Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 70, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486226

RESUMEN

BACKGROUND: Extensive research has been conducted on fruit development in crops, but the metabolic regulatory networks underlying perennial fruit trees remain poorly understood. To address this knowledge gap, we conduct a comprehensive analysis of the metabolome, proteome, transcriptome, DNA methylome, and small RNAome profiles of pear fruit flesh at 11 developing stages, spanning from fruitlet to ripening. Here, we systematically investigate the metabolic landscape and regulatory network involved. RESULTS: We generate an association database consisting of 439 metabolites and 14,399 genes to elucidate the gene regulatory network of pear flesh metabolism. Interestingly, we detect increased DNA methylation in the promoters of most genes within the database during pear flesh development. Application of a DNA methylation inhibitor to the developing fruit represses chlorophyll degradation in the pericarp and promotes xanthophyll, ß-carotene, and abscisic acid (ABA) accumulation in the flesh. We find the gradual increase in ABA production during pear flesh development is correlated with the expression of several carotenoid pathway genes and multiple transcription factors. Of these transcription factors, the zinc finger protein PbZFP1 is identified as a positive mediator of ABA biosynthesis in pear flesh. Most ABA pathway genes and transcription factors are modified by DNA methylation in the promoters, although some are induced by the DNA methylation inhibitor. These results suggest that DNA methylation inhibits ABA accumulation, which may delay fruit ripening. CONCLUSION: Our findings provide insights into epigenetic regulation of metabolic regulatory networks during pear flesh development, particularly with regard to DNA methylation.


Asunto(s)
Metilación de ADN , Pyrus , Pyrus/genética , Multiómica , Epigénesis Genética , Frutas/genética , Ácido Abscísico , Factores de Transcripción/genética
2.
J Exp Bot ; 75(3): 883-900, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37944017

RESUMEN

The Chinese white pear (Pyrus bretschneideri) fruit carries a high proportion of stone cells, adversely affecting fruit quality. Lignin is a main component of stone cells in pear fruit. In this study, we discovered that a pear MYB transcription factor, PbMYB80, binds to the promoters of key lignin biosynthesis genes and inhibits their expression. Stable overexpression of PbMYB80 in Arabidopsis showed that lignin deposition and secondary wall thickening were inhibited, and the expression of the lignin biosynthesis genes in transgenic Arabidopsis was decreased. Transient overexpression of PbMYB80 in pear fruit inhibited lignin metabolism and stone cell development, and the expression of some genes in the lignin metabolism pathway was reduced. In contrast, silencing PbMYB80 with VIGS increased the lignin and stone cell content in pear fruit, and increased expression of genes in the lignin metabolism pathway. By screening a pear fruit cDNA library in yeast, we found that PbMYB80 binds to a RING finger (PbRHY1) protein. We also showed that PbRHY1 exhibits E3 ubiquitin ligase activity and degrades ubiquitinated PbMYB80 in vivo and in vitro. This investigation contributes to a better understanding of the regulation of lignin biosynthesis in pear fruit, and provides a theoretical foundation for increasing pear fruit quality at the molecular level.


Asunto(s)
Arabidopsis , Pyrus , Frutas/metabolismo , Pyrus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lignina/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
BMC Plant Biol ; 23(1): 612, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041062

RESUMEN

BACKGROUND: The enzyme phenylalanine ammonia lyase (PAL) controls the transition from primary to secondary metabolism by converting L-phenylalanine (L-Phe) to cinnamic acid. However, the function of PAL in pear plants (Pyrus bretschneideri) has not yet been fully elucidated. RESULTS: We identified three PAL genes (PbPAL1, PbPAL2 and PbPAL3) from the pear genome by exploring pear genome databases. The evolutionary tree revealed that three PbPALs were classified into one group. We expressed PbPAL1 and PbPAL2 recombinant proteins, and the purified PbPAL1 and PbPAL2 proteins showed strict substrate specificity for L-Phe, no activity toward L-Tyr in vitro, and modest changes in kinetics and enzyme characteristics. Furthermore, overexpression of PbAL1 and PbPAL1-RNAi, respectively, and resulted in significant changes in stone cell and lignin contents in pear fruits. The results of yeast one-hybrid (Y1H) assays that PbWLIM1 could bind to the conserved PAL box in the PbPAL promoter and regulate the transcription level of PbPAL2. CONCLUSIONS: Our findings not only showed PbPAL's potential role in lignin biosynthesis but also laid the foundation for future studies on the regulation of lignin synthesis and stone cell development in pear fruit utilizing molecular biology approaches.


