Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065650

RESUMEN

The limited range of available flu treatments due to virus mutations and drug resistance have prompted the search for new therapies. RNA-dependent RNA polymerase (RdRp) is a heterotrimeric complex of three subunits, i.e., polymerase acidic protein (PA) and polymerase basic proteins 1 and 2 (PB1 and PB2). It is widely recognized as one of the most promising anti-flu targets because of its critical role in influenza infection and high amino acid conservation. In particular, the disruption of RdRp complex assembly through protein-protein interaction (PPI) inhibition has emerged as a valuable strategy for discovering a new therapy. Our group previously identified the 3-cyano-4,6-diphenyl-pyridine core as a privileged scaffold for developing PA-PB1 PPI inhibitors. Encouraged by these findings, we synthesized a small library of pyridine and pyrimidine derivatives decorated with a thio-N-(m-tolyl)acetamide side chain (compounds 2a-n) or several amino acid groups (compounds 3a-n) at the C2 position. Interestingly, derivative 2d, characterized by a pyrimidine core and a phenyl and 4-chloro phenyl ring at the C4 and C6 positions, respectively, showed an IC50 value of 90.1 µM in PA-PB1 ELISA, an EC50 value of 2.8 µM in PRA, and a favorable cytotoxic profile, emerging as a significant breakthrough in the pursuit of new PPI inhibitors. A molecular modeling study was also completed as part of this project, allowing us to clarify the biological profile of these compounds.

2.
Pharmaceutics ; 16(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38794275

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast-spreading viral pathogen and poses a serious threat to human health. New SARS-CoV-2 variants have been arising worldwide; therefore, is necessary to explore more therapeutic options. The interaction of the viral spike (S) protein with the angiotensin-converting enzyme 2 (ACE2) host receptor is an attractive drug target to prevent the infection via the inhibition of virus cell entry. In this study, Ligand- and Structure-Based Virtual Screening (LBVS and SBVS) was performed to propose potential inhibitors capable of blocking the S receptor-binding domain (RBD) and ACE2 interaction. The best five lead compounds were confirmed as inhibitors through ELISA-based enzyme assays. The docking studies and molecular dynamic (MD) simulations of the selected compounds maintained the molecular interaction and stability (RMSD fluctuations less than 5 Å) with key residues of the S protein. The compounds DRI-1, DRI-2, DRI-3, DRI-4, and DRI-5 efficiently block the interaction between the SARS-CoV-2 spike protein and receptor ACE2 (from 69.90 to 99.65% of inhibition) at 50 µM. The most potent inhibitors were DRI-2 (IC50 = 8.8 µM) and DRI-3 (IC50 = 2.1 µM) and have an acceptable profile of cytotoxicity (CC50 > 90 µM). Therefore, these compounds could be good candidates for further SARS-CoV-2 preclinical experiments.

3.
Eur J Med Chem ; 270: 116356, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579621

RESUMEN

The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Proteínas de Unión a Tacrolimus , Humanos , Unión Proteica , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares , Factores de Transcripción/metabolismo
4.
J Inorg Biochem ; 247: 112306, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451083

RESUMEN

Antibiotic resistance is a global public health threat. The care of chronic infections is complicated by bacterial biofilms. Biofilm embedded cells can be up to 1000-fold more tolerant to antibiotic treatment than planktonic cells. Antibiotic tolerance is a condition which does not involve mutation and enables bacteria to survive in the presence of antibiotics. The antibiotic tolerance of biofilm-cells often renders antibiotics ineffective, even against strains that do not carry resistance-impairing mutations. This review discusses bacterial iron homeostasis and the strategies being developed to target this bacterial vulnerability, with emphasis on a recently proposed approach which aims at targeting the iron storage protein bacterioferritin (Bfr) and its physiological partner, the ferredoxin Bfd. Bfr regulates cytosolic iron concentrations by oxidizing Fe2+ and storing Fe3+ in its internal cavity, and by forming a complex with Bfd to reduce Fe3+ in the internal cavity and release Fe2+ to the cytosol. Blocking the Bfr-Bfd complex in P. aeruginosa cells causes an irreversible accumulation of Fe3+ in BfrB and simultaneous cytosolic iron depletion, which leads to impaired biofilm maintenance and biofilm cell death. Recently discovered small molecule inhibitors of the Bfr-Bfd complex, which bind Bfr at the Bfd binding site, inhibit iron mobilization, and elicit biofilm cell death.


