Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.935
Filtrar
1.
Neuromolecular Med ; 26(1): 32, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090268

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder marked by the death of dopaminergic neurons in the substantia nigra region of the brain. Aggregation of alpha-synuclein (α-synuclein) is a contributing factor to Parkinson's disease pathogenesis. The objective of this study is to investigate the neuroprotective effects of gut microbes on α-synuclein aggregation using both in silico and in vivo approaches. We focussed on the interaction between α-synuclein and metabolites released by gut bacteria that protect from PD. We employed three probiotic microbe strains against α-synuclein protein: Lactobacillus casei, Escherichia coli, and Bacillus subtilis, with their chosen PDB IDs being Dihydrofolate reductase (3DFR), methionine synthetase (6BM5), and tryptophanyl-tRNA synthetase (3PRH), respectively. Using HEX Dock 6.0 software, we examined the interactions between these proteins. Among the various metabolites, methionine synthetase produced by E. coli showed potential interactions with α-synuclein. To further evaluate the neuroprotective benefits of E. coli, an in vivo investigation was performed using a rotenone-induced Parkinsonian mouse model. The motor function of the animals was assessed through behavioural tests, and oxidative stress and neurotransmitter levels were also examined. The results demonstrated that, compared to the rotenone-induced PD mouse model, the rate of neurodegeneration was considerably reduced in mice treated with E. coli. Additionally, histopathological studies provided evidence of the neuroprotective effects of E. coli. In conclusion, this study lays the groundwork for future research, suggesting that gut bacteria may serve as potential therapeutic agents in the development of medications to treat Parkinson's disease. fig. 1.


Asunto(s)
Bacillus subtilis , Escherichia coli , Microbioma Gastrointestinal , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Probióticos , Rotenona , alfa-Sinucleína , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico , Probióticos/farmacología , alfa-Sinucleína/metabolismo , Estrés Oxidativo/efectos de los fármacos , Rotenona/toxicidad , Lacticaseibacillus casei/fisiología , Metionina-ARNt Ligasa , Triptófano-ARNt Ligasa/fisiología , Masculino , Tetrahidrofolato Deshidrogenasa/metabolismo , Simulación por Computador , Trastornos Parkinsonianos/microbiología , Humanos , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Enfermedad de Parkinson Secundaria/inducido químicamente , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedad de Parkinson/microbiología
2.
Comput Biol Chem ; 112: 108161, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116702

RESUMEN

Deinococcus species, noted for their exceptional resistance to DNA-damaging environmental stresses, have piqued scientists' interest for decades. This study dives into the complex mechanisms underpinning radiation resistance in the Deinococcus genus. We have examined the genomes of 82 Deinococcus species and classified radiation-resistance proteins manually into five unique curated categories: DNA repair, oxidative stress defense, Ddr and Ppr proteins, regulatory proteins, and miscellaneous resistance components. This classification reveals important information about the various molecular mechanisms used by these extremophiles which have been less explored so far. We also investigated the presence or lack of these proteins in the context of phylogenetic relationships, core, and pan-genomes, which offered light on the evolutionary dynamics of radiation resistance. This comprehensive study provides a deeper understanding of the genetic underpinnings of radiation resistance in the Deinococcus genus, with potential implications for understanding similar mechanisms in other organisms using an interactomics approach. Finally, this study reveals the complexities of radiation resistance mechanisms, providing a comprehensive understanding of the genetic components that allow Deinococcus species to flourish under harsh environments. The findings add to our understanding of the larger spectrum of stress adaption techniques in bacteria and may have applications in sectors ranging from biotechnology to environmental research.

