Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
2.
JACC Basic Transl Sci ; 9(8): 982-1001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39297139

RESUMEN

Phosphorylation of myofilament proteins critically regulates beat-to-beat cardiac contraction and is typically altered in heart failure (HF). ß-Adrenergic activation induces phosphorylation in numerous substrates at the myofilament. Nevertheless, how cardiac ß-adrenoceptors (ßARs) signal to the myofilament in healthy and diseased hearts remains poorly understood. The aim of this study was to uncover the spatiotemporal regulation of local ßAR signaling at the myofilament and thus identify a potential therapeutic target for HF. Phosphoproteomic analysis of substrate phosphorylation induced by different ßAR ligands in mouse hearts was performed. Genetically encoded biosensors were used to characterize cyclic adenosine and guanosine monophosphate signaling and the impacts on excitation-contraction coupling induced by ß1AR ligands at both the cardiomyocyte and whole-heart levels. Myofilament signaling circuitry was identified, including protein kinase G1 (PKG1)-dependent phosphorylation of myosin light chain kinase, myosin phosphatase target subunit 1, and myosin light chain at the myofilaments. The increased phosphorylation of myosin light chain enhances cardiac contractility, with a minimal increase in calcium (Ca2+) cycling. This myofilament signaling paradigm is promoted by carvedilol-induced ß1AR-nitric oxide synthetase 3 (NOS3)-dependent cyclic guanosine monophosphate signaling, drawing a parallel to the ß1AR-cyclic adenosine monophosphate-protein kinase A pathway. In patients with HF and a mouse HF model of myocardial infarction, increasing expression and association of NOS3 with ß1AR were observed. Stimulating ß1AR-NOS3-PKG1 signaling increased cardiac contraction in the mouse HF model. This research has characterized myofilament ß1AR-PKG1-dependent signaling circuitry to increase phosphorylation of myosin light chain and enhance cardiac contractility, with a minimal increase in Ca2+ cycling. The present findings raise the possibility of targeting this myofilament signaling circuitry for treatment of patients with HF.

3.
Chem Biol Interact ; 402: 111181, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089414

RESUMEN

Tanshinone IIA (TSA), the main lipo-soluble component from the dried rhizome of Salvia miltiorrhiza, has been shown to induce vasodilation. However, the underlying mechanisms remains unclear. This study aimed to investigate the effect of TSA on the vasodilation of small resistant arteries ex vivo. Vascular myography revealed that endothelial denudation reduced significantly the vasodilatory effect of TSA. Blocking transient receptor potential vanilloid 4 (TRPV4) channels prevented TSA-induced vasodilation. Whole-cell patch-clamp analysis revealed that the current passing through TRPV4 channels increased after TSA treatment in endothelial cells (ECs). This was attributed to reduced TRPV4 protein degradation along with its increased expression. The TRPV4 inhibitor HC-067047 lowed nitric oxide (NO) production and TSA-induced expression of endothelial nitric oxide synthase (eNOS). Moreover, it increased the production of cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG). The present results indicate that TSA induces endothelium-dependent vasodilation, which is mediated by the TRPV4-NO-PKG signaling pathway. These findings highlight the potential of TSA, a compound known in traditional Chinese medicine as Danshen (Salvia miltiorrhiza), for future cardiovascular therapeutic strategies.


Asunto(s)
Abietanos , GMP Cíclico , Óxido Nítrico Sintasa de Tipo III , Canales Catiónicos TRPV , Vasodilatación , Abietanos/farmacología , Canales Catiónicos TRPV/metabolismo , Vasodilatación/efectos de los fármacos , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Masculino , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Transducción de Señal/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratas Sprague-Dawley , Morfolinas/farmacología , Humanos , Ratas , Vasodilatadores/farmacología , Pirroles
4.
Curr Drug Metab ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39005121