Asunto(s)
Pyrus , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Lignina/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
4.
Foods ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37761217

RESUMEN

Melatonin (MT), an indoleamine compound, has a pleiotropic effect on plant growth and development and can regulate the quality of tree fruit. Systematic research on the effect of preharvest MT spraying on pear fruit quality and technical solutions for MT application to regulate pear fruit quality are still lacking. Thus, here we aimed to evaluate the effects of different spraying times, concentrations, and exogenous MT application times on 'Yuluxiang' pear fruit quality. Our results showed that the single fruit weight and vertical and horizontal diameters of pear fruit sprayed with MT twice at 30 and 90 d after full bloom were the largest, and the red and green values of the treatment were the highest. MT-treated pears had higher contents of total soluble solids, soluble sugar, sucrose, sorbitol, fructose, and glucose and lower contents of titratable acid, malic acid, and citric acid. Moreover, exogenous MT treatment increased the pear peel strength. Based on the principal component analysis of 10 fruit quality indices, the suitable periods for MT spraying on 'Yuluxiang' pears were 30 and 90 d after full bloom, the suitable concentration was 100 µmol/L, and the suitable number of times was two. This study provides a theoretical reference for optimizing MT application and improving pear fruit quality.

5.
Int J Biol Macromol ; 240: 124395, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054853

RESUMEN

Both chitosan (CTS) and chitooligosaccharide (COS) can promote fruit healing. However, whether the two chemicals regulate reactive oxygen species (ROS) homeostasis during wound healing of pear fruit remains unknown. In this study, the wounded pear fruit (Pyrus bretschneideri cv. Dongguo) was treated with a 1 g L-1 CTS and COS. We found CTS and COS treatments increased NADPH oxidase and superoxide dismutase activities, and promoted O2.- and H2O2 production at wounds. CTS and COS also enhanced the activities of catalase, peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, and elevated the levels of ascorbic acid and glutathione. In addition, the two chemicals improved antioxidant capacity in vitro and maintained cell membrane integrity at fruit wounds during healing. Taken together, CTS and COS can regulate ROS homeostasis at wounds of pear fruit during healing by scavenging excessive H2O2 and improving antioxidant capacity. Overall, the COS demonstrated superior performance over the CTS.


Asunto(s)
Quitosano , Pyrus , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pyrus/metabolismo , Quitosano/farmacología , Quitosano/metabolismo , Frutas/metabolismo , Peróxido de Hidrógeno/metabolismo
6.
BMC Genomics ; 24(1): 49, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36707756

RESUMEN

BACKGROUND: The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS: In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION: These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Rosaceae , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Rosaceae/genética , Filogenia , Arabidopsis/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas
7.
Plant J ; 113(3): 595-609, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36545801

RESUMEN

Gametophytic self-incompatibility (GSI) has been widely studied in flowering plants, but studies of the mechanisms underlying pollen tube growth arrest by self S-RNase in GSI species are limited. In the present study, two leucine-rich repeat extensin genes in pear (Pyrus bretschneideri), PbLRXA2.1 and PbLRXA2.2, were identified based on transcriptome and quantitative real-time PCR analyses. The expression levels of these two LRX genes were significantly higher in the pollen grains and pollen tubes of the self-compatible cultivar 'Jinzhui' (harboring a spontaneous bud mutation) than in those of the self-incompatible cultivar 'Yali'. Both PbLRXA2.1 and PbLRXA2.2 stimulated pollen tube growth and attenuated the inhibitory effects of self S-RNase on pollen tube growth by stabilizing the actin cytoskeleton and enhancing cell wall integrity. These results indicate that abnormal expression of PbLRXA2.1 and PbLRXA2.2 is involved in the loss of self-incompatibility in 'Jinzhui'. The PbLRXA2.1 and PbLRXA2.2 promoters were directly bound by the ABRE-binding factor PbABF.D.2. Knockdown of PbABF.D.2 decreased PbLRXA2.1 and PbLRXA2.2 expression and inhibited pollen tube growth. Notably, the expression of PbLRXA2.1, PbLRXA2.2, and PbABF.D.2 was repressed by self S-RNase, suggesting that self S-RNase can arrest pollen tube growth by restricting the PbABF.D.2-PbLRXA2.1/PbLRXA2.2 signal cascade. These results provide novel insight into pollen tube growth arrest by self S-RNase.