Asunto(s)
Ferritinas , Hierro , Hierro/química , Ferritinas/química , Proteínas Bacterianas/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Homeostasis , Biopelículas , Pseudomonas aeruginosa/metabolismo
5.
Eur J Med Chem ; 258: 115587, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406382

RESUMEN

Protein-protein interactions (PPIs) constitute an important but challenging class of molecular targets for small molecules. The PEX5-PEX14 PPI has been shown to play a critical role in glycosome biogenesis and its disruption impairs the metabolism in Trpanosoma parasites, eventually leading to their death. Therefore, this PPI is a potential molecular target for new drugs against diseases caused by Trypanosoma infections. Here, we report a new class of peptidomimetic scaffolds to target the PEX5-PEX14 PPI. The molecular design was based on an oxopiperazine template for the α-helical mimetics. A structural simplification along with modifications of the central oxopiperazine scaffold and addressing the lipophilic interactions led to the development of peptidomimetics that inhibit PEX5-TbPEX14 PPI and display cellular activity against T. b. brucei. This approach provides an alternative approach towards the development of trypanocidal agents and may be generally useful for the design of helical mimetics as PPI inhibitors.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/metabolismo
6.
Angew Chem Int Ed Engl ; 62(33): e202306036, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37311172

RESUMEN

Herein, we report a novel strategy for the modification of peptides based on the introduction of highly reactive hypervalent iodine reagents-ethynylbenziodoxolones (EBXs)-onto peptides. These peptide-EBXs can be readily accessed, by both solution- and solid-phase peptide synthesis (SPPS). They can be used to couple the peptide to other peptides or a protein through reaction with Cys, leading to thioalkynes in organic solvents and hypervalent iodine adducts in water buffer. Furthermore, a photocatalytic decarboxylative coupling to the C-terminus of peptides was developed using an organic dye and was also successful in an intramolecular fashion, leading to macrocyclic peptides with unprecedented crosslinking. A rigid linear aryl alkyne linker was essential to achieve high affinity for Keap1 at the Nrf2 binding site with potential protein-protein interaction inhibition.


Asunto(s)
Yodo , Indicadores y Reactivos , Proteína 1 Asociada A ECH Tipo Kelch , Yodo/química , Factor 2 Relacionado con NF-E2 , Péptidos/química
7.
J Biomol Struct Dyn ; 41(23): 14003-14015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995131

RESUMEN

The IL-6/IL-6R or IL-6/GP130 protein-protein interactions play a significant role in controlling the development of chronic inflammatory diseases, such as rheumatoid arthritis, Castleman disease, psoriasis, and, most recently, COVID-19. Modulating or antagonizing protein-protein interactions of IL6 binding to its receptors by oral drugs promises similar efficacy to biological therapy in patients, namely monoclonal antibodies. In this study, we used a crystal structure of the Fab part of olokizumab in a complex with IL-6 (PDB ID: 4CNI) to uncover starting points for small molecule IL-6 antagonist discovery. Firstly, a structure­based pharmacophore model of the protein active site cavity was generated to identify possible candidates, followed by virtual screening with a significant database Drugbank. After the docking protocol validation, a virtual screening by molecular docking was carried out and a total of 11 top hits were reported. Detailed analysis of the best scoring molecules was performed with ADME/T analysis and molecular dynamics simulation. Furthermore, the Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) technique has been utilized to evaluate the free binding energy. Based on the finding, one newly obtained compound in this study, namely DB15187, may serve as a lead compound for the discovery of IL-6 inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Inhibidores de la Interleucina-6 , Interleucina-6 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ligandos
8.
Antioxidants (Basel) ; 12(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36979026

