Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.564
Filtrar
1.
J Ethnopharmacol ; 336: 118739, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197805

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Modified Danzhi Xiaoyao San (MDXS) is an effective clinical prescription for depression in China, which was deprived of Danzhi Xiaoyao San in the Ming Dynasty. MDSX has significant implications for the development of new antidepressants, but its pharmacological mechanism has been rarely studied. AIM OF THE STUDY: To reveal the active components and molecular mechanism of MDXS in treating depression through network pharmacology and experimental verification in vivo and in vitro. MATERIALS AND METHODS: UPLC-Q-TOF-MS/MS was used to identify the chemical components in the MDXS freeze-dried powder, drug-containing serum, and cerebrospinal fluid (CSF). Based on the analysis of prototype components in the CSF, the major constituents, potential therapeutic targets and possible pharmacological mechanisms of MDXS in treating depression were investigated using network pharmacological and molecular docking. Then corticosterone (CORT)-induced mice model of depression was established to investigate the antidepressant effects of MDXS. HT22 cells were cultured to verify the neuroprotective effects and core targets of the active components. RESULTS: There were 81 compounds in MDXS freeze-dried powder, 36 prototype components in serum, and 13 prototype components in CSF were identified, respectively. Network pharmacology analysis showed that these 13 prototype components in the CSF shared 190 common targets with depression, which were mainly enriched in MAPK and PI3K/AKT signaling pathways. PPI analysis suggested that AKT1 and MAPK1 (ERK1/2) were the core targets. Molecular docking revealed that azelaic acid (AA), senkyunolide A (SA), atractylenolide III (ATIII), and tokinolide B (TB) had the highest binding energy with AKT1 and MAPK1. Animal experiments verified that MDXS could reverse CORT-induced depression-like behaviors, improve synaptic plasticity, alleviate neuronal injury in hippocampal CA3 regions, and up-regulate the protein expression of p-ERK1/2 and p-AKT. In HT22 cells, azelaic acid, senkyunolide A, and atractylenolide III significantly protected the cell injury caused by CORT, and up-regulated the protein levels of p-ERK1/2 and p-AKT. CONCLUSIONS: These results suggested that MDXS may exert antidepressant effects partially through azelaic acid, senkyunolide A, and atractylenolide III targeting ERK1/2 and AKT.


Asunto(s)
Antidepresivos , Depresión , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Ratones , Masculino , Línea Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Corticosterona/sangre , Espectrometría de Masas en Tándem , Conducta Animal/efectos de los fármacos
2.
J Ethnopharmacol ; : 118929, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395766

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: FZLFR was derived from a classic traditional Chinese medicine recipe, the Shiquan-Dabu decoction. FZLFR is commonly used in clinical practice to address muscle loss and associated cancer cachexia. However, the mechanism of by which FZLFR acts in cancer cachexia remains unclear. AIM: This study aimed to assess the effects and explore the potential mechanism of action of FZLFR in treating cancer cachexia. METHODS: Cancer cachexia was induced by inoculating Lewis lung carcinoma cells into the right flank of male C57BL/6 mice. The efficacy of FZLFR was evaluated by comparing changes in body weight, tumor mass, food intake, survival time, weight, and cross-sectional area of the gastrocnemius and anterior tibial muscles. Moreover, inflammatory cytokines, such as TNF-α and IL-6, were detected by ELISA. The chemical components of FZLFR were analyzed using ultra-performance liquid chromatography-coupled with time-of-flight mass spectrometry. Network pharmacology analysis was performed to screen the core targets and potential pathways involved in FZLFR treatment of cancer cachexia. Molecular docking was used to analyze the binding ability of the core targets and key compounds. The expression levels of core targets and targets correlated with skeletal muscle atrophy were also assessed using western blotting. RESULTS: FZLFR enhanced the food intake and survival rate of mice with cancer cachexia. It also alleviated tumor-induced body weight loss, tumor growth, and muscle fiber atrophy in these mice. Additionally, it improved the weight and cross-sectional area of the gastrocnemius and anterior tibial muscles. FZLFR down-regulated the serum levels of TNF-α and IL-6. UPLC-ESI-Q-TOF-MS analysis identified 184 compounds in FZLFR. Network pharmacology analysis predicted that TNF signaling pathway, ErbB signaling pathway and VEGF signaling pathway might be essential in FZLFR action. Molecular docking showed that kaempferol, upafolin, apigenin, and luteolin might play key roles in FZLFR treatment. Moreover, FZLFR decreased MAFBx1, MURF1, NF-κB, TWEAK, MAPK8, and EGFR expression levels. FZLFR enhanced the expression of VEGFA and ESR1, as demonstrated by western blotting. CONCLUSIONS: FZLFR increased food intake and alleviated muscle atrophy in mice with cancer cachexia. The potential pharmacological mechanisms underlying its anticachexia effects include reducing inflammation, enhancing muscle vascular growth, inhibiting tumor angiogenesis, and modulating estrogen receptors.

