Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
2.
Neurosci Insights ; 19: 26331055241270591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148643

RESUMEN

Even before the advent of fMRI, the amygdala occupied a central space in the affective neurosciences. Yet this amygdala-centred view on emotion processing gained even wider acceptance after the inception of fMRI in the early 1990s, a landmark that triggered a goldrush of fMRI studies targeting the amygdala in vivo. Initially, this amygdala fMRI research was mostly confined to task-activation studies measuring the magnitude of the amygdala's response to emotional stimuli. Later, interest began to shift more towards the study of the amygdala's resting-state functional connectivity and task-based psychophysiological interactions. Later still, the test-retest reliability of amygdala fMRI came under closer scrutiny, while at the same time, amygdala-based real-time fMRI neurofeedback gained widespread popularity. Each of these major subdomains of amygdala fMRI research has left its marks on the field of affective neuroscience at large. The purpose of this review is to provide a critical assessment of this literature. By integrating the insights garnered by these research branches, we aim to answer the question: What part (if any) can amygdala fMRI still play within the current landscape of affective neuroscience? Our findings show that serious questions can be raised with regard to both the reliability and validity of amygdala fMRI. These conclusions force us to cast doubt on the continued viability of amygdala fMRI as a core pilar of the affective neurosciences.

3.
Brain Lang ; 252: 105414, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640643

RESUMEN

Childhood poverty is related to deficits in multiple cognitive domains including adult language function. It is unknown if the brain basis of language is disrupted in adults with childhood poverty backgrounds, controlling for current functioning. Fifty-one adults (age 24) from an existing longitudinal study of childhood poverty, beginning at age 9, were examined on behavioral phonological awareness (LP) and completed an event-related fMRI speech/print processing LP task. Adults from childhood poverty backgrounds exhibited lower LP in adulthood. The middle-income group exhibited greater activation of the bilateral IFG and hippocampus during language processing. In psychophysiological interaction (PPI) analyses, the childhood poverty group exhibited greater coupling between ventral Broca's and the middle temporal gyrus (MTG) as well as coupling between Wernicke's region and bilateralization. Childhood poverty disrupts language processing neural networks in adulthood, after controlling for LP, suggesting that poverty in childhood influences the neurophysiological basis for language processing into adulthood.


Asunto(s)
Encéfalo , Lenguaje , Imagen por Resonancia Magnética , Pobreza , Humanos , Femenino , Masculino , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Niño , Adulto , Estudios Longitudinales , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico
4.
Skin Res Technol ; 30(2): e13626, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385847

RESUMEN

BACKGROUND: The complex network connections, information transmission and organization play key roles in brain cognition on sensory stimulation. Previous studies showed that several brain regions of somatosensory, motor, emotional, cognitive, etc. are linked to fabric-evoked prickle. But the functional connectivity characteristics of the brain network involved in prickle perception is still unclear. MATERIALS AND METHODS: In the present study, resting state fMRI (functional magnetic resonance imaging) with functional connectivity analysis was adopted to build the initial brain functional network, and task fMRI with psychophysiological interaction analysis was employed to investigate modulation features of prickling task to functional connections in the brain network. RESULTS: The results showed that, in resting state, six groups or sub-networks can be identified in the prickle network, and when the subjects performed the prickling task, functional connectivity strength between some seed regions (e.g., somatosensory regions and precuneus, emotional regions and the prefrontal cortex, etc.) in the network increased. CONCLUSION: Combining resting-state fMRI with task fMRI is a feasible and promising method to study functional connectivity characteristics of the brain network involved in prickle perception. It is inferred that the "itch" ingredient of prickle sensation was transmitted from somatosensory cortices to precuneus, and emotional attribute (e.g., pain) from somatosensory cortices to the prefrontal cortex and at last to emotional regions.