3.
Comput Biol Med ; 180: 108987, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39116715

RESUMEN

Type 2 diabetes mellitus (T2D) has been linked with female infertility (FI). Nevertheless, our understanding of the molecular hallmarks and underlying mechanisms remains elusive. This research article aimed to find the hub genes, pathways, transcription factors, and miRNA involved. For this study, softwares like cytoscape, string, Enrichr, FFL loop, etc., were utilized. This research article employed differentially expressed genes (DEGs) to identify multiple biological targets to understand the association between T2D and female infertility (FI). Between T2D and FI, we found 3869 differentially expressed genes. We have also analyzed different pathways like thyroid hormone signaling pathways, AGE-RAGE signaling pathways in diabetic complications and ubiquitin-mediated proteolysis through pathway analysis. Moreover, hub genes MED17, PRKCG, THRA, FOXO1, NCOA2, PLCG2, COL1A1, CXCL8, PRPF19, ANAPC5, UBE2I, XIAP and KEAP1 have been identified. Additionally, these hub genes were subjected to identify the miRNA-mRNA regulation network specific to T2D-associated female infertility. In the FFL study (Feed Forward Loop), transcription factor (SP1, NFKB1, RELA and FOX01), miRNA (has-mir-7-5p, has-let-7a-5p, hsa-mir-16-5p, hsa-mir-155-5p, has-mir-122-5p, has-let-7b-5p, has-mir-124-3p, has-mir-34a-5p, has-mir-130a-3p, has-let-7i-5p, and hsa-mir-27a-3p) and six genes (XIAP, THRA, NCOA2, MED17, FOXO1, and COL1A1) among the thirteen key genes were recognized as regulator and inhibitor. Our analysis reveals that these genes can serve as a significant biomarker for female infertility linked with Type 2 Diabetes, through the prioritization of candidate genes. This study gives us insight into the molecular and cellular mechanism of T2D-associated FI. This finding helps in developing novel therapeutic approaches and will improve efficacy and reduce side effects of the treatment. This research requires further experimental investigation of the principal targets.

4.
Antiviral Res ; : 105980, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117284

RESUMEN

In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro. We observed a synergistic effect of the 54/OSC and 54/ZA combinations and an antagonistic effect when 54 was combined with either FPV or BXM. Moreover, we demonstrated the efficacy of 54 against avian IV strains both in cell culture and in the embryonated chicken eggs model. Finally, we observed that 54 enhances OSC protective effect against avian IV replication in the embryonated eggs model. Our findings represent an advance in the development of alternative therapeutic strategies against both human and avian IV infections.

5.
Front Cell Dev Biol ; 12: 1414935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108834

RESUMEN

Ion channels are integral membrane proteins mediating ion flow in response to changes in their environment. Among the different types of ion channels reported to date, the super-family of TRP channels stands out since its members have been linked to many pathophysiological processes. The family comprises 6 subfamilies and 28 members in mammals, which are widely distributed throughout most tissues and organs and have an important role in several aspects of cellular physiology. It has been evidenced that abnormal expression, post-translational modifications, and channel trafficking are associated with several pathologies, such as cancer, cardiovascular disease, diabetes, and brain disorders, among others. In this review, we present an updated summary of the mechanisms involved in the subcellular trafficking of TRP channels, with a special emphasis on whether different post-translational modifications and naturally occurring mutagenesis affect both expression and trafficking. Additionally, we describe how such changes have been associated with the development and progress of diverse pathologies associated with the gain or loss of functional phenotypes. The study of these processes will not only contribute to a better understanding the role of TRP channels in the different tissues but will also present novel possible therapeutic targets in diseases where their activity is dysregulated.

