetic code, we propose the concept of 'poly(A) tail epigenetic information' as a new layer of RNA epigenetic regulation.

13.
Sci Rep ; 14(1): 14973, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38951658

RESUMEN

Deamination of bases is a form of DNA damage that occurs spontaneously via the hydrolysis and nitrosation of living cells, generating hypoxanthine from adenine. E. coli endonuclease V (eEndoV) cleaves hypoxanthine-containing double-stranded DNA, whereas human endonuclease V (hEndoV) cleaves hypoxanthine-containing RNA; however, hEndoV in vivo function remains unclear. To date, hEndoV has only been examined using hypoxanthine, because it binds closely to the base located at the cleavage site. Here, we examined whether hEndoV cleaves other lesions (e.g., AP site, 6-methyladenine, xanthine) to reveal its function and whether 2'-nucleoside modification affects its cleavage activity. We observed that hEndoV is hypoxanthine-specific; its activity was the highest with 2'-OH modification in ribose. The cleavage activity of hEndoV was compared based on its base sequence. We observed that it has specificity for adenine located on the 3'-end of hypoxanthine at the cleavage site, both before and after cleavage. These data suggest that hEndoV recognizes and cleaves the inosine generated on the poly A tail to maintain RNA quality. Our results provide mechanistic insight into the role of hEndoV in vivo.


Asunto(s)
Inosina , Inosina/metabolismo , Humanos , Poli A/metabolismo , Especificidad por Sustrato , Hipoxantina/metabolismo , Hipoxantina/química , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química
14.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884719

RESUMEN

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN no Traducido , Animales , Humanos , Empalme Alternativo/genética , Regulación de la Expresión Génica , Edición de ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo
15.
Cell Syst ; 15(6): 526-543.e7, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38901403

RESUMEN

Poly(A) tails are crucial for mRNA translation and degradation, but the exact relationship between tail length and mRNA kinetics remains unclear. Here, we employ a small library of identical mRNAs that differ only in their poly(A)-tail length to examine their behavior in human embryonic kidney cells. We find that tail length strongly correlates with mRNA degradation rates but is decoupled from translation. Interestingly, an optimal tail length of ∼100 nt displays the highest translation rate, which is identical to the average endogenous tail length measured by nanopore sequencing. Furthermore, poly(A)-tail length variability-a feature of endogenous mRNAs-impacts translation efficiency but not mRNA degradation rates. Stochastic modeling combined with single-cell tracking reveals that poly(A) tails provide cells with an independent handle to tune gene expression fluctuations by decoupling mRNA degradation and translation. Together, this work contributes to the basic understanding of gene expression regulation and has potential applications in nucleic acid therapeutics.


Asunto(s)
Poli A , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Poli A/metabolismo , Poli A/genética , Biosíntesis de Proteínas/genética , Estabilidad del ARN/genética , Células HEK293 , Regulación de la Expresión Génica/genética
16.
Chembiochem ; 25(13): e202400347, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38742914

RESUMEN

The effectivity and safety of mRNA vaccines critically depends on the presence of correct 5' caps and poly-A tails. Due to the high molecular mass of full-size mRNAs, however, the direct analysis by mass spectrometry is hardly possible. Here we describe the use of synthetic ribonucleases to cleave off 5' and 3' terminal fragments which can be further analyzed by HPLC or by LC-MS. Compared to existing methods (e. g. RNase H), the new approach uses robust catalysts, is free of sequence limitations, avoids metal ions and combines fast sample preparation with high precision of the cut.


Asunto(s)
Poli A , Ribonucleasas , Vacunas de ARNm , Ribonucleasas/metabolismo , Ribonucleasas/química , Poli A/química , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Control de Calidad , Espectrometría de Masas , Cromatografía Líquida de Alta Presión
17.
Methods Mol Biol ; 2808: 121-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743366

RESUMEN

During the infection of a host cell by an infectious agent, a series of gene expression changes occurs as a consequence of host-pathogen interactions. Unraveling this complex interplay is the key for understanding of microbial virulence and host response pathways, thus providing the basis for new molecular insights into the mechanisms of pathogenesis and the corresponding immune response. Dual RNA sequencing (dual RNA-seq) has been developed to simultaneously determine pathogen and host transcriptomes enabling both differential and coexpression analyses between the two partners as well as genome characterization in the case of RNA viruses. Here, we provide a detailed laboratory protocol and bioinformatics analysis guidelines for dual RNA-seq experiments focusing on - but not restricted to - measles virus (MeV) as a pathogen of interest. The application of dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the structure of the viral RNA genome and on cellular innate immune responses and drive the discovery of new targets for antiviral therapy.


Asunto(s)
Genoma Viral , Interacciones Huésped-Patógeno , Virus del Sarampión , Sarampión , ARN Viral , Humanos , Sarampión/virología , Sarampión/inmunología , Sarampión/genética , Virus del Sarampión/genética , Virus del Sarampión/patogenicidad , ARN Viral/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , RNA-Seq/métodos , Transcriptoma , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
18.
Cancers (Basel) ; 16(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38730656

RESUMEN

FAM46C is a well-established tumour suppressor with a role that is not completely defined or universally accepted. Although FAM46C expression is down-modulated in several tumours, significant mutations in the FAM46C gene are only found in multiple myeloma (MM). Consequently, its tumour suppressor activity has primarily been studied in the MM context. However, emerging evidence suggests that FAM46C is involved also in other cancer types, namely colorectal, prostate and gastric cancer and squamous cell and hepatocellular carcinoma, where FAM46C expression was found to be significantly reduced in tumoural versus non-tumoural tissues and where FAM46C was shown to possess anti-proliferative properties. Accordingly, FAM46C was recently proposed to function as a pan-cancer prognostic marker, bringing FAM46C under the spotlight and attracting growing interest from the scientific community in the pathways modulated by FAM46C and in its mechanistic activity. Here, we will provide the first comprehensive review regarding FAM46C by covering (1) the intracellular pathways regulated by FAM46C, namely the MAPK/ERK, PI3K/AKT, ß-catenin and TGF-ß/SMAD pathways; (2) the models regarding its mode of action, specifically the poly(A) polymerase, intracellular trafficking modulator and inhibitor of centriole duplication models, focusing on connections and interdependencies; (3) the regulation of FAM46C expression in different environments by interferons, IL-4, TLR engagement or transcriptional modulators; and, lastly, (4) how FAM46C expression levels associate with increased/decreased tumour cell sensitivity to anticancer agents, such as bortezomib, dexamethasone, lenalidomide, pomalidomide, doxorubicin, melphalan, SK1-I, docetaxel and norcantharidin.

19.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572740

RESUMEN

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleasas/metabolismo , Estabilidad del ARN , Virión/genética , Virión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Sci Rep ; 14(1): 5156, 2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431749

RESUMEN

We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Poliadenilación , Animales , Humanos , Ratones , ARN Polimerasas Dirigidas por ADN/genética , ARN Mensajero/metabolismo , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Poli A/genética , Poli A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...