Asunto(s)
Encéfalo , Emociones , Humanos , Encéfalo/diagnóstico por imagen , Cognición , Dolor , Percepción
5.
Brain Connect ; 14(2): 92-106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265003

RESUMEN

Background: Properties of functional connectivity (FC), such as network integration and segregation, are shown to be associated with various human behaviors. For example, Godwin et al. and Sun et al. found increased integration with attention allocation, whereas Cohen and D'Esposito and Shine et al. observed increased segregation with simple motor tasks. The current study investigated how viewing video clips with different valence and arousal influenced integration-segregation properties in task-based FC networks. Methods: We analyzed an open dataset collected by Kim et al. We performed a generalized psychophysiological interaction (gPPI) analysis paired with network analysis and community detection to investigate changes in brain network dynamics when people watched four types of videos that differed by affective valence (unpleasant or pleasant) and arousal (arousing or calm). Results: Results showed that unpleasant arousing videos produced greater FC deviation from the baseline (task-induced FC deviation [tiFCd]) and perturbed the brain into a more segregated state than other kinds of video. Increased segregation was only observed in association systems, not sensorimotor systems. Discussion: Unpleasant arousing content perturbed the brain to a functionally distinct state from the other three types of affective videos. We suggest that the change in brain state was related to people disengaging from the unpleasant arousing content or, alternatively, staying alert while exposed to unpleasant arousing stimuli. The study also added to our understanding of how combining task-based gPPI analysis with community detection methods and network segregation measures can advance our knowledge of the links between behavior and brain state changes. Impact statement Network integration and segregation is an important property of the human brain. We address the question of how affective stimuli influence brain dynamics from a functional connectivity (FC) network integration-segregation perspective. By conducting a whole-brain generalized psychophysiological interaction (gPPI) analysis paired with community detection methods, we found that highly aversive video content induced significant FC changes and perturbed the brain to a more segregated state.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/fisiología , Vigilia , Emociones/fisiología , Atención/fisiología , Mapeo Encefálico/métodos
6.
Neurosci Lett ; 818: 137558, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007086

RESUMEN

Previous studies have primarily focused on the relationship between native language (L1) and second language (L2) in the brain, specifically in one language modality, such as written or spoken language. However, there is limited research on how L2 proficiency impacts both modalities. This study aimed to investigate the functional networks involved in reading and speech comprehension for both L1 and L2, and observe changes in these networks as L2 proficiency improves. The dataset used in this study was obtained from a previous research conducted by Gurunandan et al., which involved Spanish-English bilingual participants undergoing a three-month English training program. Participants underwent fMRI scanning and performed a semantic animacy judgment task in both spoken and written language before and after training. Through analysis, distinct neural networks associated with spoken and written language were found between individuals' L1 and L2, both before and after training. Moreover, as L2 proficiency improved, the spoken and written networks for L2 remained distinct from those of the L1. These findings suggest that short-term L2 learning experiences can modify neural networks, but may not be enough to achieve native-like proficiency, supporting the accommodation hypothesis. These results have important implications for language learning and education, indicating that additional short-term training and exposure alone may not bridge the gap between L1 and L2 processing networks.


Asunto(s)
Multilingüismo , Web Semántica , Humanos , Aprendizaje , Lenguaje , Encéfalo
7.
Front Neurol ; 14: 1270783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116106

RESUMEN

Introduction: The acknowledged role of external rewards in chronic stroke rehabilitation, offering positive reinforcement and motivation, has significantly contributed to patient engagement and perseverance. However, the exploration of self-reward's importance in this context remains limited. This study aims to investigate the functional connectivity of the ventral tegmental area (VTA), a key node in the brain's reward circuitry, during motor task-based rehabilitation and its correlation with the recovery process. Methods: Twelve right-handed healthy volunteers (4 men, 8 women, aged 57.4 ± 11.3 years) and twelve chronic stroke patients (5 men, 7 women, aged 48.1 ± 11.1 years) with clinically significant right-sided motor impairment (mean FM-UE score of 27.6 ± 8.7) participated. The analysis employed the CONN toolbox to assess the association between motor tasks and VTA connectivity using psychophysiological interaction (PPI). Results: PPI analysis revealed motor-dependent changes in VTA connectivity, particularly with regions within the motor circuitry, cerebellum, and prefrontal cortex. Notably, stronger connectivity between the ipsilesional VTA and cerebellum was observed in healthy controls compared to chronic stroke patients, highlighting the importance of VTA-cerebellum interactions in motor function. Stroke patients' motor performance was associated with VTA modulation in areas related to both motor tasks and reward processing, emphasizing the role of self-reward processes in rehabilitation. Changes in VTA influence on motor circuitry were linked to improvements in motor performance resulting from rehabilitation. Discussion: Our findings underscore the potential of neuroimaging techniques in quantifying and predicting rehabilitation outcomes by examining self-reward processes. The observed associations between VTA connectivity and motor performance in both healthy and stroke-affected individuals emphasize the role of psychological factors, particularly self-reward, in the rehabilitation process. This study contributes valuable insights into the intricate interplay between reward circuits and motor function, highlighting the importance of addressing psychological dimensions in neurorehabilitation strategies.