RESUMEN

BACKGROUND: The effects of Isopsoralen (ISO) in promoting osteoblast differentiation and inhibiting osteoclast formation are well-established, but the mechanism underlying ISO's improvement of Glucocorticoid- Induced Osteoporosis (GIOP) by regulating metabolism remains unclear. METHODS: This study aims to elucidate the mechanism of ISO treatment for GIOP through non-targeted metabolomics based on ISO's efficacy in GIOP. Initially, we established a GIOP female mouse model and assessed ISO's therapeutic effects using micro-CT detection, biomechanical testing, serum calcium (Ca), and phosphorus (P) level detection, along with histological analyses using hematoxylin and eosin (HE), Masson, and tartrate-resistant acidic phosphatase (TRAP) staining. Subsequently, non-targeted metabolomics was employed to investigate ISO's impact on serum metabolites in GIOP mice. RT-qPCR and Western blot analyses were conducted to measure the levels of enzymes associated with these metabolites. Building on the metabolomic results, we explored the effects of ISO on the cyclic Guanosine Monophosphate (cGMP)/Protein Kinase G (PKG) pathway and its role in mediating osteoblast differentiation. RESULTS: Our findings demonstrate that ISO intervention effectively enhances the bone microarchitecture and strength of GIOP mice. It mitigates pathological damage, such as structural damage in bone trabeculae, reduced collagen fibers, and increased osteoclasts, while improving serum Ca and P levels in GIOP mice. Non-- targeted metabolomics revealed purine metabolism as a common pathway between the Control and GIOP groups, as well as between the ISO high-dose (ISOH) group and the GIOP group. ISO intervention upregulated inosine and adenosine levels, downregulated guanosine monophosphate levels, increased Adenosine Deaminase (ADA) expression, and decreased cGMP-specific 3',5'-cyclic phosphodiesterase (PDE5) expression. Additionally, ISO intervention elevated serum cGMP levels, upregulated PKGI and PKGII expression in bone tissues, as well as the expression of Runt-related transcription factor 2 (Runx2) and Osterix, and increased serum Alkaline Phosphatase (ALP) activity. CONCLUSION: In summary, ISO was able to enhance the bone microstructure and bone strength of GIOP mice and improve their Ca, P, and ALP levels, which may be related to ISO's regulation of purine metabolism and promotion of osteoblast differentiation mediated by the cGMP/PKG pathway. This suggests that ISO is a potential drug for treating GIOP. However, further research is still needed to explore the specific targets and clinical applications of ISO.

5.
Int J Mol Med ; 54(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940332

RESUMEN

Naringenin (NAR) is a prominent flavanone that has been recognized for its capacity to promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The present study aimed to explore how NAR promotes the osteogenic differentiation of hPDLSCs and to assess its efficacy in repairing alveolar bone defects. For this purpose, a protein­protein interaction network of NAR action was established by mRNA sequencing and network pharmacological analysis. Gene and protein expression levels were evaluated by reverse transcription­quantitative and western blotting. Alizarin red and alkaline phosphatase staining were also employed to observe the osteogenic capacity of hPDLSCs, and immunofluorescence was used to examine the co­localization of NAR molecular probes and AKT in cells. The repair of mandibular defects was assessed by micro­computed tomography (micro­CT), Masson staining and immunofluorescence. Additionally, computer simulation docking software was utilized to determine the binding affinity of NAR to the target protein, AKT. The results demonstrated that activation of the nitric oxide (NO)­cyclic guanosine monophosphate (cGMP)­protein kinase G (PKG) signaling pathway could promote the osteogenic differentiation of hPDLSCs. Inhibition of AKT, endothelial nitric oxide synthase and soluble guanylate cyclase individually attenuated the ability of NAR to promote the osteogenic differentiation of hPDLSCs. Micro­CT and Masson staining revealed that the NAR gavage group exhibited more new bone formation at the defect site. Immunofluorescence assays confirmed the upregulated expression of Runt­related transcription factor 2 and osteopontin in the NAR gavage group. In conclusion, the results of the present study suggested that NAR promotes the osteogenic differentiation of hPDLSCs by activating the NO­cGMP­PKG signaling pathway through its binding to AKT.


Asunto(s)
Diferenciación Celular , Flavanonas , Osteogénesis , Transducción de Señal , Animales , Humanos , Masculino , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Flavanonas/farmacología , Óxido Nítrico/metabolismo , Osteogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/citología
6.
Endocrine ; 85(3): 1075-1090, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38713329