RESUMEN

Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and loss of nerve cells. Oxidative stress has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders since neuron cells are particularly vulnerable to oxidative damage. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is strictly related to anti-inflammatory and antioxidative cell response; therefore, its activation and the consequent enhancement of the related cellular pathways have been proposed as a potential therapeutic approach. Several Nrf2 activators with different mechanisms and diverse structures have been reported, but those applied for neurodisorders are still limited. However, in the very last few years, interesting progress has been made, particularly in enhancing the blood-brain barrier penetration, to make Nrf2 activators effective drugs, and in designing Nrf2-based multitarget-directed ligands to affect multiple pathways involved in the pathology of neurodegenerative diseases. The present review gives an overview of the most representative findings in this research area.

9.
Chem Biol Drug Des ; 101(6): 1241-1251, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36869438

RESUMEN

Malaria remains a threat to global public health and the available antimalarial drugs are undermined by side effects and parasite resistance, suggesting an emphasis on new potential targets. Among the novel targets, Plasmodium falciparum autophagy-related proteins (PfAtg) remain a priority. In this paper, we reviewed the existing knowledge on the functions and structural biology of PfAtg including the compounds with inhibitory activity toward P. falciparum Atg8-Atg3 protein-protein interaction (PfAtg8-PfAtg3 PPI). A total of five PfAtg (PfAtg5, PfAtg8, PfAtg12, PfAtg18, and Rab7) were observed to have autophagic and/or non-autophagic roles. Available data showed that PfAtg8 has conserved hydrophobic pockets, which allows it to interact with PfAtg3 to form PfAtg8-PfAtg3 PPI. Additionally, 2-bromo-N-(4-pyridin-2-yl-1,3-thiazol-2-yl) benzamide was identified as the most powerful inhibitor of PfAtg8-PfAtg3 PPI. Due to the dearth of knowledge in this field, we hope that the article would open an avenue to further research on the remaining PfAtg as possible drug candidates.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/química , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/farmacología , Plasmodium falciparum , Proteínas Protozoarias/metabolismo , Biología
10.
Expert Opin Ther Pat ; 33(1): 29-49, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36800917

RESUMEN

INTRODUCTION: The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor that controls the expression of numerous cytoprotective genes and regulates cellular defense system against oxidative insults. Thus, activating the Nrf2 pathway is a promising strategy for the treatment of various chronic diseases characterized by oxidative stress. AREAS COVERED: This review first discusses the biological effects of Nrf2 and the regulatory mechanism of Kelch-like ECH-associated protein 1-Nrf2-antioxidant response element (Keap1-Nrf2-ARE) pathway. Then, Nrf2 activators (2020-present) are summarized based on the mechanism of action. The case studies consist of chemical structures, biological activities, structural optimization, and clinical development. EXPERT OPINION: Extensive efforts have been devoted to developing novel Nrf2 activators with improved potency and drug-like properties. These Nrf2 activators have exhibited beneficial effects in in vitro and in vivo models of oxidative stress-related chronic diseases. However, some specific problems, such as target selectivity and brain blood barrier (BBB) permeability, still need to be addressed in the future.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Patentes como Asunto , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología
11.
Med Res Rev ; 43(1): 237-287, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36086898

RESUMEN

The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered the master regulator of the phase II antioxidant response. It controls a plethora of cytoprotective genes related to oxidative stress, inflammation, and protein homeostasis, among other processes. Activation of these pathways has been described in numerous pathologies including cancer, cardiovascular, respiratory, renal, digestive, metabolic, autoimmune, and neurodegenerative diseases. Considering the increasing interest of discovering novel NRF2 activators due to its clinical application, initial efforts were devoted to the development of electrophilic drugs able to induce NRF2 nuclear accumulation by targeting its natural repressor protein Kelch-like ECH-associated protein 1 (KEAP1) through covalent modifications on cysteine residues. However, off-target effects of these drugs prompted the development of an innovative strategy, the search of KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. These innovative activators are proposed to target NRF2 in a more selective way, leading to potentially improved drugs with the application for a variety of diseases that are currently under investigation. In this review, we summarize known KEAP1-NRF2 PPI inhibitors to date and the bases of their design highlighting the most important features of their respective interactions. We also discuss the preclinical pharmacological properties described for the most promising compounds.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Enfermedades Neurodegenerativas , Humanos , Inflamación/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
12.
Mol Divers ; 27(5): 2315-2330, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36319930