8.
Hum Brain Mapp ; 44(16): 5460-5470, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37683103

RESUMEN

Although it was acknowledged that patients with obsessive-compulsive disorder (OCD) would exhibit cognitive inflexibility, the underlying neural mechanism has not been fully clarified. Therefore, this study aimed to investigate the neural substrates involved in cognitive inflexibility among individuals with OCD. A total of 42 patients with OCD and 48 healthy controls (HCs) completed clinical assessment and functional magnetic resonance imaging (fMRI) data collection during cued task switching. Behavioral performances and fMRI activation were compared between the OCD group and the HC group. Psychophysiological interactions (PPIs) analyses were applied to explore functional connectivity related to task switching. Pearson correlation was used to investigate the relationships among behavioral performance, fMRI activity, and obsessive-compulsive symptoms in OCD. The OCD group had a greater switch cost than HCs (χ2 = 5.89, p < .05). A significant difference in reaction time was found during switch (χ2 = 17.72, p < .001) and repeat (χ2 = 16.60, p = .018) between the two groups, while there was no significant difference in group accuracy. Comparison of group differences showed that the OCD group had increased activation in the right superior parietal cortex (rSPL) during task switching, and exhibited increased connectivity of frontoparietal network/default mode network (FPN-DMN; i.e., middle frontal gyrus [MFG]/inferior parietal cortex-precuneus, MFG-middle/posterior cingulate gyrus) and within the FPN (inferior parietal cortex-postcentral gyrus). In the OCD group, the compulsion score was positively correlated with accuracy during switch (r = .405, p = .008, FDRq <.05), and negatively correlated with activation of rSPL (r = -.328, p = .034, FDRq >.05). Patients with OCD had impaired cognitive flexibility and cautious response strategy. The neural mechanism of cognitive inflexibility in OCD may involve increased activation in the rSPL, as well as hyperconnectivity within the FPN and between the FPN and DMN.


Asunto(s)
Mapeo Encefálico , Trastorno Obsesivo Compulsivo , Humanos , Mapeo Encefálico/métodos , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética/métodos
9.
Behav Brain Funct ; 19(1): 12, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454095

RESUMEN

BACKGROUND: Stressful events and meaning-making toward them play an important role in adolescents' life and growth. However, ignoring positive stressful events leads to negativity bias; further, the neural mechanisms of meaning-making are unclear. We aimed to verify the mediating role of meaning-making in stressful events and stress-related growth and the function of the default mode network (DMN) during meaning-making in this functional magnetic resonance imaging (fMRI) study. METHODS: Participants comprised 59 university students. Stressful life events, meaning-making, and stress-related growth were assessed at baseline, followed by fMRI scanning during a meaning-making task aroused by mental simulation. General linear modeling and psychophysiological interaction (PPI) analyses were used to explore the activation and functional connectivity of DMN during meaning-making. RESULTS: Mental simulation triggered meaning-making, and DMN activity decreased during meaning-making. Activation of the DMN was negatively correlated with coping flexibility, an indicator of stress-related growth. PPI analysis showed that meaning-making was accompanied by diminished connectivity in the DMN. DMN activation during meaning-making can mediate the relationship between positive stressful events and coping flexibility. CONCLUSIONS: Decreased DMN activity and diminished functional connectivity in the DMN occurred during meaning-making. Activation of the DMN during meaning-making could mediate the relationship between positive stressful events and stress-related growth, which provides a cognitive neural basis for the mediating role of meaning-making in the relationship between stressful events and indicators of stress-related growth. IMPLICATIONS: This study supports the idea that prosperity makes heroes, expands the meaning-making model, and suggests the inclusion of enhancing personal resources and meaning-making in education. This study was the first to validate the activation pattern and functional connectivity of the DMN during meaning-making aroused by mental simulation using an fMRI task-state examination, which can enhance our sense of meaning and provide knowledge that can be used in clinical psychology interventions. TRIAL REGISTRATION: The study protocol was pre-registered in Open Science Framework (see osf.io/ahm6e for details).