6.
Heliyon ; 10(14): e34300, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108872

RESUMEN

All-trans retinoic acid (ATRA) has promising activity against breast cancer. However, the exact mechanisms of ATRA's anticancer effects remain complex and not fully understood. In this study, a network pharmacology and molecular docking approach was applied to identify key target genes related to ATRA's anti-breast cancer activity. Gene/disease enrichment analysis for predicted ATRA targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), the Comparative Toxicogenomics Database (CTD), and the Gene Set Cancer Analysis (GSCA) database. Protein-Protein Interaction Network (PPIN) generation and analysis was conducted via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and cytoscape, respectively. Cancer-associated genes were evaluated using MyGeneVenn from the CTD. Differential expression analysis was conducted using the Tumor, Normal, and Metastatic (TNM) Plot tool and the Human Protein Atlas (HPA). The Glide docking program was used to predict ligand-protein binding. Treatment response predication and clinical profile assessment were performed using Receiver Operating Characteristic (ROC) Plotter and OncoDB databases, respectively. Cytotoxicity and gene expression were measured using MTT/fluorescent assays and Real-Time PCR, respectively. Molecular functions of ATRA targets (n = 209) included eicosanoid receptor activity and transcription factor activity. Some enriched pathways included inclusion body myositis and nuclear receptors pathways. Network analysis revealed 35 hub genes contributing to 3 modules, with 16 of them were associated with breast cancer. These genes were involved in apoptosis, cell cycle, androgen receptor pathway, and ESR-mediated signaling, among others. CCND1, ESR1, MMP9, MDM2, NCOA3, and RARA were significantly overexpressed in tumor samples. ATRA showed a high affinity towards CCND1/CDK4 and MMP9. CCND1, ESR1, and MDM2 were associated with poor treatment response and were downregulated after treatment of the breast cancer cell line with ATRA. CCND1 and ESR1 exhibited differential expression across breast cancer stages. Therefore, some part of ATRA's anti-breast cancer activity may be exerted through the CCND1/CDK4 complex.

7.
J Biochem ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115278

RESUMEN

Anaplastic lymphoma kinase (ALK) is a well-known oncogene involved in various malignancies such as anaplastic large cell lymphoma, lung cancer and neuroblastoma. Several substrates for fused ALK have been identified and their biological functions have been described. However, the lack of a comprehensive identification of ALK substrates limits our understanding of the biological roles of receptor ALK. Thus, this study aimed to identify novel ALK substrates and characterize their biological functions. We screened the interactors of the kinase domain of receptor ALK using proximity-dependent biotin identification and identified 43 interactors. We narrowed down the candidates by evaluating whether these interactors were downstream of ALK in a neuroblastoma cell line, NB-1. Among these, we identified amyloid beta precursor protein binding family B member 1 (APBB1) as an ALK downstream molecule involved in NB-1 cell viability. Finally, we assessed the kinase-substrate relationship between ALK and APBB1 and found that ALK phosphorylated multiple tyrosine residues in APBB1 both in-cell and in-tube assays, with tyrosine 269 as a major target. In conclusion, we successfully identified a new substrate for receptor ALK. Our results may help further elucidate the molecular mechanism of ALK downstream signaling in neuroblastoma.

8.
Biochem Biophys Res Commun ; 735: 150484, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094232

RESUMEN

BACKGROUND: Endothelial hyperpermeability-induced vascular dysfunction is a prevalent and significant characteristic in critical illnesses such as sepsis and other conditions marked by acute systemic inflammation. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and Tie2 serve as transmembrane receptors within endothelial cells (ECs), playing pivotal roles not only in maintaining EC-EC junctions but also in influencing vasculogenesis, vessel homeostasis, and vascular remodeling. OBJECTIVES: At present, the molecular basis of the PECAM-1-Tie2 interaction remains inadequately elucidated. In the study, recombinant soluble PECAM-1 (sPECAM-1) and Tie2 (sTie2) were expressed by Drosophila S2 and HEK293 expression systems, respectively. The interactions between sPECAM-1 and sTie2 were investigated using the Surface Plasmon Resonance (SPR) and size-exclusion chromatography methods. An immunofluorescence assay was used to detect the binding of sPECAM-1 and sTie2 on endothelial cells. RESULTS: PECAM-1 was found to bind with sTie2 in a sodium and pH-dependent manner as confirmed by the ELISA, the D5-D6 domains of PECAM-1 might play a crucial role in binding with sTie2. Surface Plasmon Resonance (SPR) results showed that the full length of sPECAM-1 has the strongest binding affinity (KD = 48.4 nM) with sTie2, compared to sPECAM-1-D1-D4 and sPECAM-1-D1-D2. This result is consistent with that in the ELISA. In addition, size-exclusion chromatography demonstrated that sPECAM-1, sTie2, and Ang1 can form a ternary complex. CONCLUSION: In this study, we determined that sPECAM-1 binds to sTie2 in a pH and sodium-dependent manner. The full length of sPECAM-1 has the strongest binding affinity, and the D5-D6 domains in sPECAM-1 play a crucial role in the interaction between sPECAM-1 and sTie2.