3.
J Ethnopharmacol ; : 118923, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389394

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pseudobulbus Cremastrae seu Pleiones (PCSP) is a multi-source traditional Chinese medicine (TCM) with diverse chemical compositions and toxicity levels. The authenticity identification and safety evaluation of PCSP have attracted widespread attention in clinical applications. AIM OF THIS STUDY: The objective of this study was to evaluate the authenticity and safety of commercially available PCSP. MATERIALS AND METHODS: Morphological and microscopic identification, HPLC chromatogram, UPLC-Q-TOF-MS/MS with molecular networking were applied to the authenticity identification of PCSP. The safety of different PCSPs was evaluated by acute toxicity in zebrafish at maximum non-lethal concentration (MNLC) and 10% lethal concentration (LC10). Intestinal toxicity of PCSP was assessed through histological staining, intestinal goblet cells, eosinophils, and intestinal opacity. RESULTS: Four sources of PCSP varied in size, epidermal longitudinal grooves, and microscopic features. GNPS analysis identified 61, 47, 44, and 56 chemical compounds in Cremastra appendiculate (CA), Oreorchis patens (Lindl.) Lindl. (OPL), Iphigenia indica A. Gray (IIG), and Tulipa edulis (Miq.) Baker (TEB). Colchicine and militarine, were discovered as distinguishing markers. Acute toxicity in zebrafish ranked as follows: IIG > OPL > CA > TEB. Further studies on the intestinal toxicity of the authentic PCSP (CA, OPL) showed that CA induced less damage with a smaller lumen area, fewer neutrophils and goblet cells, and reduced peristalsis inhibition compared to OPL, indicating greater safety. CONCLUSION: Four different sources of PCSP were accurately distinguished based on three dimensions: character, components, and toxicity. OPL and CA were considered as genuine products, while CA with lower toxicity was more suitable for clinical applications.

4.
Biomed Chromatogr ; : e6023, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39390901

RESUMEN

The classical traditional Chinese medicine formula Huangqi-Guizhi-Wuwutang (HGW) has been shown to enhance sperm production. However, the bioactive components and comprehensive mechanisms underlying the therapeutic effects remain unclear. The present study investigates the potential active ingredients and underlying mechanisms of HGW against spermatogenesis dysfunction. The chemical components of HGW were analyzed by mass spectrometry. And then the "components-targets-pathway-disease" network was constructed using network pharmacology research methods, which aimed to identify the key active components and potential targets of HGW in treating oligospermia. Experimental validation was finally conducted in animal model. The male-specific pathogen-free Kunming mice were divided into five groups: Sham group, Model group, and HGW groups (8, 16, and 32 g/kg of HGW by gavage for 35 days). Chemical profile and network pharmacology results revealed that potential bioactive compounds were dihydrocinnacasside, isomucronulatol, and 6-gingerol, and the mechanism of which was enriched in regulating spermatogenic stem cells (SSCs), endocrine function, and apoptosis. The administration of HGW significantly improved oligospermia in mice. HGW significantly upregulated the expression of marker proteins in SSCs and the potential targets within the testis simultaneously. Our data indicates that HGW enhances the proliferation of SSCs, and HGW can be a promising therapeutic candidate for oligospermia.