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Red en Modo Predeterminado , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología
10.
Psychopharmacology (Berl) ; 240(10): 2045-2060, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37500785

RESUMEN

RATIONALE: Working memory deficits and associated neurofunctional abnormalities are frequently reported in attention-deficit/hyperactivity disorder (ADHD). Methylphenidate and atomoxetine improve working memory performance and increase activation of regions under-functioning in ADHD. Additionally, methylphenidate has been observed to modulate functional networks involved in working memory. No research, however, has examined the effects of atomoxetine or compared the two drugs. OBJECTIVES: This study aimed to test methylphenidate and atomoxetine effects on functional connectivity during working memory in boys with ADHD. METHODS: We tested comparative effects of methylphenidate and atomoxetine on functional connectivity during the n-back task in 19 medication-naïve boys with ADHD (10-15 years old) relative to placebo and assessed potential normalisation effects of brain dysfunctions under placebo relative to 20 age-matched neurotypical boys. Patients were scanned in a randomised, double-blind, cross-over design under single doses of methylphenidate, atomoxetine, and placebo. Controls were scanned once, unmedicated. RESULTS: Patients under placebo showed abnormally increased connectivity between right superior parietal gyrus (rSPG) and left central operculum/insula. This hyperconnectivity was not observed when patients were under methylphenidate or atomoxetine. Furthermore, under methylphenidate, patients showed increased connectivity relative to controls between right middle frontal gyrus (rMFG) and cingulo-temporo-parietal and striato-thalamic regions, and between rSPG and cingulo-parietal areas. Interrogating these networks within patients revealed increased connectivity between both rMFG and rSPG and right supramarginal gyrus under methylphenidate relative to placebo. Nonetheless, no differences across drug conditions were observed within patients at whole brain level. No drug effects on performance were observed. CONCLUSIONS: This study shows shared modulating effects of methylphenidate and atomoxetine on parieto-insular connectivity but exclusive effects of methylphenidate on connectivity increases in fronto-temporo-parietal and fronto-striato-thalamic networks in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Metilfenidato , Masculino , Humanos , Niño , Adolescente , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/uso terapéutico , Encéfalo , Lóbulo Frontal , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Imagen por Resonancia Magnética
11.
Brain Sci ; 13(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37190657

RESUMEN

BACKGROUND: Theory of Mind (ToM) is an ability to infer the mental state of others, which plays an important role during social events. Previous studies have shown that ToM deficits exist frequently in schizophrenia, which may result from abnormal activity in brain regions related to sociality. However, the interactions between brain regions during ToM processing in schizophrenia are still unclear. Therefore, in this study, we investigated functional connectivity during ToM processing in patients with schizophrenia, using functional magnetic resonance imaging (fMRI). METHODS: A total of 36 patients with schizophrenia and 33 healthy controls were recruited to complete a ToM task from the Human Connectome Project (HCP) during fMRI scanning. Psychophysiological interaction (PPI) analysis was applied to explore functional connectivity. RESULTS: Patients with schizophrenia were less accurate than healthy controls in judging social stimuli from non-social stimuli (Z = 2.31, p = 0.021), and displayed increased activity in the right inferior frontal gyrus and increased functional connectivity between the bilateral middle temporal gyrus and the ipsilateral parahippocampal gyrus during ToM processing (AlphaSim corrected p < 0.05). CONCLUSIONS: Here, we showed that the brain regions related to sociality interact more with the parahippocampal gyrus in patients with schizophrenia during ToM processing, which may reflect a possible compensatory pathway of ToM deficits in schizophrenia. Our study provides a new idea for ToM deficits in schizophrenia, which could be helpful to better understand social cognition of schizophrenia.