RESUMEN

IL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabolism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm-an acute systemic inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival. However, the mAb has several drawbacks, such as high cost, potential immunogenicity, and invasive administration due to the large-molecule protein product. Instead, these issues could be mitigated using small molecule IL-6 inhibitors, but none are currently available. This study aimed to discover IL-6 inhibitors based on the PPI with a novel camelid Fab fragment, namely 68F2, in a crystal protein complex structure (PDB ID: 4ZS7). The pharmacophore models and molecular docking were used to screen compounds from DrugBank databases. The oral bioavailability of the top 24 ligands from the screening was predicted by the SwissAMDE tool. Subsequently, the selected molecules from docking and MD simulation illustrated a promising binding affinity in the formation of stable complexes at the active binding pocket of IL-6. Binding energies using the MM-PBSA technique were applied to the top 4 hit compounds. The result indicated that DB08402 and DB12903 could form strong interactions and build stable protein-ligand complexes with IL-6. These potential compounds may serve as a basis for further developing small molecule IL-6 inhibitors in the future.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , Interleucina-6 , Ligandos
13.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430841

RESUMEN

The modulation of protein-protein interactions (PPIs) by small chemical compounds is challenging. PPIs play a critical role in most cellular processes and are involved in numerous disease pathways. As such, novel strategies that assist the design of PPI inhibitors are of major importance. We previously reported that the knowledge-based DLIGAND2 scoring tool was the best-rescoring function for improving receptor-based virtual screening (VS) performed with the Surflex docking engine applied to several PPI targets with experimentally known active and inactive compounds. Here, we extend our investigation by assessing the vs. potential of other types of scoring functions with an emphasis on docking-pose derived solvent accessible surface area (SASA) descriptors, with or without the use of machine learning (ML) classifiers. First, we explored rescoring strategies of Surflex-generated docking poses with five GOLD scoring functions (GoldScore, ChemScore, ASP, ChemPLP, ChemScore with Receptor Depth Scaling) and with consensus scoring. The top-ranked poses were post-processed to derive a set of protein and ligand SASA descriptors in the bound and unbound states, which were combined to derive descriptors of the docked protein-ligand complexes. Further, eight ML models (tree, bagged forest, random forest, Bayesian, support vector machine, logistic regression, neural network, and neural network with bagging) were trained using the derivatized SASA descriptors and validated on test sets. The results show that many SASA descriptors are better than Surflex and GOLD scoring functions in terms of overall performance and early recovery success on the used dataset. The ML models were superior to all scoring functions and rescoring approaches for most targets yielding up to a seven-fold increase in enrichment factors at 1% of the screened collections. In particular, the neural networks and random forest-based ML emerged as the best techniques for this PPI dataset, making them robust and attractive vs. tools for hit-finding efforts. The presented results suggest that exploring further docking-pose derived SASA descriptors could be valuable for structure-based virtual screening projects, and in the present case, to assist the rational design of small-molecule PPI inhibitors.


Asunto(s)
Algoritmos , Proteínas , Ligandos , Teorema de Bayes , Proteínas/química , Máquina de Vectores de Soporte
14.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745671

RESUMEN

The initial discovery phase of protein modulators, which consists of filtering molecular libraries and in vitro direct binding validation, is central in drug discovery. Thus, virtual screening of large molecular libraries, together with the evaluation of binding affinity by isothermal calorimetry, generates an efficient experimental setup. Herein, we applied virtual screening for discovering small molecule inhibitors of MDM2, a major negative regulator of the tumor suppressor p53, and thus a promising therapeutic target. A library of 20 million small molecules was screened against an averaged model derived from multiple structural conformations of MDM2 based on published structures. Selected molecules originating from the computational filtering were tested in vitro for their direct binding to MDM2 via isothermal titration calorimetry. Three new molecules, representing distinct chemical scaffolds, showed binding to MDM2. These were further evaluated by exploring structure-similar chemical analogues. Two scaffolds were further evaluated by de novo synthesis of molecules derived from the initial molecules that bound MDM2, one with a central oxoazetidine acetamide and one with benzene sulfonamide. Several molecules derived from these scaffolds increased wild-type p53 activity in MCF7 cancer cells. These set a basis for further chemical optimization and the development of new chemical entities as anticancer drugs.