9.
Int J Exp Pathol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138630

RESUMEN

Zinc levels in breast cancer tissues have been reported to be higher than those in normal tissues. In addition, the expression levels of zinc transporters, including ZnT5 and ZnT6, are reportedly higher in breast cancer than in normal breast tissues. ZnT5 and ZnT6 also contribute to heterodimer formation and are involved in several biological functions. However, the functions of ZnT5 and ZnT6 heterodimers in breast cancer remain unknown. Therefore, we first investigated the immunolocalization of ZnT5 and ZnT6 in pathological breast cancer specimens and in MCF-7 and T-47D breast cancer cells. Next, we used small interfering RNA to assess cell viability and migration in ZnT5 knockdown MCF-7 and T-47D cells. Immunohistochemical analysis showed that the number of ZnT5-positive breast cancer cells was inversely correlated with the pathologic N factor status. ZnT5 knockdown had no effect on cell viability in the presence of 100 µM ZnCl2 in MCF-7 and T-47D cells. In a wound healing assay, 100 µM ZnCl2 treatment inhibited cell migration of MCF-7 and T-47D cells, whereas ZnT5 knockdown promoted cell migration, decreased E-cadherin expression and increased vimentin, slug and matrix metalloproteinase 9 expression. Antibody arrays showed that ZnT5 knockdown increased the expression of SMAD1, and that dorsomorphin treatment inhibited the promotion of migratory ability induced by ZnT5 knockdown. The results of this study revealed that both ZnT5 may be involved in less aggressive breast cancer subtypes, possibly through inhibition of cell migration.

10.
BMC Musculoskelet Disord ; 25(1): 634, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118036

RESUMEN

BACKGROUND: Although rheumatoid arthritis (RA) is a chronic systemic tissue disease often accompanied by osteoporosis (OP), the molecular mechanisms underlying this association remain unclear. This study aimed to elucidate the pathogenesis of RA and OP by identifying differentially expressed mRNAs (DEmRNAs) and long non-coding RNAs (lncRNAs) using a bioinformatics approach. METHODS: Expression profiles of individuals diagnosed with OP and RA were retrieved from the Gene Expression Omnibus database. Differential expression analysis was conducted. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) pathway enrichment analyses were performed to gain insights into the functional categories and molecular/biochemical pathways associated with DEmRNAs. We identified the intersection of common DEmRNAs and lncRNAs and constructed a protein-protein interaction (PPI) network. Correlation analysis between the common DEmRNAs and lncRNAs facilitated the construction of a coding-non-coding network. Lastly, serum peripheral blood mononuclear cells (PBMCs) from patients with RA and OP, as well as healthy controls, were obtained for TRAP staining and qRT-PCR to validate the findings obtained from the online dataset assessments. RESULTS: A total of 28 DEmRNAs and 2 DElncRNAs were identified in individuals with both RA and OP. Chromosomal distribution analysis of the consensus DEmRNAs revealed that chromosome 1 had the highest number of differential expression genes. GO and KEGG analyses indicated that these DEmRNAs were primarily associated with " platelets (PLTs) degranulation", "platelet alpha granules", "platelet activation", "tight junctions" and "leukocyte transendothelial migration", with many genes functionally related to PLTs. In the PPI network, MT-ATP6 and PTGS1 emerged as potential hub genes, with MT-ATP6 originating from mitochondrial DNA. Co-expression analysis identified two key lncRNA-mRNA pairs: RP11 - 815J21.2 with MT - ATP6 and RP11 - 815J21.2 with PTGS1. Experimental validation confirmed significant differential expression of RP11-815J21.2, MT-ATP6 and PTGS1 between the healthy controls and the RA + OP groups. Notably, knockdown of RP11-815J21.2 attenuated TNF + IL-6-induced osteoclastogenesis. CONCLUSIONS: This study successfully identified shared dysregulated genes and potential therapeutic targets in individuals with RA and OP, highlighting their molecular similarities. These findings provide new insights into the pathogenesis of RA and OP and suggest potential avenues for further research and targeted therapies.