RESUMEN

INTRODUCTION: Natriuretic peptide receptor-A (NPR-A) signaling system is considered as an intrinsic productive mechanism of the heart that opposes abnormal cardiac remodeling and hypertrophic growth. NPR-A is coded by Npr1 gene, and its expression is downregulated in the hypertrophied heart. AIM: We sought to examine the levels of Npr1 gene transcription in triiodo-L-thyronine (T3) treated hypertrophied cardiomyocyte (H9c2) cells, in vitro, and also the involvement of ß-adrenergic receptor (ß-AR) - Reactive oxygen species (ROS) signaling system in the down-regulation of Npr1 transcription also studied. MAIN METHODS: Anti-hypertrophic Npr1 gene transcription was monitored in control and T3-treated (dose and time dependent) H9c2 cells, using a real time PCR method. Further, cell size, intracellular cGMP, ROS, hypertrophy markers (ANP, BNP, α-sk, α-MHC and ß-MHC), ß-AR, and protein kinase cGMP-dependent 1 (PKG-I) genes expression were also determined. The intracellular cGMP and ROS levels were determined by ELISA and DCF dye method, respectively. In addition, to neutralize T3 mediated ROS generation, H9c2 cells were treated with T3 in the presence and absence of antioxidants [curcumin (CU) or N-acetyl-L-cysteine (NAC)]. RESULTS: A dose dependent (10 pM, 100 pM, 1 nM and 10 nM) and time dependent (12 h, 24 h and 48 h) down-regulation of Npr1 gene transcription (20, 39, 60, and 74% respectively; 18, 55, and 85%, respectively) were observed in T3-treated H9c2 cells as compared with control cells. Immunofluorescence analysis also revealed that a marked down regulation of NPR- A protein in T3-treated cells as compared with control cells. Further, a parallel downregulation of cGMP and PKG-I (2.4 fold) were noticed in the T3-treated cells. In contrast, a time dependent increased expression of ß-AR (60, 72, and 80% respectively) and ROS (26, 48, and 74%, respectively) levels were noticed in T3-treated H9c2 cells as compared with control cells. Interestingly, antioxidants, CU or NAC co-treated T3 cells displayed a significant reduction in ROS (69 and 81%, respectively) generation and to increased Npr1 gene transcription (81 and 88%, respectively) as compared with T3 alone treated cells. CONCLUSION: Our result suggest that down regulation of Npr1 gene transcription is critically involved in T3- induced hypertrophic growth in H9c2 cells, and identifies the cross-talk between T3-ß-AR-ROS and NPR-A signaling.


Asunto(s)
Regulación hacia Abajo , Especies Reactivas de Oxígeno , Receptores del Factor Natriurético Atrial , Transducción de Señal , Triyodotironina , Animales , Ratas , Línea Celular , GMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Triyodotironina/farmacología , Receptores Adrenérgicos beta/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732081

RESUMEN

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Asunto(s)
Plaquetas , Flavonoides , Activación Plaquetaria , Inhibidores de Agregación Plaquetaria , Especies Reactivas de Oxígeno , Flavonoides/farmacología , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Activación Plaquetaria/efectos de los fármacos , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apigenina/farmacología , Quercetina/farmacología , Luteolina/farmacología , Transducción de Señal/efectos de los fármacos , Quempferoles/farmacología , Trombina/metabolismo , Flavanonas
8.
Exp Ther Med ; 27(5): 190, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38533431

RESUMEN

Pulmonary fibrosis (PF) is a progressive and irreversible pulmonary disease with a high mortality rate and limited treatment options. The cAMP-dependent protein kinase A, cGMP-dependent protein kinase G and phospholipid-dependent protein kinase C, collectively known as AGC kinases, are evolutionarily conserved protein kinases that are widely distributed among eukaryotes. AGC kinases serve a crucial role in a variety of cellular functions and pathological processes, including cancer, diabetes, inflammation and viral infections, where they have been implicated the pathogenesis of PF. The present review summarizes the evidence for the involvement of specific AGC kinases in the pathogenesis of PF, and provides a theoretical basis for the development of targeted AGC kinase small molecule inhibitors or targeted drugs, offering more effective treatment options and strategies for patients with PF.

9.
JACC Basic Transl Sci ; 9(1): 46-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38362350

RESUMEN

Major pathologic changes in the proximal aorta underlie the life-threatening aortic aneurysms and dissections in Marfan Syndrome; current treatments delay aneurysm development without addressing the primary pathology. Because excess oxidative stress and nitric oxide/protein kinase G signaling likely contribute to the aortopathy, we hypothesized that cobinamide, a strong antioxidant that can attenuate nitric oxide signaling, could be uniquely suited to prevent aortic disease. In a well-characterized mouse model of Marfan Syndrome, cobinamide dramatically reduced elastin breaks, prevented excess collagen deposition and smooth muscle cell apoptosis, and blocked DNA, lipid, and protein oxidation and excess nitric oxide/protein kinase G signaling in the ascending aorta. Consistent with preventing pathologic changes, cobinamide diminished aortic root dilation without affecting blood pressure. Cobinamide exhibited excellent safety and pharmacokinetic profiles indicating it could be a practical treatment. We conclude that cobinamide deserves further study as a disease-modifying treatment of Marfan Syndrome.