5.
J Ethnopharmacol ; : 118887, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374881

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is an inflammatory reaction produced through various injury-causing factors acting on the lungs in a direct or indirect way, with a high morbidity and mortality rate. A review of clinical experience has revealed that Lysionotus pauciflorus Maxim (LP) has a significant therapeutic effect on ALI. However, the comprehensive effective components of LP are uncertain, and the mechanisms, especially the potential therapeutic target for anti-ALI, are still unknown. AIMS OF THE STUDY: In vitro and in vivo validation of the pharmacodynamics of LP in the treatment of ALI and exploration of its potential mechanism of action based on network pharmacology, molecular docking and experimental validation. MATERIALS AND METHODS: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed to identify the ingredients of LP extracts. The potential bioactive ingredients, key targets and signalling pathways were identified by network pharmacology, based on the results of the mass spectrometry analysis. Subsequently, molecular docking was performed on the screened core components and key targets to calculate their molecular binding energies and binding potentials, and to explore the mutual binding modes of small-molecule ligands and large-molecule proteins. Finally, lipopolysaccharide (LPS)-induced RAW264.7 cell model and ALI mice model were used to validate the therapeutic effects and potential mechanism of LP extract towards ALI. RESULTS: From the mass spectrometry results of LP extracts, a total of 87 chemical components were identified, including 46 phenylethanol glycosides, 25 flavonoids, 8 organic acids and their derivatives and 8 other compounds. And furthermore 39 core active components were screened by network pharmacology. The top 10 core components (4 phenylethanol glycosides, 6 flavonoids) have been screened in the composition -target-disease network, and 37 core targets related to LP efficacy were obtained by fitting PPI network analysis. 10 signalling pathways and their targets associated with LP treatment of ALI were obtained by GO / KEGG analysis, indicating that LP could regulate TLR4 and NF-κB signalling pathways through 4 key targets, namely NFKB1, RELA, TLR4 and TNF. The results of the molecular docking procedure indicated a strong affinity, with the binding energies between each component and the target site being less than -6 kcal/mol. The binding modes included Hydrogen Bonds, Pi-Pi interaction, Hydrophobic Interactions, Salt Bridges, Pi-cation interactions. These observations were subsequently validated in vitro and in vivo experiments. The outcomes of in vitro and in vivo experiments demonstrated that LP was effective in reducing the infiltration of inflammatory bacteria in lung tissues and attenuated the expression of pro-inflammatory cytokines in LPS-stimulated mice bronchoalveolar lavage fluid (BALF) and RAW264.7 cells. Furthermore, LP inhibited the expression and phosphorylation of TLR4 protein and NF-κB protein, thus playing a role in the prevention of ALI. CONCLUSIONS: In this study, mass spectrometry analysis was combined with biomolecular networks to initially elucidate the potential of LP to treat ALI by modulating the TLR4/NF-κB pathway. This offers a definitive experimental basis for the development of new LP drugs.

6.
Heliyon ; 10(16): e36178, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253133

RESUMEN

Background: Yinqiaosan decoction (YQSD), a traditional Chinese medicinal recipe, has been employed to treat influenza in China for approximately 300 years. Objective: Our study aimed to explore the mechanisms of YQSD against influenza via in vivo and in vitro experimental studies. Study design: and methods UHPLC-Q-TOF-MS/MS was utilized to examine the substances of the YQSD. The chemical components of YQSD detected by UHPLC-Q-TOF-MS/MS were used for network pharmacology analysis. The antiviral effect of YQSD in vivo was investigated. The potential mechanisms of YQSD in combating influenza, which were predicted from network pharmacology analysis, were validated in vitro. Results: By use of UHPLC-Q-TOF-MS/MS, 97 compounds were identified from YQSD. Network pharmacology analysis revealed that the therapeutic effect of YQSD against influenza may be associated with the regulation of T cell receptors (TCR) and Phosphoinositide 3-Kinase (PI3K)- protein kinase B (Akt) signaling pathways. Treatment with YQSD significantly prolonged the mean survival time of the mice and reduced lung injury due to the influenza A virus in vivo. It was discovered that YQSD efficiently inhibited the expression of inflammation-related cytokines. Moreover, YQSD has been found to significantly reduce the expression levels of cluster of differentiation 3 (CD3), monocyte chemoattractant protein-1 (MCP-1), and H1N1 virus nucleoprotein (NP), and prevent the decrease of epithelial cadherin (E-cadherin) protein. In addition, YQSD can inhibit the phosphorylation of the zeta chain of T cell receptor-associated protein kinase 70 (ZAP70) and PI3K proteins in vitro. Conclusion: The capacity of YQSD to suppress viral multiplication and inflammatory response by modulating T cell immunity may explain its effect against influenza viral pneumonia, which may involve the regulation of TCR and PI3K signaling pathways.