Asunto(s)
Artritis Reumatoide , Biología Computacional , Perfilación de la Expresión Génica , Osteoporosis , ARN Largo no Codificante , Humanos , Artritis Reumatoide/genética , ARN Largo no Codificante/genética , Osteoporosis/genética , Mapas de Interacción de Proteínas , ARN Mensajero/genética , Redes Reguladoras de Genes , Femenino , Masculino , Ontología de Genes , Transcriptoma
11.
Sci Rep ; 14(1): 19099, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154065

RESUMEN

Copper chaperones of the ATX1 family are found in a wide range of organisms where these essential soluble carriers strictly control the transport of monovalent copper across the cytoplasm to various targets in diverse cellular compartments thereby preventing detrimental radical formation catalyzed by the free metal ion. Notably, the ATX1 family in plants contains two distinct forms of the cellular copper carrier. In addition to ATX1 having orthologs in other species, they also contain the copper chaperone CCH. The latter features an extra C-terminal extension whose function is still unknown. The secondary structure of this extension was predicted to be disordered in previous studies, although this has not been experimentally confirmed. Solution NMR studies on purified CCH presented in this study disclose that this region is intrinsically disordered regardless of the chaperone's copper loading state. Further biophysical analyses of the purified metallochaperone provide evidence that the C-terminal extension stabilizes chaperone dimerization in the copper-free and copper-bound states. A variant of CCH lacking the C-terminal extension, termed CCHΔ, shows weaker dimerization but similar copper binding. Computational studies further corroborate the stabilizing role of the C-terminal extension in chaperone dimerization and identify key residues that are vital to maintaining dimer stability.


Asunto(s)
Cobre , Chaperonas Moleculares , Multimerización de Proteína , Cobre/metabolismo , Cobre/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Unión Proteica , Arabidopsis/metabolismo , Modelos Moleculares
12.
Arch Pharm (Weinheim) ; : e2400418, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086040

RESUMEN

Green seaweed (Ulva sp.) is frequently used as a food component and nutraceutical agent because of its high polysaccharide and natural fiber content in Asian countries. This study investigates both metabolomic profiling of Ulva sp. and the neuroprotective efficacy of its ethanol extract and its underlying mechanisms in a rotenone-induced rat model of neurodegeneration, mimicking Parkinson's disease (PD) in humans. Metabolomic profiling of Ulva sp. extract was done using liquid chromatography high resolution electrospray ionization mass spectrometry and led to the identification of 22 compounds belonging to different chemical classes.Catenin Beta Additionally, this study demonstrated the neuroprotective properties against rotenone-induced PD, which was achieved through the suppression of elevated levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 together with the inhibition of reactive oxygen species (ROS) generation, apoptosis, inflammatory mediators, and the phosphoinositide 3-kinases/serine/threonine protein kinase (PI3K/AKT) pathway. Using a protein-protein interaction network, AKT1, GAPDH, TNF-α, IL-6, caspase 3, signal transducer and activator of transcription 3, Catenin Beta 1, epidermal growth factor receptor, B-cell lymphoma -2, and HSP90AA1 were identified as the top 10 most significant genes. Finally, molecular docking results showed that compounds 1, 3, and 7 might possess a promising anti-parkinsonism effect by binding to active sites of selected hub genes. Therefore, it is hypothesized that the Ulva sp. extract has the potential to be further developed as a potential therapeutic agent for the treatment of PD.

13.
J Biosci Bioeng ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122620

RESUMEN

Protein-based therapeutics, including antibodies and antibody-like-proteins, have increasingly attracted attention due to their high specificity compared to small-molecular drugs. The Gγ recruitment system, one of the in vivo yeast two-hybrid systems for detecting protein-protein interactions, has been previously developed using yeast signal transduction machinery. In this study, we modified the Gγ recruitment system to screen the protein mutants that efficiently bind to the intracellular domain of the epidermal growth factor receptor L858R mutant (cytoEGFRL858R). Using the modified platform, we performed in vivo directed evolution for growth factor receptor-bound protein 2 (Grb2) and its truncated variant containing only the Src-homology 2 (SH2) domain, successfully identifying several mutants that more strongly bound to cytoEGFRL858R than their parental proteins. Some of them contained novel beneficial mutations (F108Y and Q144H) and specifically bound to the recombinant cytosolic phosphorylated EGFR in vitro, highlighting the utility of the evolutionary platform.