12.
Neuroscience ; 519: 23-30, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-36871882

RESUMEN

Time estimation is fundamental for human survival. There have been increasing studies suggesting that distributed brain regions, such as the basal ganglia, cerebellum and the parietal cortex, may contribute to a dedicated neural mechanism of time estimation. However, evidence on the specific function of the subcortical and cortical brain regions and the interplay of them is scare. In this work, we explored how the subcortical and cortical networks function in time estimation during a time reproduction task using functional MRI (fMRI). Thirty healthy participants performed the time reproduction task in both auditory and visual modalities. Results showed that time estimation in visual and auditory modality recruited a subcortical-cortical brain network including the left caudate, left cerebellum, and right precuneus. Besides, the superior temporal gyrus (STG) was found essential in the difference between time estimation in visual and auditory modality. Using psychophysiological interaction (PPI) analysis, we observed an increase in the connection between left caudate and left precuneus using the left caudate as the seed region in temporal reproduction task than control task. This suggested that the left caudate is the key region connecting and transmitting information to other brain regions in the dedicated brain network of time estimation.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Ganglios Basales/fisiología , Imagen por Resonancia Magnética/métodos , Lóbulo Parietal/fisiología
14.
Neurobiol Pain ; 13: 100114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36660198

RESUMEN

Dysfunctional top-down pain modulation is a hallmark of fibromyalgia (FM) and physical exercise is a cornerstone in FM treatment. The aim of this study was to explore the effects of a 15-week intervention of strengthening exercises, twice per week, supervised by a physiotherapist, on exercise-induced hypoalgesia (EIH) and cerebral pain processing in FM patients and healthy controls (HC). FM patients (n = 59) and HC (n = 39) who completed the exercise intervention as part of a multicenter study were examined at baseline and following the intervention. Following the exercise intervention, FM patients reported a reduction of pain intensity, fibromyalgia severity and depression. Reduced EIH was seen in FM patients compared to HC at baseline and no improvement of EIH was seen following the 15-week resistance exercise intervention in either group. Furthermore, a subsample (Stockholm site: FM n = 18; HC n = 19) was also examined with functional magnetic resonance imaging (fMRI) during subjectively calibrated thumbnail pressure pain stimulations at baseline and following intervention. A significant main effect of exercise (post > pre) was observed both in FM patients and HC, in pain-related brain activation within left dorsolateral prefrontal cortex and caudate, as well as increased functional connectivity between caudate and occipital lobe bordering cerebellum (driven by the FM patients). In conclusion, the results indicate that 15-week resistance exercise affect pain-related processing within the cortico-striatal-occipital networks (involved in motor control and cognition), rather than directly influencing top-down descending pain inhibition. In alignment with this, exercise-induced hypoalgesia remained unaltered.