7.
Food Chem ; 463(Pt 2): 141133, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39265302

RESUMEN

A new convenient method for identifying colorant compounds (CCs) in food matrices was developed using high-performance liquid chromatography with a diode array detector and quadrupole-time-of-flight mass spectrometer (HPLC-DAD-Q/TOF-MS) combined with theoretical calculations. A model sample containing three typical CCs was completely separated via HPLC-DAD. The obtained 3D ultraviolet-visible (UV-vis) spectra revealed the maximum absorption wavelengths (MAWs) of all CCs (yellow, 430 nm; red, 520 nm; blue, 620 nm) in the range of 400-800 nm, and their colors were determined based on their MAWs. Temporary structures of the CCs were obtained using Q/TOF-MS analysis. Theoretical calculations were then performed to obtain the theoretical MAWs and colors of the CCs according to their calculated UV-vis spectra based on temporary structures. The structures of the CCs were confirmed without the need for authoritative standards by comparing the consistency between their experimental and theoretical MAWs and colors. This method is particularly suitable for identifying CCs or compounds with UV-Vis absorption, including new compounds, compounds for which standards are difficult to obtain, and known compounds without reporting relevant molecular information.

8.
J Chromatogr A ; 1736: 465373, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39316975

RESUMEN

This study presents a method utilizing solid-phase microextraction Arrow (SPME Arrow) combined with ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for the selective detection of three veterinary drugs-thiabendazole, sulfamethazine, and clenbuterol-in milk and pork. Two-dimensional metal-organic framework nanosheets (2D-MOFs) were employed as coating materials for the SPME Arrow. Three types of 2D-MOFs (Ni, Mn, and Co based) were synthesized and characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and a physical adsorption analyzer. The 2D-MOF coatings were fabricated using the electrospinning technique, with polyacrylonitrile (PAN) serving as the binder. Comparative analysis of the three 2D-MOF coatings revealed that 2D-Ni-MOF was the optimal coating material for the SPME Arrow. Optimization of the coating preparation conditions and SPME procedures included determining the optimal mass ratio of 2D-Ni-MOF to PAN, electrospinning time, and extraction and desorption parameters. Equilibrium extraction was achieved within 60 min, and desorption was completed within 30 min. Subsequently, the 2D-Ni-MOF-SPME Arrow-UPLC-Q-TOF-MS method was established and validated under optimal conditions, demonstrating high precision with inter-day precision ranging from 3.8 % to 9.5 % and intra-day precision ranging from 5.1 % to 11.5 %. The reusability study indicated that the extraction performance of the new SPME Arrow remained consistent after 90 adsorption-desorption cycles. The method exhibited linearity in milk and pork over the ranges of 0.002-5 µg L-1 and 0.01-5 µg L-1, respectively. The detection limits in milk and pork were 0.001-0.004 µg L-1 and 0.003-0.007 µg L-1, respectively. This method demonstrated excellent applicability for determining residues of the three veterinary drugs in milk and pork.

9.
Phytochem Anal ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39318142

RESUMEN

INTRODUCTION: Zhen-wu-tang (ZWT) is a traditional Chinese medicine (TCM) formula for the treatment of several kidney diseases. However, due to the complexity of the TCM formula, there is a lack of accurate knowledge of the chemical constituents of ZWT and its bioactive components, as well as in vivo metabolic pathway studies. OBJECTIVES: The chemical composition of ZWT and its bioactive components along with the metabolic pathways were investigated by a combination of chemical profiling and serum pharmacochemistry. METHODS: High-resolution ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to identify the chemical components of ZWT and its bioactive components and metabolites in vivo. RESULTS: As a result, a total of 110 chemical components were identified from ZWT solution, mainly amino acids, alkaloids, gingerols, monoterpene glycosides and terpenoids, and so on. In addition, 24 prototype components and 36 metabolites were detected in rat plasma. Meanwhile, 8 prototype components were detected in rat kidney tissue but no metabolites. Interestingly, 4 of the 28 bioactive components were detected in both plasma and renal tissue, which were atractylenolide III, trimethoxyaconitane, methyl gallate, and paeoniflorin. The metabolic pathways mainly involved Phases I and/or II metabolic reactions such as hydrolysis, oxidation, reduction and hydration, methylation/demethylation, sulphation, glucuronidation, acetylation, and glutathione conjugation. CONCLUSION: Overall, the present study has comprehensively elucidated the chemical composition of ZWT and its potential bioactive components and metabolites, which provides a basis for the basic study of its pharmacodynamic substances and a reference for the study of the bioactive components of TCM formulae.