14.
Front Cell Dev Biol ; 12: 1377172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156977

RESUMEN

Pregnancy is a complex process involving complex molecular interaction networks, such as between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite interactions. Advances in technology have led to the identification of many pregnancy-associated microRNA (miRNA), protein, and metabolite fingerprints in dairy cows. An array of miRNA, protein, and metabolite fingerprints produced during the early pregnancy of dairy cows were described. We have found the in silico interaction networks between miRNA-protein, protein-protein, metabolite-metabolite, and protein-metabolite. We have manually constructed miRNA-protein-metabolite interaction networks such as bta-miR-423-3p-IGFBP2-PGF2α interactomes. This interactome is obtained by manually combining the interaction network formed between bta-miR-423-3p-IGFBP2 and the interaction network between IGFBP2-PGF2α with IGFBP2 as a common interactor with bta-miR-423-3p and PGF2α with the provided sources of evidence. The interaction between bta-miR-423-3p and IGFBP2 has many sources of evidence including a high miRanda score of 169, minimum free energy (MFE) score of -25.14, binding probability (p) of 1, and energy of -25.5. The interaction between IGFBP2 and PGF2α occurs at high confidence scores (≥0.7 or 70%). Interestingly, PGF2α is also found to interact with different metabolites, such as PGF2α-PGD2, PGF2α-thromboxane B2, PGF2α-PGE2, and PGF2α-6-keto-PGF1α at high confidence scores (≥0.7 or 70%). Furthermore, the interactions between C3-PGE2, C3-PGD2, PGE2-PGD2, PGD2-thromboxane B2, PGE2-thromboxane B2, 6-keto-PGF1α-thromboxane B2, and PGE2-6-keto-PGF1α were also obtained at high confidence scores (≥0.7 or 70%). Therefore, we propose that miRNA-protein-metabolite interactomes involving miRNA, protein, and metabolite fingerprints of early pregnancy of dairy cows such as bta-miR-423-3p, IGFBP2, PGF2α, PGD2, C3, PGE2, 6-keto-PGF1 alpha, and thromboxane B2 may form the key regulatory networks and players of pregnancy regulation in dairy cows. This is the first study involving miRNA-protein-metabolite interactomes obtained in the early pregnancy stage of dairy cows.

15.
J Biol Chem ; : 107685, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159818

RESUMEN

Tetraspanins, including CD53 and CD81, are four-transmembrane proteins that affect the membrane organization to regulate cellular processes including migration, proliferation and signaling. However, it is unclear how the organizing function of tetraspanins is regulated at the molecular level. Here we investigated whether recently proposed 'open' and 'closed' conformations of tetraspanins regulate the nanoscale organization of the plasma membrane of B cells. We generated conformational mutants of CD53 (F44E) and CD81 (4A, E219Q) that represent the 'closed' and 'open' conformation, respectively. Surface expression of these CD53 and CD81 mutants was comparable to that of wildtype (WT) protein. Localization of mutant tetraspanins into nanodomains was visualized by super-resolution dSTORM microscopy. Whereas the size of these nanodomains was unaffected by conformation, the clustered fraction of 'closed' CD53 was higher and of 'open' CD81 lower than respective WT protein. In addition, knock-out cells lacking CD53 showed an increased likelihood of clustering of its partner CD45. Interestingly, 'closed' CD53 interacted more with CD45 than WT CD53. Absence of CD81 lowered the cluster size of its partner CD19, and 'closed' CD81 interacted less with CD19 than WT CD81, but 'open' CD81 did not affect CD19 interaction. However, none of the tetraspanin conformations made significant impact on the nanoscale organization of their partners CD19 or CD45. Taken together, conformational mutations of CD53 and CD81 differentially affect their nanoscale organization, but not the organization of their partner proteins. This study improves the molecular insight into cell surface nanoscale organization by tetraspanins.