Asunto(s)
Pyrus , Ribonucleasas , Ribonucleasas/genética , Ribonucleasas/metabolismo , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Polen/genética , Citoesqueleto de Actina/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887241

RESUMEN

Glycosylation is necessary for many processes of plant secondary metabolism. It can maintain plant homeostasis and is of great significance to normal plant growth and development. At present, the significance of glycosylation for lignin biosynthesis has been proven in some plants, but it has not yet been reported in pears. We used in situ hybridization, in vitro expression, substrate catalysis, transgenic Arabidopsisthaliana, and transient transformation of pear fruit in our investigation, which was predicated on the identification of a gene PbUGT72AJ2 that may be involved in lignin monolignol glycosylation according to our previous work. These results revealed that PbUGT72AJ2 transcripts were localized to some pulp cell walls, lignin deposition, and stone cell areas of pear fruit. The recombinant PbUGT72AJ2-pGEX4T-1 protein had activity against coniferyl alcohol and sinapyl alcohol, and its catalytic efficiency against coniferyl alcohol was higher than that against sinapyl alcohol. When PbUGT72AJ2 was transferred into Arabidopsisthaliana mutants, it was found that some characteristics of Arabidopsisthalianaugt72e3 mutants were restored. In Arabidopsisthaliana, overexpression of PbUGT72AJ2 enhanced the contents of coniferin and syringin, whereas lignification did not change significantly. Transient transformation of pear fruit showed that when PbUGT72AJ2 in pear fruit was silenced by RNA interference, the content of lignin and stone cells in pear fruit increased, whereas the gene PbUGT72AJ2 was overexpressed in pear fruit, and there was almost no change in the pear fruit compared with the control. Lignin deposition in pear fruit was closely related to stone cell development. In this study, we proved that PbUGT72AJ2 plays an important role in lignin deposition and stone cell development in pear fruit, which provides a molecular biological basis for improving pear fruit quality at the molecular level.


Asunto(s)
Pyrus , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosilación , Lignina/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/metabolismo , Metabolismo Secundario
9.
PeerJ ; 10: e13723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873912

RESUMEN

COBRA-Like (COBL) genes encode a glycosylphosphatidylinositol (GPI) anchoring protein unique to plants. In current study, 87 COBRA genes were identified in 6 Rosaceae species, including Pyrus bretschneideri (16 genes), Malus domestica (22 genes), Fragaria vesca (13 genes), Prunus mume (11 genes), Rubus occidentalis (13 genes) and Prunus avium (12 genes). We revealed the evolution of the COBRA gene in six Rosaceae species by phylogeny, gene structure, conservative sequence, hydrophobicity analysis, gene replication events and sliding window analysis. In addition, based on the analysis of expression patterns in pear fruit combined with bioinformatics, we identified PbCOBL12 and PbCOBL13 as potential genes regulating secondary cell wall (SCW) formation during pear stone cell development. This study aimed to understand the evolutionary relationship of the COBRA gene in Rosaceae species, clarify the potential function of COBRA in pear fruit development, and provide essential theoretical basis and gene resources for improving pear fruit quality through genetical modification mechanism.


Asunto(s)
Pyrus , Rosaceae , Humanos , Rosaceae/genética , Pyrus/genética , Pueblos del Este de Asia , Genoma de Planta/genética , Genómica
10.
BMC Genomics ; 23(1): 233, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337257

RESUMEN

Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of plant growth, seed germination, and stress responses. The pyrabactin resistance 1-like (PYR/PYL) protein, an ABA receptor, was involved in the initial step in ABA signal transduction. However, the evolutionary history and characteristics of PYL genes expression remain unclear in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. In this study, 67 PYL genes were identified in eight Rosaceae species, and have been classified into three subgroups based on specific motifs and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication (WGD) and dispersed duplication (DSD) have a major contribution to PYL family expansion. Purifying selection was the major force in PYL genes evolution. Expression analysis finds that PYL genes may function in multiple pear tissues. qRT-PCR validation of 11 PbrPYL genes indicates their roles in seed germination and abiotic stress responses. Our study provides a basis for further elucidation of the function of PYL genes and analysis of their expansion, evolution and expression patterns, which helps to understand the molecular mechanism of pear response to seed germination and seedling abiotic stress.