10.
Ecotoxicol Environ Saf ; 285: 117008, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299206

RESUMEN

Metamifop (MET) is a widely used pesticides in paddy field and it has good weed control effect. As a chiral pesticide that may be hazardous to human health through food chain transmission, there could be selective differences in the metabolism and toxicity of its enantiomers, so the study of chiral MET may offer an assessment of MET toxicity and stereoselectivity at the enantiomeric level. A total of 39, 43 and 31 differential metabolites were screened from the data sets of Rac-, R-(-)- and S-(+)-MET, respectively. Metabolic pathway analysis revealed that MET and its enantiomers primarily affected sphingolipid metabolism, glycerophospholipid metabolism, linoleic acid metabolism, α-linolenic acid metabolism and arachidonic acid metabolism. Rac- and S-(+)-MET affected the synthesis of glycosylphosphatidylinositol (GPI)-anchored biomolecules. R-(-)- and S-(+)-MET affected glutathione metabolism. R-(-)-MET affected vitamin B6 metabolism, selenium compound metabolism, and steroid biosynthesis. Pyrimidine metabolism was only affected by Rac-MET. The experimental results indicated that MET and its enantiomers may affect the nervous and immune systems in rats. Further inter-group difference analysis also demonstrated stereoselectivity of MET and its enantiomers on rat serum metabolism. These findings may provide more detailed information on the toxicity of Rac-, S-(+)- and R-(-)-MET in rat, as well as some context for assessing the environmental risk of the three agents to organisms.

11.
Biomed Chromatogr ; : e6014, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299923

RESUMEN

Xiao-Jian-Zhong-Tang (XJZT) has the effect of warming the middle and tonifying the deficiency, easing the urgency and relieving pain according to the theory of traditional Chinese medicine (TCM), and is able to treat spleen deficiency type chronic atrophic gastritis (CAG). Metabolites of TCM in cecum contents are common metabolites of intestinal bacteria and hosts, which can reflect the metabolic status in disease states. The present work was performed to study the effect of XJZT against CAG coupled with the cecal metabolites analysis and bioinformatics. A total of nine prototypical components and 144 metabolites were firstly identified in the cecum metabolites of XJZT using ultra-high performance liquid chromatography added to the quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS), which underwent the metabolism of oxidation, reduction, methylation, and glucuronic acid reaction Furthermore, different prototypical compounds might metabolize into identical metabolites in the presence of intestinal flora. Bioinformatics was further used to correlate these metabolites with the disease and intestinal flora. Components and targets were screened by Cytoscape, and molecular docking of key targets and core components showed good binding ability. This study provided important information for exploring the mechanism of TCM formulae.

12.
Food Res Int ; 194: 114864, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232506

RESUMEN

Coix seed, a prevalent medicinal and food-homologous plant, is extensively consumed in Asia. It has various pharmacological properties, such as anti-inflammatory and anticancer effects. Coix seed oil, as its main component, is widely produced. However, during the industrial production process of Coix seed oil, substantial byproducts are produced, namely, defatted Coix seeds, which are also worth researching. Currently, it remains unclear whether there will be differences in defatted Coix seeds obtained from different geographical locations, with previous studies reporting that phenolic compounds in defatted Coix seeds have a significant utilization value. In this study, firstly, the TPC and TFC of samples collected in three temperature zones were detected. Subsequently, UPLC-Q-TOF/MS was used to analyze the samples, and a metabolomics data processing strategy and chemometric analysis method were established. We have confirmed the presence of flavonoids and phenolic compounds in 30 batches of Coix seed from different temperature zones in China, and concluded that the overall quality of Coix seed from different batches is relatively stable. With the established strategy, 12 characteristic chemical markers were identified, and 5 valuable phenolic chemical markers were selected for distinguishing the origin of Coix seed and evaluating the quality of defatted Coix seed. Among them, proanthocyanidin A2 has the highest content in defatted Coix seed in subtropical regions, while the content of caffeic acid, naringin, rutin, and chlorogenic acid decreases from north to south. The strategy proposed in this study may provide some basis for the quality control and rational use of defatted Coix seeds.