15.
Front Neurol ; 13: 956931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530615

RESUMEN

Introduction: Post-stroke aphasia (PSA) is a language disorder caused by left hemisphere stroke. Electroacupuncture (EA) is a minimally invasive therapeutic option for PSA treatment. Tongli (HT5) and Xuanzhong (GB39), two important language-associated acupoints, are frequently used in the rehabilitation of patients with PSA. Preliminary evidence indicated functional activation in distributed cortical areas upon HT5 and GB39 stimulation. However, research on the modulation of dynamic and static functional connectivity (FC) in the brain by EA in PSA is lacking. Method: This study aimed to investigate the PSA-related effects of EA stimulation at HT5 and GB39 on neural processing. Thirty-five participants were recruited, including 19 patients with PSA and 16 healthy controls (HCs). The BOLD signal was analyzed by static independent component analysis, generalized psychophysiological interactions, and dynamic independent component analysis, considering variables such as age, sex, and years of education. Results: The results revealed that PSA showed activated clusters in the left putamen, left postcentral gyrus (PostCG), and left angular gyrus in the salience network (SN) compared to the HC group. The interaction effect on temporal properties of networks showed higher variability of SN (F = 2.23, positive false discovery rate [pFDR] = 0.017). The interaction effect on static FC showed increased functional coupling between the right calcarine and right lingual gyrus (F = 3.16, pFDR = 0.043). For the dynamic FC, at the region level, the interaction effect showed lower variability and higher frequencies of circuit 3, with the strongest connections between the supramarginal gyrus and posterior cingulum (F = 5.42, pFDR = 0.03), middle cingulum and PostCG (F = 5.27, pFDR = 0.036), and triangle inferior frontal and lingual gyrus (F = 5.57, pFDR = 0.026). At the network level, the interaction effect showed higher variability in occipital network-language network (LN) and cerebellar network (CN) coupling, with stronger connections between the LN and CN (F = 4.29, pFDR = 0.042). Dynamic FC values between the triangle inferior frontal and lingual gyri were anticorrelated with transcribing, describing, and dictating scores in the Chinese Rehabilitation Research Center for Chinese Standard Aphasia Examination. Discussion: These findings suggest that EA stimulation may improve language function, as it significantly modulated the nodes of regions/networks involved in the LN, SN, CN, occipital cortex, somatosensory regions, and cerebral limbic system.

16.
Neuroimage ; 264: 119744, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368500

RESUMEN

The reward system implemented in the midbrain, ventral striatum, orbitofrontal cortex, and ventromedial prefrontal cortex evaluates and compares various types of rewards given to the organisms. It has been suggested that autonomic factors influence reward-related processing via the hypothalamus, but how the hypothalamus modulates the reward system remains elusive. In this functional magnetic resonance imaging study, the hypothalamus was parcellated into individual hypothalamic nuclei performing different autonomic functions using boundary mapping parcellation analyses. The effective interaction during subjective evaluation of foods in a reward task was then investigated between the human hypothalamic nuclei and the reward-related regions. We found significant brain activity decrease in the paraventricular nucleus (PVH) and lateral nucleus in the hypothalamus in food evaluation compared with monetary evaluation. A psychophysiological interaction analysis revealed dual interactions between the PVH and (1) midbrain region and (2) ventromedial prefrontal cortex, with the former correlated with the stronger tendency of participants toward food-seeking. A dynamic causal modeling analysis further revealed unidirectional interactions from the PVH to the midbrain and ventromedial prefrontal cortex. These results suggest that the PVH in the human hypothalamus interacts with the reward-related regions in the cerebral cortex via multiple pathways (i.e., the midbrain pathway and ventromedial prefrontal pathway) to evaluate rewards for subsequent decision-making.


Asunto(s)
Recompensa , Estriado Ventral , Humanos , Mapeo Encefálico , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Imagen por Resonancia Magnética/métodos
17.
Psychiatry Res ; 317: 114874, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36206590

RESUMEN

Patients with obsessive-compulsive disorder (OCD) present increased brain activity in orbitofrontal and limbic regions when experiencing negative emotions, which could be related to deficits in emotion regulation abilities. 30 OCD patients and 29 healthy controls (HC) performed a cognitive reappraisal functional magnetic resonance imaging (fMRI) task and completed emotion regulation and OCD symptomatology questionnaires. Besides task activation, connectivity was also compared between groups through psychophysiological interaction analysis (PPI), using regions previously reported to be hyperactive in OCD as seeds. Finally, brain-behavior correlations were performed between activation/connectivity strength in group differential regions and the questionnaires' scores, as well as the emotional ratings reported during the task. Behaviorally, patients with OCD were less successful than controls at lowering the emotional impact of negative images. At the brain level, there were no significant between-group differences in brain activation. Contrarily, PPI analyses showed that HC had increased frontoparietal connectivity when experiencing negative emotions in comparison to OCD patients, while this pattern was reversed when regulating emotions (increased connectivity in patients). Finally, frontoparietal connectivity was correlated with measures of emotion regulation success and OCD symptomatology. Our findings point towards frontoparietal altered connectivity as a potential compensatory mechanism during emotion regulation in OCD patients.