16.
Plants (Basel) ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124188

RESUMEN

As a crucial member of the gene family involved in the biosynthesis of strigolactones, D27 plays an important regulatory role in plant branching and root development, which is essential for field management and yield increase in peppers (Capsicum annuum L.). To comprehensively understand the characteristics of the pepper D27 gene family, we identified three CaD27 genes. By analyzing their physicochemical properties, phylogenetic relationships, gene structures, promoters, and expression patterns in different tissues, the characteristics of the CaD27 gene family were revealed. The research results showed that these three CaD27 genes are located in three different chromosomes. Evolutionary analysis divided the members of CaD27 into three groups, and gene collinearity analysis did not find any duplicates, indicating the diversity and non-redundancy of the CaD27 gene family members. In addition, we identified and classified cis-elements in the promoter regions of CaD27 genes, with a relatively high proportion related to light and plant hormone responses. Expression pattern analysis showed that CaD27.1 is expressed in leaves, while CaD27.2 is expressed in roots, indicating tissue specificity. Furthermore, protein interaction predictions revealed an interaction between D27.2 and CCD7. This study provided important insights into the function and regulatory mechanisms of the CaD27 gene family and the role of strigolactones in plant growth and development.

17.
J Mol Biol ; : 168737, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102976

RESUMEN

The study of protein-protein interactions (PPIs) holds immense significance in understanding various biological activities, as well as in drug discovery and disease diagnosis. Existing deep learning methods for PPI prediction, including graph neural networks (GNNs), have been widely employed as the solutions, while they often experience a decline in performance in the real world. We claim that the topological shortcut is one of the key problems contributing negatively to the performance, according to our analysis. By modeling the PPIs as a graph with protein as nodes and interactions as edge types, the prevailing models tend to learn the pattern of nodes' degrees rather than intrinsic sequence-structure profiles, leading to the problem termed topological shortcut. The huge data growth of PPI leads to intensive computational costs and challenges computing devices, causing infeasibility in practice. To address the discussed problems, we propose a label-aware hierarchical subgraph learning method (laruGL-PPI) that can effectively infer PPIs while being interpretable. Specifically, we introduced edge-based subgraph sampling to effectively alleviate the problems of topological shortcuts and high computing costs. Besides, the inner-outer connections of PPIs are modeled as a hierarchical graph, together with the dependencies between interaction types constructed by a label graph. Extensive experiments conducted across various scales of PPI datasets have conclusively demonstrated that the laruGL-PPI method surpasses the most advanced PPI prediction techniques currently available, particularly in the testing of unseen proteins. Also, our model can recognize crucial sites of proteins, such as surface sites for binding and active sites for catalysis.

18.
Gene ; 930: 148814, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116958

RESUMEN

Epoxyazadiradione is an important limonoid with immense pharmacological potential. We have reported previously that epoxyazadiradione (EAD) induces apoptosis in triple negative breast cancer cells (MDA-MB 231) by modulating diverse cellular targets. Here, we identify the key genes/pathways responsible for this effect through next-generation sequencing of the transcriptome from EAD treated cells and integrated molecular data analysis using bioinformatics. In silico analysis indicated that EAD displayed favourable drug-like properties and could target multiple macromolecules relevant to TNBC. RNA sequencing revealed that EAD treatment results in the differential expression of 1838 genes in MDA-MB 231 cells, with 752 downregulated and 1086 upregulated. Gene set enrichment analysis of these genes suggested that EAD disrupts protein folding in the endoplasmic reticulum, triggering the unfolded protein response (UPR) and potentially leading to cell death. EAD also induced oxidative stress and DNA damage, downregulated pathways linked to metabolism, cell cycle progression, pro-survival signalling, cell adhesion, motility and inflammatory response. The identification of protein cluster and hub genes were also done. The validation of the identified hub genes gave an inverse correlation between their expression in EAD treated cells and TNBC patient samples. Thus, the identified hub genes could be explored as therapeutic or diagnostic markers for TNBC. Hence, EAD appears to be a promising therapeutic candidate for TNBC by targeting various hallmarks of cancer, including cell death resistance, uncontrolled proliferation and metastasis. To conclude, the identified pathways and validated targets for EAD will provide a roadmap for further in vivo studies and preclinical/clinical validation required for potential drug development.