Asunto(s)
Coix , Metabolómica , Fenoles , Semillas , Semillas/química , Metabolómica/métodos , Coix/química , Fenoles/análisis , Quimiometría , Cromatografía Líquida de Alta Presión , China , Flavonoides/análisis , Biomarcadores/análisis
13.
Phytochem Anal ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233523

RESUMEN

INTRODUCTION: Insight into comparing key active ingredients of Radix Bupleuri (RB) based on different processing technologies is a key step to reveal the material basis of drug efficacy and a challenging task for developing traditional Chinese medicine (TCM). OBJECTIVE: This work aims to establish a comprehensive comparative analysis method of TCM and its processed products, which can be used to analyze the changing trend of active components of RB before and after processing. METHODS: First, RB was processed with rice vinegar, rice wine, and honey. Then, ultra-high-performance liquid chromatography (UHPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) technology as well as multiple statistical analyses were used to comprehensively evaluate the compositional variation of polar and volatile compounds in RB under different processing processes. Meanwhile, in UHPLC-MS, a sequential window acquisition of all theoretical fragment ion spectral and information-dependent acquisition mutual authentication (SIMA) was developed. RESULTS: A total of 30 polar components and 33 volatile components were identified as chemical markers (mainly type II saikosaponins, terpenes, and fatty acid esters). These may be the material basis for giving unique pharmacological activities to RB and its processed products. CONCLUSIONS: These findings provided a solid foundation for the differentiated clinical application of RB, and the SIMA method held great potential for achieving accurate analysis of TCM processing ingredients.

14.
Phytochem Anal ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234942

RESUMEN

INTRODUCTION: Annonaceous acetogenins are a group of natural polyketide compounds possessing notable cytotoxic and antitumor properties. Mass spectrometry (MS) techniques can be used for the structural determination of these compounds, including the location of functional groups along the long alkyl chain. OBJECTIVE: This study aims to develop a convenient liquid chromatography (LC)-MS-based method for the dereplication of acetogenins in plant extracts using a molecular networking approach. METHODOLOGY: The LC-electrospray ionization (ESI)-MS/MS spectra of pure adjacent bis-tetrahydrofuran (THF) acetogenins isolated from Uvaria rufa (Annonaceae) were acquired, along with those of the crude ethyl acetate and hexanes fractions of the plant extract, followed by dereplication and molecular networking analysis using the Global Natural Products Social Molecular Networking (GNPS) platform. RESULTS: A high level of fragmentation of the protonated molecules [M + H]+ was observed at collision energies of 37.5 and 25.0 eV. The application of feature-based molecular networking (FBMN) allowed for distinguishing diastereoisomers based on different retention times in the reversed-phase high-performance liquid chromatography method. The acetogenin possessing one or more additional OH groups on the methyl-terminal chain side of the OH-flanked bis-THF ring unit were grouped separately from those lacking such substructure. Furthermore, the MS2LDA analysis revealed shared Mass2Motifs among acetogenins, confirming the structural relations within the molecular network. CONCLUSIONS: The ESI-MS/MS-based molecular networking method provided an effective strategy for the dereplication of acetogenins in plant extracts. It is anticipated that this molecular networking approach could be extended to other types of acetogenins to facilitate rapid identification of this class of compounds.

15.
Iran J Basic Med Sci ; 27(10): 1243-1250, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229576

RESUMEN

Objectives: Prior research has indicated that hydroxycitric acid (HCA) can impede the formation of calcium oxalate (CaOx) crystals, yet the specific mechanisms underlying its therapeutic effects remain unclear. In this study, we delved into the protective effects of HCA against glyoxylate-induced renal stones in rats and sought to elucidate the underlying metabolic pathways. Materials and Methods: Forty rats were randomly assigned to five groups: control group, model group, L-HCA-treated group, M-HCA-treated group, and H-HCA-treated group. Von Kossa staining was conducted on renal sections, and blood urea nitrogen and serum creatinine were determined by biochemical analysis. Meanwhile, body weight and urine volume were also measured. We subjected urine samples from the rats to analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Next, we employed a metabolomic approach to scrutinize the metabolic profiles of each group. Results: HCA significantly reduced blood urea nitrogen and serum creatinine, and increased body weight and urine volume. It also reduced CaOx crystal deposition. A total of 24 metabolites, exhibiting a significant reversal pattern following HCA administration, were identified as urine biomarkers indicative of HCA's preventive effects against CaOx crystal-induced renal injury. These metabolites are primarily associated with glycine, serine, and threonine metabolism; phenylalanine metabolism; tricarboxylic acid cycle; taurine and hypotaurine metabolism; and tryptophan metabolism. Conclusion: It was demonstrated that HCA has a protective effect against CaOx crystal-induced kidney injury in rats by modulating various metabolic pathways. Additionally, results suggest that HCA holds promise as a potential clinical therapeutic drug for both the prevention and treatment of renal stones.