Asunto(s)
Pyrus , Rosaceae , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Rosaceae/genética , Semillas/genética , Semillas/metabolismo
11.
Int J Biol Macromol ; 205: 483-490, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35196569

RESUMEN

This study aimed to compare the effects of chitosan (CTS) and chitooligosaccharide (COS) treatments on wound healing of pear fruits and to investigate the related mechanisms during postharvest storage under ambient conditions. The results revealed that CTS and COS treatments reduced the weight loss and disease index of the wounded pears (Pyrus bretschneideri cv. Dongguo), and accelerated suberin polyphenolic and lignin deposition at wounds during 7 d of investigation. Furthermore, CTS and COS elevated the level of the genes expression and activities of key enzymes and increased product contents of phenylpropanoid metabolism. Collectively, these treatments at a concentration of 1 g/L could promote wound healing in pears by activating phenylpropanoid metabolism. Comparatively, COS treatment presented better effects to CTS and could be useful as a preservative method to enhance storability of fresh produce.


Asunto(s)
Quitosano , Pyrus , Quitosano/metabolismo , Quitosano/farmacología , Frutas , Oligosacáridos , Proteínas de Plantas/genética
12.
Plant Sci ; 315: 111146, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35067309

RESUMEN

Ring rot disease, which is caused by Botryosphaeria dothidea (B. dothidea), is one of the most serious diseases affecting the pear industry. Currently, knowledge of the mechanism about pear-pathogen interactions is unclear. To explore the early response of pear leaves to B. dothidea infection, we compared the early transcriptome of pear leaves infected with B. dothidea. The results revealed 3248 differentially expressed genes (DEGs) and 4862 DEGs at D2 and D4, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation of DEGs showed that these genes were predominately involved in plant-pathogen interactions, hormone signal transduction and other biosynthesis-related metabolic processes, including glucosinolate accumulation and flavonoid pathway enhancement. However, many hormone- and disease resistance-related genes and transcription factors (TFs) were differentially expressed during B. dothidea infection. These results were consistent with the changes in the physiological characteristics of B. dothidea. In addition, the expression of PbrPUB29, an E3 ubiquitin ligase with a U-box domain, was significantly higher than it was at 0 dpi. PbrPUB29 silencing enhanced the sensitivity of pear leaves to B. dothidea, reflected by more severe symptoms and higher reactive oxygen species (ROS) content in the defective pear seedlings after inoculation, revealing that PbrPUB29 has a significant role in pear disease resistance. In brief, we explored the interaction between pear leaves and B. dothidea at the transcriptome level, implied the early response of pear leaves to pathogens, and identified a hub gene in a B. dothidea-infected pear. These results provide a basis and new strategy for exploring the molecular mechanisms underlying pear-pathogen interactions and disease resistance breeding.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/microbiología , Pyrus/genética , Pyrus/microbiología , Pyrus/fisiología , China , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Productos Agrícolas/fisiología , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Enfermedades de las Plantas/microbiología , Transcriptoma
13.
Front Genet ; 12: 770014, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858482

RESUMEN

Type 2C protein phosphatase (PP2C) plays an essential role in abscisic acid (ABA) signaling transduction processes. In the current study, we identify 719 putative PP2C genes in eight Rosaceae species, including 118 in Chinese white pear, 110 in European pear, 73 in Japanese apricot, 128 in apple, 74 in peach, 65 in strawberry, 78 in sweet cherry, and 73 in black raspberry. Further, the phylogenetic analysis categorized PbrPP2C genes of Chinese white pear into twelve subgroups based on the phylogenic analysis. We observed that whole-genome duplication (WGD) and dispersed gene duplication (DSD) have expanded the Rosaceae PP2C family despite simultaneous purifying selection. Expression analysis finds that PbrPP2C genes have organ-specific functions. QRT-PCR validation of nine PbrPP2C genes of subgroup A indicates a role in ABA-mediated response to abiotic stress. Finally, we find that five PbrPP2C genes of subgroup A function in the nucleus. In summary, our research suggests that the PP2C family functions to modulate ABA signals and responds to abiotic stress.