15.
Proteins ; 90(11): 1886-1895, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35598299

RESUMEN

Designing peptides for protein-protein interaction inhibition is of significant interest in computer-aided drug design. Such inhibitory peptides could mimic and compete with the binding of the partner protein to the inhibition target. Experimental peptide design is a laborious, time consuming, and expensive multi-step process. Therefore, in silico peptide design can be beneficial for achieving this task. We present a novel algorithm, Pep-Whisperer, which aims to design inhibitory peptides for protein-protein interaction. The desirable peptides would have a relatively high predicted binding affinity to the target protein in a given protein-protein complex. The algorithm outputs linear peptides which are based on an initial template. The template could either be a peptide which is retrieved from the interaction site, or a patch of nonconsecutive amino acids from the protein-protein interface which is completed to a linear peptide by short polyalanine linkers. In addition, the algorithm takes into consideration the conservation of the amino acids in the ligand-protein binding site by using evolutionary information for choosing the preferred amino acids in each position of the designed peptide. Our algorithm was able to design peptides with high predicted binding affinity to the target protein. The method is fully automated and available as a web server at http://bioinfo3d.cs.tau.ac.il/PepWhisperer/.


Asunto(s)
Péptidos , Proteínas , Aminoácidos/metabolismo , Diseño de Fármacos , Ligandos , Péptidos/química , Unión Proteica , Proteínas/química
16.
Drug Discov Today ; 27(5): 1332-1349, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35121175

RESUMEN

When secreted into the circulation, proprotein convertase subtilisin kexin type 9 (PCSK9) blocks the low-density lipoprotein receptors (LDL-R) and, as a consequence, low-density lipoprotein cholesterol (LDL-C) levels increase. Therefore, PCSK9 has emerged as a potential therapeutic target for lowering LDL-C levels and preventing atherosclerosis. The US Food and Drug Administration (FDA) has approved two monoclonal antibodies (mAbs) against PCSK9, but the expensive manufacturing process limits their use. Subsequently, there have been tremendous efforts to develop cost-effective small molecules specific to PCSK9 over the past few years. These small molecules are promising therapeutics that act by preventing the synthesis of PCSK9, its secretion from cells, or the PCSK9-LDRL interaction. In this review, we summarize recent developments in the discovery of small-molecule PCSK9 inhibitors, focusing on their design, therapeutic effects, specific targets, and mechanisms of action.


Asunto(s)
Hipercolesterolemia , LDL-Colesterol/uso terapéutico , Humanos , Hipercolesterolemia/tratamiento farmacológico , Inhibidores de PCSK9 , Proproteína Convertasa 9 , Estados Unidos
17.
Bioorg Chem ; 115: 105241, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426157

RESUMEN

Cellular autophagy is an intracellular degradation pathway, which transports damaged, deformed, senescent or non-functional proteins and organelles to lysosome for digestion and degradation. Cellular autophagy is deeply evolutionarily conservedfromyeasttomammaliancells, and many homologous proteins of the autophahgy regulators are found in several species. This physiological process maintains the steady state of cells. Furtheremore, autophagy dysfunction is closely related to various diseases, such as neurodegenerative diseases, inflammation-related diseases, cardiovascular diseases, metabolic diseases, etc. The LC3 and p62 protein protein interaction (PPI) promotes the formation of autophagosomes and delivers polyubiquitinated "cargoes" to autophagic degradation. Therefore, LC3-p62 PPI plays an integral role in the formation of autophagosomes and effectively inhibits autophagy. However, there are still few studies on the LC3-p62 PPI inhibitors for its unclear molecular mechanism. Furthermore, most of these inhibitors are macromolecules with poorly active, and small molecules are particularly scarce. In this article, the computation method was used to identify the hot spot and design peptides as the binder of LC3-p62 PPI. Findings from this work provide a reference for the follow-up research of discovering small molecule inhibitors targeting LC3-p62 PPI.