16.
Foods ; 13(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39272567

RESUMEN

The aim of this study was to produce and to characterize craft beer fermented by immobilized yeast cells with the addition of Prokupac grape pomace seed powder (2.5% and 5%), to obtain a beer enriched with phenolic compounds and improved sensory characteristics. The immobilization of the yeast cells was performed by electrostatic extrusion, while the obtained calcium alginate beads were characterized by light and scanning electron microscopy. Phenolic and hop-derived bitter compounds in beer with or without grape pomace seed powder (GS) phenolics were identified using UHPLC Q-ToF MS. The results indicated that GS adjunct significantly shortened the fermentation process of wort and increased the content of phenolic compounds, especially ellagic acid, flavan-3-ols and pro(antho)cyanidins in the final products compared to the control beer. A total of twenty (iso)-α-acids and one prenylflavonoid were identified, although their levels were significantly lower in beers with GS phenolics compared to the control beer. Beers with GS phenolics showed good antioxidant properties as measured by the reduction of ferric ions (FRP) and the scavenging of ABTS•+ and DPPH• radicals. The concentration of immobilized viable yeast cells was higher than 1 × 108 CFU/g wet mass after each fermentation without destroying the beads, indicating that they can be reused for the repeated fermentation of wort. Beers produced with 5% GS added to the wort exhibited the best sensory properties (acidity, astringency, bitterness intensity, mouthfeel, aftertaste and taste), and highest overall acceptability by the panelists. The results showed that grape pomace seed powder present a promising adjunct for the production of innovative craft beer with good sensory properties and improved functionality.

17.
Sci Rep ; 14(1): 21086, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256453

RESUMEN

Elephantopus tomentosus (ET) Linn. was reported to be an anti-tumor plant. However, the chemical composition of ET and its anti-tumor compounds and potential mechanisms still unclear. In this paper, UPLC-Q-TOF-MS/MS was firstly used to identified the ingredients in ET and UPLC was used to determine the main compounds of ET. Network pharmacology was applied to predict the potential mechanisms of anti-liver cancer. Anti-tumor nuclear activate compounds and targets of ET were obtained and the anti-liver cancer effect was validated on HepG2. Finally, Molecule docking, RT-qPCR, and western blotting were used for verification of the relationship between nuclear activate compounds and nuclear targets and the potential anti-cancer mechanisms. The result showed that 42 compounds were identified in ET, which consisted of sesquiterpene lactones, flavonoids, and phenylpropanoid compounds. Scabertopin (ST), chlorogenic acid, Isochlorogenic acid B, Isochlorogenic acid A and Isochlorogenic acid C were identified as main compounds and were determined as 0.426%, 0.457%, 0.159%, 0.701%, and 0.103% respectively. 24 compounds showed high pharmacokinetics and good drug-likeness. 520 overlapping targets of the ET compounds and liver cancer were collected. The targets were used for KEGG and GO analysis. GO enrichment analysis suggested that the targets of 24 active compound closed related to promote apoptosis, inhibit proliferation, and regulate oxidative levels. KEGG enrichment analysis suggested that pathway in cancer was enriched most and p38 MAPK/p53 signaling pathway, which closely related to promoting apoptosis and inhibiting proliferation. Compounds-targets analysis based on the parameter of Betweenness, Closeness, Information, Eigenvector, Degree, and component content indicated that ST was the nucleus anti-tumor active compound of ET. HepG2 was first used to validated the anti-tumor effect of ST and the result showed that ST significantly inhibited HepG2 proliferation with a low IC50 less than 5 µM. Nucleus active compound targets, including TP53, CASP3, BCL2, EGFR, TNF-a, IL-1ß, and IL-6 were enriched based on degree value of PPI analysis. Molecule docking suggested that ST showed a good combination to TGFBR1 with the combination energy less than - 5 kcal/mol. RT-qPCR result also suggested that ST significantly medicated the mRNA expression level of TP53, CASP3, BCL2, EGFR, TNF-a, IL-1ß, and IL-6. Protein expression of p-p38/p38 and p-p53/p53 notable increased by ST treatment. In conclude, combining with UPLC-Q-TOF-MS/MS qualitative analysis, UPLC quantitative analysis, network pharmacology analysis, molecule docking, and in vitro experiments on HepG2, we suggest that ST is an anti-tumor ingredient of ET, which may target to TGFBR1 and promote apoptosis and inhibited proliferation of HepG2 by activating p38 MAPK/p53 signaling pathway. ST can be regarded as a quality marker of ET.