14.
Physiol Mol Biol Plants ; 27(1): 39-52, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33627961

RESUMEN

Superoxide dismutases (SODs) are antioxidant enzymes that play a critical role in the polymerization of lignin monomers. Although current research has indicated that SODs are involved in plant growth and development, information on SODs in pear (Pyrus bretschneideri) and their function in lignin formation is scarce. In this study, 25 SODs, containing three kinds of plant SODs (Cu/Zn-SODs, Mn-SODs, and Fe-SODs), were identified from three Rosaceae species, and 11 of these genes were found in pear. According to the evolutionary analysis, the genes were divided into four subgroups, the division of which is consistent with the intron-exon and conserved motif analyses. These PbSODs were randomly scattered across 7 chromosomes. We have analysed the conserved domains and gene family evolution and predicted the cis-elements of the promoter. Ka/Ks analysis pointed that SOD genes mainly underwent purifying selection. Subsequently, the expression patterns of 11 PbSODs were examined in different tissues, at different developmental periods, in different pear varieties and under different hormone treatments. Gene expression analysis showed that PbCSD3 exhibited transcript levels consistent with the typical changes in lignin content. The changes in SOD activity and hydrogen peroxide (H2O2) content combined with the results of a spatio-temporal expression analysis showed that PbCSD3 was a candidate gene in reactive oxygen species (ROS) metabolism during the lignification of pear stone cells. Thus, our research reveals the evolutionary features of the SOD family in Rosaceae species and provide useful information for analysis of functional genome of the SOD family in pear. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12298-021-00926-2) contains supplementary material, which is available to authorized users.

15.
Plant Physiol Biochem ; 156: 135-145, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32937268

RESUMEN

Cinnamate 4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway in plants and is involved in the biosynthesis of secondary metabolites such as lignin and flavonoids. However, the function of C4H in pear plants (Pyrus bretschneideri) has not yet been fully elucidated. By searching pear genome databases, we identified three C4H genes (PbC4H1, PbC4H2 and PbC4H3) encoding proteins that share higher identity with bonafide C4Hs from several species with typical cytochrome P450 domains, suggesting that all three PbC4Hs are also bonafide C4Hs that have close evolutionary relationships with C4Hs from other land plants. Quantitative real-time PCR (qRT-PCR) results indicated that the three PbC4Hs were specifically expressed in one or more tissues. The expression levels of PbC4H1 and PbC4H3 first increased and then decreased during pear fruit development. Treatment with exogenous hormones (ABA, MeJA, and SA) altered the expression of the three PbC4Hs to varying degrees. The expression levels of the PbC4Hs were first induced and then decreased under ABA treatment, while MeJA treatment significantly increased the expression levels of the PbC4Hs. Following treatment with SA, expression levels of PbC4H1 and PbC4H2 increased, while expression levels of PbC4H3 decreased. Enzymatic analysis of the recombinant proteins expressed in yeast indicated that PbC4H1 and PbC4H3 catalysed the conversion of trans-cinnamic acid to p-coumaric acid. Moreover, the expression of PbC4H1 and PbC4H3 in Arabidopsis resulted in an increase in both the lignin content and the thickness of cell walls for intervascular fibres and xylem cells. Taken together, the results of our study not only revealed the potential role of PbC4H1 and PbC4H3 in lignin biosynthesis but also established a foundation for future investigations of the regulation of lignin synthesis and stone cell development in pear fruit by molecular biological techniques.


Asunto(s)
Proteínas de Plantas/genética , Pyrus/enzimología , Transcinamato 4-Monooxigenasa/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/metabolismo , Pyrus/genética , Transcinamato 4-Monooxigenasa/metabolismo
16.
Front Plant Sci ; 11: 490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523587