10.
J Biol Chem ; 300(3): 105771, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382669

RESUMEN

Ca2+ signaling impacts almost every aspect of cellular life. Ca2+ signals are generated through the opening of ion channels that permit the flow of Ca2+ down an electrochemical gradient. Cytosolic Ca2+ fluctuations can be generated through Ca2+ entry from the extracellular milieu or release from intracellular stores. In Toxoplasma gondii, Ca2+ ions play critical roles in several essential functions for the parasite, like invasion of host cells, motility, and egress. Plasma membrane Ca2+ entry in T. gondii was previously shown to be activated by cytosolic calcium and inhibited by the voltage-operated Ca2+ channel blocker nifedipine. However, Ca2+ entry in T. gondii did not show the classical characteristics of store regulation. In this work, we characterized the mechanism by which cytosolic Ca2+ regulates plasma membrane Ca2+ entry in extracellular T. gondii tachyzoites loaded with the Ca2+ indicator Fura-2. We compared the inhibition by nifedipine with the effect of the broad spectrum TRP channel inhibitor, anthranilic acid or ACA, and we find that both inhibitors act on different Ca2+ entry activities. We demonstrate, using pharmacological and genetic tools, that an intracellular signaling pathway engaging cyclic GMP, protein kinase G, Ca2+, and the phosphatidyl inositol phospholipase C affects Ca2+ entry and we present a model for crosstalk between cyclic GMP and cytosolic Ca2+ for the activation of T. gondii's lytic cycle traits.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Calcio/metabolismo , Nifedipino/farmacología , GMP Cíclico/metabolismo , Transducción de Señal , Señalización del Calcio
12.
Curr Res Physiol ; 7: 100117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298474

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) signaling plays an important role in dynamic control of peripheral and central nervous system physiology, with altered 5-HT homeostasis implicated in a significant number of disorders, ranging from pulmonary, bowel, and metabolic disease to depression, obsessive-compulsive disorder, and autism spectrum disorder (ASD). The presynaptic, 5-HT transporter (SERT) has a well-established role in regulating 5-HT signaling and is a target of widely prescribed psychotherapeutics, the 5-HT selective reuptake inhibitors (SSRIs). Although SSRI therapy provides symptom relief for many suffering from mood and anxiety disorders, response to these medications is slow (weeks), and too many receive modest or no benefit. At present, all prescribed SSRIs act as competitive SERT antagonists. Although non-serotonergic therapeutics for mood disorders deserve aggressive investigation, the development of agents that target SERT regulatory pathways have yet to be considered for their possible utility and may possibly offer improved efficacy and more rapid onset. Here, we focus attention on a significant body of evidence that SERT transport activity can be rapidly elevated by protein kinase G (PKG) and p38α mitogen activated protein kinase (MAPK) linked pathways, mechanisms that are impacted by disease-associated genetic variation. Here, we provide a brief overview of kinase-linked, posttranslational regulation of SERT, with a particular focus on evidence from pharmacological and genetic studies that the transporter's regulation by PKG/p38α MAPK associated pathways offers an opportunity to more subtly adjust, rather than eliminate, SERT function as a therapeutic strategy.

13.
Cell Metab ; 36(2): 377-392.e11, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38194970

RESUMEN

Recent studies have shown that the hypothalamus functions as a control center of aging in mammals that counteracts age-associated physiological decline through inter-tissue communications. We have identified a key neuronal subpopulation in the dorsomedial hypothalamus (DMH), marked by Ppp1r17 expression (DMHPpp1r17 neurons), that regulates aging and longevity in mice. DMHPpp1r17 neurons regulate physical activity and WAT function, including the secretion of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), through sympathetic nervous stimulation. Within DMHPpp1r17 neurons, the phosphorylation and subsequent nuclear-cytoplasmic translocation of Ppp1r17, regulated by cGMP-dependent protein kinase G (PKG; Prkg1), affect gene expression regulating synaptic function, causing synaptic transmission dysfunction and impaired WAT function. Both DMH-specific Prkg1 knockdown, which suppresses age-associated Ppp1r17 translocation, and the chemogenetic activation of DMHPpp1r17 neurons significantly ameliorate age-associated dysfunction in WAT, increase physical activity, and extend lifespan. Thus, these findings clearly demonstrate the importance of the inter-tissue communication between the hypothalamus and WAT in mammalian aging and longevity control.