Asunto(s)
Regulación Emocional , Trastorno Obsesivo Compulsivo , Humanos , Imagen por Resonancia Magnética/métodos , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Emociones/fisiología , Cognición , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen
18.
Hum Brain Mapp ; 43(17): 5340-5357, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915567

RESUMEN

Transcranial direct current stimulation (tDCS) has been studied as a therapeutic option to alter maladaptive brain functions associated with chronic substance use. We present a randomized, triple-blind, sham-controlled, clinical trial to determine the neural substrates of tDCS effects on drug craving. Sixty participants with methamphetamine use disorder were assigned to two groups: active tDCS (5 x 7 cm2 , 2 mA, 20 min, anode/cathode over the F4/Fp1) and sham stimulation. Neuroimaging data of a methamphetamine cue reactivity task were collected immediately before and after stimulation. There was a significant reduction in self-reported craving after stimulation without any significant effect of time-by-group interaction. Our whole-brain analysis demonstrated that there was a global decrease in brain reactivity to cues following sham but not active tDCS. There were significant time-by-group interactions in five main clusters in middle and inferior frontal gyri, anterior insula, inferior parietal lobule, and precuneus with higher activations after active stimulation. There was a significant effect of stimulation type in the relationship between electrical current at the individual level and changes in task-modulated activation. Brain regions with the highest electric current in the prefrontal cortex showed a significant time-by-group interaction in task-modulated connectivity in the frontoparietal network. In this trial, there was no significant effect of the one session of active-F4/Fp1 tDCS on drug craving self-report compared to sham stimulation. However, activation and connectivity differences induced by active compared to sham stimulation suggested some potential mechanisms of tDCS to modulate neural response to drug cues.


Asunto(s)
Metanfetamina , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Imagen por Resonancia Magnética , Señales (Psicología) , Método Doble Ciego , Corteza Prefrontal/fisiología
19.
Front Psychol ; 13: 800275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783705

RESUMEN

Background: Big wave surfers are extreme sports athletes who expose themselves to life-threatening risk when training and competing. Little is known about how and why extreme sports athletes choose to participate in their chosen sports. This exploratory study investigated potential neurophysiological and psychometric differences between big and non-big wave surfers. Methods: Thirteen big wave surfers (BWS) and 10 non-big wave surfers (CON) viewed a series of images from the International Affective Picture System (IAPS) while undergoing brain functional magnetic resonance imaging (fMRI). The Fear Schedule Survey-III, Arnett Inventory of Sensation Seeking, Discrete Emotions Questionnaire, and Positive and Negative Affect Schedule were also completed. Results: The BWS group demonstrated higher blood-oxygen level-dependent (BOLD) signal change in the insula, visual cortex, and periaqueductal gray, whereas the CON group displayed increased hypothalamus activation in response to high amplitude negative-valence (HAN) image presentation. Psychophysiological interaction (PPI) analyses found CON showed significant interactions between frontal and temporal cortical regions as well as between the hypothalamus and the insula, frontal, and temporal cortices during HAN image presentation that were not seen in BWS. No differences between groups were found in their responses to the questionnaires. Conclusion: Our findings demonstrate significant differences in brain activation between BWS and CON in response to the presentation of HAN IAPS images, despite no significant differences in scores on psychometric questionnaires.

20.
Epilepsia ; 63(10): 2597-2622, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35848050

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS: Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS: Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE: Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.


Asunto(s)
Epilepsia del Lóbulo Temporal , Memoria Episódica , Epilepsia del Lóbulo Temporal/patología , Lateralidad Funcional/fisiología , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis/complicaciones , Convulsiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...