Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638543

RESUMEN

Monensin is an ionophore for monovalent cations, which is frequently used to prevent ketosis and to enhance performance in dairy cows. Studies have shown the rumen bacteria Prevotella bryantii B14 being less affected by monensin. The present study aimed to reveal more information about the respective molecular mechanisms in P.bryantii, as there is still a lack of knowledge about defense mechanisms against monensin. Cell growth experiments applying increasing concentrations of monensin and incubations up to 72 h were done. Harvested cells were used for label-free quantitative proteomics, enzyme activity measurements, quantification of intracellular sodium and extracellular glucose concentrations and fluorescence microscopy. Our findings confirmed an active cell growth and fermentation activity of P.bryantii B14 despite monensin concentrations up to 60 µM. An elevated abundance and activity of the Na+-translocating NADH:quinone oxidoreductase counteracted sodium influx caused by monensin. Cell membranes and extracellular polysaccharides were highly influenced by monensin indicated by a reduced number of outer membrane proteins, an increased number of certain glucoside hydrolases and an elevated concentration of extracellular glucose. Thus, a reconstruction of extracellular polysaccharides in P.bryantii in response to monensin is proposed, which is expected to have a negative impact on the substrate binding capacities of this rumen bacterium.


Asunto(s)
Transporte Iónico/efectos de los fármacos , Monensina/farmacología , Polisacáridos Bacterianos/metabolismo , Prevotella/efectos de los fármacos , Ionóforos de Sodio/farmacología , Animales , Bovinos , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/fisiología , Perfilación de la Expresión Génica , Transporte Iónico/fisiología , Consumo de Oxígeno/efectos de los fármacos , Prevotella/crecimiento & desarrollo , Quinona Reductasas/metabolismo , Rumen/microbiología , Sodio/metabolismo
2.
Proteomes ; 8(4)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081314

RESUMEN

Short-chain fatty acids (SCFAs) are bacterial products that are known to be used as energy sources in eukaryotic hosts, whereas their role in the metabolism of intestinal microbes is rarely explored. In the present study, acetic, propionic, butyric, isobutyric, valeric, and isovaleric acid, respectively, were added to a newly defined medium containing Prevotella bryantii B14 cells. After 8 h and 24 h, optical density, pH and SCFA concentrations were measured. Long-chain fatty acid (LCFA) profiles of the bacterial cells were analyzed via gas chromatography-time of flight-mass spectrometry (GC-ToF MS) and proteins were quantified using a mass spectrometry-based, label-free approach. Cultures supplemented with single SCFAs revealed different growth behavior. Structural features of the respective SCFAs were identified in the LCFA profiles, which suggests incorporation into the bacterial membranes. The proteomes of cultures supplemented with acetic and valeric acid differed by an increased abundance of outer membrane proteins. The proteome of the isovaleric acid supplementation showed an increase of proteins in the amino acid metabolism. Our findings indicate a possible interaction between SCFAs, the lipid membrane composition, the abundance of outer membrane proteins, and a modulation of branched chain amino acid biosynthesis by isovaleric acid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...