Asunto(s)
Envejecimiento , Longevidad , Ratones , Animales , Neuronas/metabolismo , Transmisión Sináptica , Tejido Adiposo/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/metabolismo , Mamíferos/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo
14.
JACC Basic Transl Sci ; 8(8): 907-918, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719424

RESUMEN

Reduced nitric oxide (NO) bioactivity in red blood cells (RBCs) is critical for augmented myocardial ischemia-reperfusion injury in type 2 diabetes. This study identified the nature of "NO bioactivity" by stimulating the intracellular NO receptor soluble guanylyl cyclase (sGC) in RBCs. sGC stimulation in RBCs from patients with type 2 diabetes increased export of cyclic guanosine monophosphate from RBCs and activated cardiac protein kinase G, thereby attenuating ischemia-reperfusion injury. These results provide novel insight into RBC signaling by identifying cyclic guanosine monophosphate from RBC as a mediator of protection against cardiac ischemia-reperfusion injury induced by sGC stimulation in RBCs.

15.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373366

RESUMEN

The foraging (for) gene of Drosophila melanogaster encodes a cGMP-dependent protein kinase (PKG), which is a major effector of the cGMP signaling pathway involved in the regulation of behaviour and metabolic traits. Despite being well studied at the transcript level, little is known about the for gene at the protein level. Here, we provide a detailed characterization of the for gene protein (FOR) products and present new tools for their study, including five isoform-specific antibodies and a transgenic strain that carries an HA-labelled for allele (forBAC::HA). Our results showed that multiple FOR isoforms were expressed in the larval and adult stages of D. melanogaster and that the majority of whole-body FOR expression arises from three (P1, P1α, and P3) of eight putative protein isoforms. We found that FOR expression differed between the larval and adult stages and between the dissected larval organs we analyzed, which included the central nervous system (CNS), fat body, carcass, and intestine. Moreover, we showed that the FOR expression differed between two allelic variants of the for gene, namely, fors (sitter) and forR (rover), that are known to differ in many food-related traits. Together, our in vivo identification of FOR isoforms and the existence of temporal, spatial, and genetic differences in their expression lay the groundwork for determining their functional significance.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/metabolismo , Conducta Alimentaria/fisiología , Animales Modificados Genéticamente , Fenotipo , Isoformas de Proteínas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835364

RESUMEN

The permeability of the glomerular filtration barrier (GFB) is mainly regulated by podocytes and their foot processes. Protein kinase G type Iα (PKGIα) and adenosine monophosphate-dependent kinase (AMPK) affect the contractile apparatus of podocytes and influence the permeability of the GFB. Therefore, we studied the interplay between PKGIα and AMPK in cultured rat podocytes. The glomerular permeability to albumin and transmembrane FITC-albumin flux decreased in the presence of AMPK activators and increased in the presence of PKG activators. The knockdown of PKGIα or AMPK with small-interfering RNA (siRNA) revealed a mutual interaction between PKGIα and AMPK and influenced podocyte permeability to albumin. Moreover, PKGIα siRNA activated the AMPK-dependent signaling pathway. AMPKα2 siRNA increased basal levels of phosphorylated myosin phosphate target subunit 1 and decreased the phosphorylation of myosin light chain 2. Podocytes that were treated with AMPK or PKG activators were characterized by the different organization of actin filaments within the cell. Our findings suggest that mutual interactions between PKGIα and AMPKα2 regulate the contractile apparatus and permeability of the podocyte monolayer to albumin. Understanding this newly identified molecular mechanism in podocytes provides further insights into the pathogenesis of glomerular disease and novel therapeutic targets for glomerulopathies.


Asunto(s)
Albúminas , Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Podocitos , Animales , Ratas , Adenosina Monofosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Permeabilidad , Podocitos/metabolismo , Ratas Wistar , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Albúminas/metabolismo
17.
Neural Regen Res ; 18(5): 996-1003, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36254980

RESUMEN

Nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.