RESUMEN

A "Laiyang" pear is a climacteric fruit with a special taste and nutritional value but is prone to a post-harvest aroma compound loss and a loss in fruit quality. In this study, pears were pretreated with 0.5 µl L-1 1-methylcyclopropene (1-MCP) at 20°C for 12 h and then stored at 0 ± 1°C for 150 days to evaluate the influence of 1-MCP on fruit quality and the changes in components of volatile aromas. In addition, pears were further treated with 2 mmol L-1 ethephon. The effects of ethephon on the recovery of aroma production were investigated during the 150 day storage at 0 ± 1°C and the subsequent 7 day shelf life at 20 ± 1°C. Treatment with 1-MCP inhibited firmness loss, increased electrical conductivity, reduced respiration and ethylene production rates as well as the contents of soluble solids, and maintained the storage quality of the fruits. However, 1-MCP treatment inhibited the emission of volatile aromas in pear fruits by decreasing the activities of various enzymes, such as lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate carboxylase (PDC), and alcohol acetyltransferase (AAT). During the shelf-life, activities of the above mentioned enzymes were significantly enhanced, and a higher content of volatile aromas were found in fruits treated with 1-MCP + ethephon, while other qualities were not compromised. These results showed that 1-MCP treatment could effectively maintain the quality of the "Laiyang" pear during cold storage, and the additional application of ethephon on fruits during shelf-life may be a promising way to restore volatile aromas in pear fruits after long-term storage.

17.
BMC Plant Biol ; 19(1): 417, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604417

RESUMEN

BACKGROUND: The content of stone cells and lignin is one of the key factors affecting the quality of pear fruit. In a previous study, we determined the developmental regularity of stone cells and lignin in 'Dangshan Su' pear fruit 15-145 days after pollination (DAP). However, the development of fruit stone cells and lignin before 15 DAP has not been heavily researched. RESULTS: In this study, we found that primordial stone cells began to appear at 7 DAP and that the fruit had formed a large number of stone cells at 15 DAP. Subsequently, transcriptome sequencing was performed on fruits at 0, 7, and 15 DAP and identified 3834 (0 vs. 7 DAP), 4049 (7 vs. 15 DAP) and 5763 (0 vs. 15 DAP) DEGs. During the 7-15 DAP period, a large number of key enzyme genes essential for lignin biosynthesis are gradually up-regulated, and their expression pattern is consistent with the accumulation of lignin in this period. Further analysis found that the biosynthesis of S-type lignin in 'Dangshan Su' pear does not depend on the catalytic activity of PbSAD but is primarily generated by the catalytic activity of caffeoyl-CoA through CCoAOMT, CCR, F5H, and CAD. We cloned PbCCR1, 2 and analysed their functions in Chinese white pear lignin biosynthesis. PbCCR1 and 2 have a degree of functional redundancy; both demonstrate the ability to participate in lignin biosynthesis. However, PbCCR1 may be the major gene for lignin biosynthesis, while PbCCR2 has little effect on lignin biosynthesis. CONCLUSIONS: Our results revealed that 'Dangshan Su' pear began to form a large number of stone cells and produce lignin after 7 DAP and mainly accumulated materials from 0 to 7 DAP. PbCCR1 is mainly involved in the biosynthesis of lignin in 'Dangshan Su' pear and plays a positive role in lignin biosynthesis.


Asunto(s)
Aldehído Oxidorreductasas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Pyrus/genética , Transcriptoma , Aldehído Oxidorreductasas/metabolismo , Frutas/genética , Perfilación de la Expresión Génica , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Pyrus/crecimiento & desarrollo
18.
Genomics ; 111(5): 1097-1107, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31533901

RESUMEN

S-type anion channels, which play important roles in plant anion (such as nitrate and chloride) transport, growth and development, abiotic stress responses and hormone signaling. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified SLAC/SLAH gene family members in pear (Pyrus bretschneideri) and four other species of Rosaceae. A total of 21 SLAC/SLAH genes were identified from the five Rosaceae species. Based on the structural characteristics and a phylogenetic analysis of these genes, the SLAC/SLAH gene family could be classified into three main groups. Transcriptome data demonstrated that PbrSLAC/SLAH genes were detected in all parts of the pear. PbrSLAC/SLAH genes were only located on the plasma membrane in transient expression experiments in Arabidopsis protoplasts cells. These results provide valuable information that increases our understanding of the evolution, expression and functions of the SLAC/SLAH gene family in higher plants.