Asunto(s)
Diseño de Fármacos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Péptidos/farmacología , Proteínas de Unión al ARN/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad
18.
Eur J Med Chem ; 210: 112959, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33109397

RESUMEN

HSP90-CDC37 protein-protein interaction (PPI) works as a kinase specific-molecular chaperone system to regulate the maturation of kinases. Currently, selectively disrupting HSP90-CDC37 PPI, rather than the direct inhibition of the ATPase function of HSP90, is emerging as a promising strategy for cancer therapy by specifically blocking the maturation of kinases. However, due to the limited understanding of HSP90-CDC37 binding interface, design of small molecule inhibitors targeting HSP90-CDC37 PPI is challenging. In this work, based on the binding mode of compound 11 (previously reported by our group), we discovered a hydrophobic pocket centered on Phe213, which was previously unknown, contributing to the binding affinity of HSP90-CDC37 PPI inhibitors. A series of hydrophobic substituted inhibitors were utilized to confirm the importance of Phe213 hydrophobic core. Finally, we obtained an optimum compound DDO-5994 (exhibited an ideal binding pattern on hydrophobic core) with improved binding affinity (KD = 5.52 µM) and antiproliferative activity (IC50 = 6.34 µM). Both in vitro and in vivo assays confirmed DDO-5994 as a promising inhibitor to exhibit ideal antitumor efficacy through blocking HSP90-CDC37 PPI.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Células HCT116 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Ratones , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
19.
ChemMedChem ; 16(6): 1011-1021, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33284505

RESUMEN

The Rho GTPase Rac1 is involved in the control of cytoskeleton reorganization and other fundamental cellular functions. Aberrant activity of Rac1 and its regulators is common in human cancer. In particular, deregulated expression/activity of Rac GEFs, responsible for Rac1 activation, has been associated to a metastatic phenotype and drug resistance. Thus, the development of novel Rac1-GEF interaction inhibitors is a promising strategy for finding new preclinical candidates. Here, we studied structure-activity relationships within a new family of N,N'-disubstituted guanidine as Rac1 inhibitors. We found that compound 1D-142, presents superior antiproliferative activity in human cancer cell lines and higher potency as Rac1-GEF interaction inhibitor in vitro than parental compounds. In addition, 1D-142 reduces Rac1-mediated TNFα-induced NF-κB nuclear translocation during cell proliferation and migration in NSCLC. Notably, 1D-142 allowed us to show for the first time the application of a Rac1 inhibitor in a lung cancer animal model.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Desarrollo de Medicamentos , Guanidina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Guanidina/síntesis química , Guanidina/química , Humanos , Hidroxilación , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Proteína de Unión al GTP rac1/metabolismo
20.
Curr Med Chem ; 28(6): 1068-1090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31942843

RESUMEN

BACKGROUND: Influenza is a seasonal disease that affects millions of people every year and has a significant economic impact. Vaccines are the best strategy to fight this viral pathology, but they are not always available or administrable, prompting the search for antiviral drugs. RNA-dependent RNA polymerase (RdRp) recently emerged as a promising target because of its key role in viral replication and its high conservation among viral strains. DISCUSSION: This review presents an overview of the most interesting RdRp inhibitors that have been discussed in the literature since 2000. Compounds already approved or in clinical trials and a selection of inhibitors endowed with different scaffolds are described, along with the main features responsible for their activity. RESULTS: RdRp inhibitors are emerging as a new strategy to fight viral infections and the importance of this class of drugs has been confirmed by the FDA approval of baloxavir marboxil in 2018. Despite the complexity of the RdRp machine makes the identification of new compounds a challenging research topic, it is likely that in the coming years, this field will attract the interest of a number of academic and industrial scientists because of the potential strength of this therapeutic approach.


Asunto(s)
Gripe Humana , Proteínas Virales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Gripe Humana/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...