18.
Comput Struct Biotechnol J ; 21: 11-20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36514335

RESUMEN

Calcium plays a fundamental role in various signaling pathways and cellular processes in the human organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels (LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity. Dysfunction of LTCCs has been implicated in both aging and Alzheimer's Disease (AD), constituting a key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD. However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest targeting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.

19.
J Ethnopharmacol ; 300: 115705, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099983

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhenwu Decoction (ZWD) is a traditional Chinese medicine (TCM) formula which has wide scope of indications related to Yang deficiency and dampness retention in TCM syndrome. Cardiac hypertrophy can induce similar symptoms and signs to the clinical features of Yang deficiency and dampness retention syndrome. ZWD can increase the left ventricular ejection fraction, reduce cardiac hypertrophy of patients with chronic heart failure. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY: The study aimed to confirm the protective effects of ZWD on cardiac hypertrophy and explore the underlying mechanisms. MATERIALS AND METHODS: The potential targets and pathways of ZWD in cardiac hypertrophy were highlighted by network pharmacology and validated by mechanistic and functional studies. RESULTS: Our network pharmacology analysis suggests that the protective effects of ZWD on cardiac hypertrophy are related to cyclic guanosine monophosphate (cGMP) - protein kinase G (PKG) pathway. Subsequent animal studies showed that ZWD significantly ameliorated cardiac function decline, cardiac hypertrophy, cardiac fibrosis and cardiomyocyte apoptosis. To explore the underlying mechanisms of action, we performed Western blotting, immunohistochemical analysis, and detection of inflammatory response and oxidative stress. Our results showed that ZWD activated the soluble guanylate cyclase (sGC) - cGMP - PKG signaling pathway. The sGC inhibitor ODQ that blocks the sGC-cGMP-PKG signaling pathway in zebrafish abolished the protective effects of ZWD, suggesting sGC-cGMP-PKG is the main signaling pathway mediates the protective effect of ZWD in cardiac hypertrophy. In addition, three major ingredients from ZWD, poricoic acid C, hederagenin and dehydrotumulosic acid, showed a high binding energy with prototype sGC. CONCLUSION: ZWD reduces oxidative stress and inflammation and exerts cardioprotective effects by activating the sGC-cGMP-PKG signaling pathway.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Guanosina Monofosfato , Animales , Cardiomegalia/tratamiento farmacológico , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Medicamentos Herbarios Chinos , Guanilato Ciclasa/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Deficiencia Yang , Pez Cebra
20.
Comput Struct Biotechnol J ; 20: 5775-5789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382189

RESUMEN

Toxoplasma gondii is a common zoonotic protozoan pathogen adapted to intracellular parasitism in many host cells of diverse organisms. Our previous work has identified 18 cyclic nucleotide phosphodiesterase (PDE) proteins encoded by the parasite genome, of which 11 are expressed during the lytic cycle of its acutely-infectious tachyzoite stage in human cells. Here, we show that ten of these enzymes are promiscuous dual-specific phosphodiesterases, hydrolyzing cAMP and cGMP. TgPDE1 and TgPDE9, with a Km of 18 µM and 31 µM, respectively, are primed to hydrolyze cGMP, whereas TgPDE2 is highly specific to cAMP (Km, 14 µM). Immuno-electron microscopy revealed various subcellular distributions of TgPDE1, 2, and 9, including in the inner membrane complex, apical pole, plasma membrane, cytosol, dense granule, and rhoptry, indicating spatial control of signaling within tachyzoites. Notably, despite shared apical location and dual-catalysis, TgPDE8 and TgPDE9 are fully dispensable for the lytic cycle and show no functional redundancy. In contrast, TgPDE1 and TgPDE2 are individually required for optimal growth, and their collective loss is lethal to the parasite. In vitro phenotyping of these mutants revealed the roles of TgPDE1 and TgPDE2 in proliferation, gliding motility, invasion and egress of tachyzoites. Moreover, our enzyme inhibition assays in conjunction with chemogenetic phenotyping underpin TgPDE1 as a target of commonly-used PDE inhibitors, BIPPO and zaprinast. Finally, we identified a retinue of TgPDE1 and TgPDE2-interacting kinases and phosphatases, possibly regulating the enzymatic activity. In conclusion, our datasets on the catalytic function, physiological relevance, subcellular localization and drug inhibition of key phosphodiesterases highlight the previously-unanticipated plasticity and therapeutic potential of cyclic nucleotide signaling in T. gondii.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...