Asunto(s)
Canales Iónicos/genética , Proteínas de Plantas/genética , Pyrus/genética , Aniones/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Nitratos/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pyrus/clasificación , Transcriptoma
19.
Gene ; 702: 133-142, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-30904717

RESUMEN

Phosphofructokinase plays an essential role in sugar metabolism in plants. Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the pyrophosphate-dependent fructose-6-phosphate phosphotransferase (PFP), and the ATP-dependent phosphofructokinase (PFK). Until now, the gene evolution, expression patterns, and functions of phosphofructokinase proteins were unknown in pear. In this report, 14 phosphofructokinase genes were identified in pear. The phylogenetic tree indicated that the phosphofructokinase gene family could be grouped into two subfamilies, with 10 genes belonging to the PbPFK subfamily, and 4 genes belonging to the PbPFP subfamily. Conserved motifs and exon numbers of the phosphofructokinase were found in pear and other six species. The evolution analysis indicated that WGD/Segmental and dispersed duplications were the main duplication models for the phosphofructokinase genes expansion in pear and other six species. Analysis of cis-regulatory element sequences of all phosphofructokinase genes identified light regulation and the MYB binding site in the promoter of all pear phosphofructokinase genes, suggesting that phosphofructokinase might could be regulated by light and MYB transcription factors (TFs). Gene expression patterns revealed that PbPFP1 showed similar pattern with sorbitol contents, suggesting important contributions to sugar accumulation during fruit development. Further functional analysis indicated that the phosphofructokinase gene PbPFP1 was localized on plasma membrane compartment, indicating that PbPFP1 had function in plasma membrane. Transient transformation of PbPFP1 in pear fruits led to significant increases of fructose and sorbitol compared to controls. Overall, our study provides important insights into the gene expression patterns and important potential functions of phosphofructokinase for sugar accumulation in pear fruits, which will help to enrich understanding of sugar-related bio-pathways and lay the molecular basis for fruit quality improvement.


Asunto(s)
Familia de Multigenes , Fosfofructoquinasas/clasificación , Fosfofructoquinasas/genética , Pyrus/enzimología , Secuencias de Aminoácidos , Membrana Celular/enzimología , Mapeo Cromosómico , Exones , Frutas/enzimología , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Intrones , Fosfofructoquinasas/química , Fosfofructoquinasas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Pyrus/clasificación , Pyrus/genética , Pyrus/crecimiento & desarrollo , Rosaceae/clasificación , Azúcares/metabolismo , Transcripción Genética
20.
BMC Genomics ; 19(1): 473, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914361

RESUMEN

BACKGROUND: Pear (Pyrus spp.) is an economically important temperate fruit tree worldwide. In the past decade, significant progress has been made in pear molecular genetics based on DNA research, but the number of molecular markers is still quite limited, which hardly satisfies the increasing needs of geneticists and breeders. RESULTS: In this study, a total of 156,396 simple sequence repeat (SSR) loci were identified from a genome sequence of Pyrus bretschneideri 'Dangshansuli'. A total of 101,694 pairs of SSR primers were designed from the SSR loci, and 80,415 of the SSR loci were successfully located on 17 linkage groups (LGs). A total of 534 primer pairs were synthesized and preliminarily screened in four pear cultivars, and of these, 332 primer pairs were selected as clear, stable, and polymorphic SSR markers. Eighteen polymorphic SSR markers were randomly selected from the 332 polymorphic SSR markers in order to perform a further analysis of the genetic diversity among 44 pear cultivars. The 14 European pears and their hybrid materials were clustered into one group (European pear group); 29 Asian pear cultivars were clustered into one group (Asian pear group); and the Zangli pear cultivar 'Deqinli' from Yunnan Province, China, was grouped in an independent group, which suggested that the cultivar 'Deqinli' is a distinct and valuable germplasm resource. The population structure analysis partitioned the 44 cultivars into two populations, Pop 1 and Pop 2. Pop 2 was further divided into two subpopulations. Results from the population structure analysis were generally consistent with the results from the UPGMA cluster analysis. CONCLUSIONS: The results of the present study showed that the use of next-generating sequencing to develop SSR markers is fast and effective, and the developed SSR markers can be utilized by researchers and breeders for future pear improvement.


Asunto(s)
Variación Genética , Genoma de Planta , Repeticiones de Microsatélite , Pyrus/genética , China , Mapeo Cromosómico , ADN de Plantas , Ligamiento Genético , Filogenia , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...