19.
BMC Cancer ; 24(1): 991, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39128984

RESUMEN

BACKGROUND: Our previous study demonstrated that ß2-microglobulin (ß2M) promoted ER+/HER2- breast cancer survival via the SGK1/Bcl-2 signaling pathway. However, the role of ß2M has not been investigated in ER-/HER2+ breast cancer. Here, we aimed to determine the role of ß2M in ER-/HER2+ breast cancer. METHODS: The interaction between ß2M and HFE was confirmed by co-immunoprecipitation, mass spectrometry, yeast two-hybrid screening, and His pull-down. The knockdown and overexpression of ß2M or HFE were performed in MDA-MB-453 cells, and ERK signaling pathway was subsequently analyzed via western blotting. Apoptotic cells were detected using flow cytometer. ß2M, HFE, and p-ERK1/2 were examined in tumor and paired adjacent tissues via immunohistochemistry. RESULTS: HFE was found to be an interacting protein of ß2M in ER-/HER2+ breast cancer cells MDA-MB-453 by co-immunoprecipitation and mass spectrometry. A yeast two-hybrid system and His-pull down experiments verified that ß2M directly interacted with HFE. ß2M and HFE as a complex were mainly located in the cytoplasm, with some on the cytomembrane of MDA-MB-453 cells. In addition to breast cancer cells BT474, endogenous ß2M directly interacted with HFE in breast cancer cells MDA-MB-453, MDA-MB-231, and MCF-7. ß2M activated the ERK signaling pathway by interacting with HFE and induced apoptosis of MDA-MB-453 cells. The expression of HFE and p-ERK1/2 showed significantly high levels in HER2-overexpressing breast cancer tumor tissue compared with adjacent normal tissue, consistent with the results obtained from the cell experiments. CONCLUSIONS: ß2M induced apoptosis of tumor cells via activation of the ERK signal pathway by directly interacting with HFE in HER2-overexpressing breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Proteína de la Hemocromatosis , Sistema de Señalización de MAP Quinasas , Receptor ErbB-2 , Microglobulina beta-2 , Humanos , Microglobulina beta-2/metabolismo , Microglobulina beta-2/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Línea Celular Tumoral , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Unión Proteica , Regulación Neoplásica de la Expresión Génica
20.
J Bacteriol ; : e0027124, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136451

RESUMEN

Pathogenic mycobacteria are a significant global health burden. The ESX-1 secretion system is essential for mycobacterial pathogenesis. The secretion of ESX-1 substrates is required for phagosomal lysis, which allows the bacteria to enter the macrophage cytoplasm, induce a Type I IFN response, and spread to new host cells. EspE and EspF are dual-functioning ESX-1 substrates. Inside the mycobacterial cell, they regulate transcription of ESX-1-associated genes. Following secretion, EspE and EspF are essential for lytic activity. The link between EspE/F secretion and regulatory function has not been investigated. We investigated the relationship between EspE and EspF using molecular genetics in Mycobacterium marinum, a non-tuberculous mycobacterial species that serves as an established model for ESX-1 secretion and function in Mycobacterium tuberculosis. Our data support that EspE and EspF, which require each other for secretion, directly interact. The disruption of the predicted protein-protein interaction abrogates hemolytic activity and secretion but does not impact their gene regulatory activities in the mycobacterial cell. In addition, we predict a direct protein-protein interaction between the EsxA/EsxB heterodimer and EspF. Our data support that the EspF/EsxA interaction is also required for hemolytic activity and EspE secretion. Our study sheds light on the intricate molecular mechanisms governing the interactions between ESX-1 substrates, regulatory function, and ESX-1 secretion, moving the field forward.IMPORTANCETuberculosis (TB), caused by Mycobacterium tuberculosis, is a historical and pervasive disease responsible for millions of deaths annually. The rise of antibiotic and treatment-resistant TB, as well as the rise of infection by non-tuberculous mycobacterial species, calls for a better understanding of pathogenic mycobacteria. The ESX-1 secreted substrates, EspE and EspF, are required for mycobacterial virulence and may be responsible for phagosomal lysis. This study focuses on the mechanism of EspE and EspF secretion from the mycobacterial cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...