Asunto(s)
Neoplasias Hepáticas , Simulación del Acoplamiento Molecular , Humanos , Células Hep G2 , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Asteraceae/química , Simulación por Computador , Espectrometría de Masas en Tándem , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos
18.
Artículo en Inglés | MEDLINE | ID: mdl-39306868

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis, which can lead to joint deformity. Acupuncture treatment stimulates specific acupoints to adjust qi and blood function, relieving joint inflammation and pain. METHODS: Ultra-high performance liquid chromatography-mass spectrometry (UPLC-QTOF-MS) was utilized for non-targeted metabolomics analysis of plasma samples from the blank group, Adjuvant-Induced Arthritis (AIA) model mice model mice group, and acupuncture group. Metabolite hierarchical clustering analysis, multivariate statistical analysis, standardized processing, principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and other methods were employed to identify targeted metabolites affected by acupuncture treatment in AIA mice. The related metabolic pathways were analyzed using KEGG pathway. RESULTS: Histopathological results demonstrated that acupuncture at Zusanli point (ST 36) significantly improved the inflammatory response in AIA mice. The PCA score plot indicated relatively close sample clustering within each group with significant differences observed between the four groups, confirming successful establishment of the AIA animal model with metabolic disorders occurring. Acupuncture treatment effectively corrected these metabolic disorders. Plasma metabolomics identified a total of 10 differential metabolites primarily associated with arachidonic acid and pentose phosphate metabolic pathways. CONCLUSIONS: Acupuncture at ST36 can significantly improve the inflammatory response in AIA mice through modulation of arachidonic acid and pentose phosphate metabolic pathways.

19.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4672-4686, 2024 Sep.
Artículo en Chino | MEDLINE | ID: mdl-39307805

RESUMEN

The main chemical components of Yangxue Qingnao Wan(YXQNW) were analyzed and identified by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS). According to the mass spectrometry information, Mass Hunter 10.0 analysis software was used to compare the collected quasi-molecular ion peaks and secondary fragment ions with literature and reference substances. A total of 131 compounds were identified from YXQNW, including 11 phenylpropanoids, 11 flavonoids, 42 nitrogen-containing compounds, 12 terpenoids, 17 phthalides, 23 quinones, and 15 other compounds. The anti-aging activity of YXQNW and six compounds from YXQNW, including rosmarinic acid, gallic acid, rutin, umbelliferone, hyperoside, and vanillic acid, were evaluated by D-galactose(D-gal)-induced HT22 cell senescence model. The effects of the compounds on HT22 cell damage and individual cell proliferation ability were observed from overall and individual perspectives by the Beyo Click~(TM) EdU-555 cell proliferation kit, and apoptosis was detected by the Annexin V-FITC/PI double staining apoptosis detection kit. Finally, the anti-aging effect of the compounds was tested by a cell senescence ß-galactosidase staining kit. This study provides a more comprehensive analysis of the chemical components of YXQNW and evaluates its anti-aging effect, which will provide a scientific basis for basic research on the efficacy of YXQNW for the treatment of various neurological diseases, such as Alzheimer's disease(AD), headache, and memory loss.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Ratones , Línea Celular , Envejecimiento/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-39305632

RESUMEN

Hypericum japonicum is a traditional folk medicine with various bioactivities such as hepatoprotective, antioxidant, and anti-tumorous. The antioxidant effect of H. japonicum is one of the most prominent effects due to its responsibility for many of its activities. To clarify active natural substance, the antioxidant properties of H. japonicum were preliminarily assessed by ferric reducing-antioxidant power (FRAP), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and Oxygen radical absorbance capacity (ORAC), as well as superoxide dismutase (SOD). Then, a straightforward and effective method named online liquid extraction-high performance liquid chromatography combined with ABTS antioxidant assay and mass spectrometry (OLE-HPLC-ABTS/Q-TOF-MS) was developed to swiftly and directly discover the antioxidants in H. japonicum. Using mobile phase as extraction and separation reagent, coupled with online activity analysis and compounds identification by high-resolution MS, the online system enables rapid screening of natural antioxidant bioactives from complex mixture. By using it, a total of 9 compounds including flavonoids and phenolic acids characterized by retention time, precise mass, and fragmentation ions in MS/MS spectra showed antioxidant action. Finally, the antioxidant and SOD activity of main found active compounds were validated by in vitro experiment assay and molecular docking. In summary, these results suggested that H. japonicum could be considered as a potential source of natural antioxidants, and the online integrated system might become a promising candidate for the natural antioxidants discovery in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...