Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 549, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010020

RESUMEN

OBJECTIVE: In chronic low back pain (CLBP), the relationship between spinal pathologies and paraspinal muscles fat infiltration remains unclear. This study aims to evaluate the relationship between MRI findings and paraspinal muscles morphology and fat infiltration in CLBP patients by quantitative MRI. METHODS: All the CLBP patients were enrolled from July 2021 to December 2022 in four medical institutions. The cross-sectional area (CSA) and proton density fat fraction (PDFF) of the multifidus (MF) and erector spinae (ES) muscles at the central level of the L4/5 and L5/S1 intervertebral discs were measured. MRI findings included degenerative lumbar spondylolisthesis (DLS), intervertebral disc degeneration (IVDD), facet arthrosis, disc bulge or herniation, and disease duration. The relationship between MRI findings and the paraspinal muscles PDFF and CSA in CLBP patients was analyzed. RESULTS: A total of 493 CLBP patients were included in the study (198 females, 295 males), with an average age of 45.68 ± 12.91 years. Our research indicates that the number of MRI findings are correlated with the paraspinal muscles PDFF at the L4/5 level, but is not significant. Moreover, the grading of IVDD is the primary factor influencing the paraspinal muscles PDFF at the L4-S1 level (BES at L4/5=1.845, P < 0.05); DLS was a significant factor affecting the PDFF of MF at the L4/5 level (B = 4.774, P < 0.05). After including age, gender, and Body Mass Index (BMI) as control variables in the multivariable regression analysis, age has a significant positive impact on the paraspinal muscles PDFF at the L4-S1 level, with the largest AUC for ES PDFF at the L4/5 level (AUC = 0.646, cut-off value = 47.5), while males have lower PDFF compared to females. BMI has a positive impact on the ES PDFF only at the L4/5 level (AUC = 0.559, cut-off value = 24.535). CONCLUSION: The degree of paraspinal muscles fat infiltration in CLBP patients is related to the cumulative or synergistic effects of multiple factors, especially at the L4/L5 level. Although age and BMI are important factors affecting the degree of paraspinal muscles PDFF in CLBP patients, their diagnostic efficacy is moderate.


Asunto(s)
Tejido Adiposo , Dolor Crónico , Dolor de la Región Lumbar , Vértebras Lumbares , Imagen por Resonancia Magnética , Músculos Paraespinales , Humanos , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/patología , Masculino , Dolor de la Región Lumbar/diagnóstico por imagen , Dolor de la Región Lumbar/etiología , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/patología , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Dolor Crónico/diagnóstico por imagen , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/patología
2.
Artículo en Inglés | MEDLINE | ID: mdl-39009381

RESUMEN

BACKGROUND: There is increasing evidence that myosteatosis, which is currently not assessed in clinical routine, plays an important role in risk estimation in individuals with impaired glucose metabolism, as it is associated with the progression of insulin resistance. With advances in artificial intelligence, automated and accurate algorithms have become feasible to fill this gap. METHODS: In this retrospective study, we developed and tested a fully automated deep learning model using data from two prospective cohort studies (German National Cohort [NAKO] and Cooperative Health Research in the Region of Augsburg [KORA]) to quantify myosteatosis on whole-body T1-weighted Dixon magnetic resonance imaging as (1) intramuscular adipose tissue (IMAT; the current standard) and (2) quantitative skeletal muscle (SM) fat fraction (SMFF). Subsequently, we investigated the two measures for their discrimination of and association with impaired glucose metabolism beyond baseline demographics (age, sex and body mass index [BMI]) and cardiometabolic risk factors (lipid panel, systolic blood pressure, smoking status and alcohol consumption) in asymptomatic individuals from the KORA study. Impaired glucose metabolism was defined as impaired fasting glucose or impaired glucose tolerance (140-200 mg/dL) or prevalent diabetes mellitus. RESULTS: Model performance was high, with Dice coefficients of ≥0.81 for IMAT and ≥0.91 for SM in the internal (NAKO) and external (KORA) testing sets. In the target population (380 KORA participants: mean age of 53.6 ± 9.2 years, BMI of 28.2 ± 4.9 kg/m2, 57.4% male), individuals with impaired glucose metabolism (n = 146; 38.4%) were older and more likely men and showed a higher cardiometabolic risk profile, higher IMAT (4.5 ± 2.2% vs. 3.9 ± 1.7%) and higher SMFF (22.0 ± 4.7% vs. 18.9 ± 3.9%) compared to normoglycaemic controls (all P ≤ 0.005). SMFF showed better discrimination for impaired glucose metabolism than IMAT (area under the receiver operating characteristic curve [AUC] 0.693 vs. 0.582, 95% confidence interval [CI] [0.06-0.16]; P < 0.001) but was not significantly different from BMI (AUC 0.733 vs. 0.693, 95% CI [-0.09 to 0.01]; P = 0.15). In univariable logistic regression, IMAT (odds ratio [OR] = 1.18, 95% CI [1.06-1.32]; P = 0.004) and SMFF (OR = 1.19, 95% CI [1.13-1.26]; P < 0.001) were associated with a higher risk of impaired glucose metabolism. This signal remained robust after multivariable adjustment for baseline demographics and cardiometabolic risk factors for SMFF (OR = 1.10, 95% CI [1.01-1.19]; P = 0.028) but not for IMAT (OR = 1.14, 95% CI [0.97-1.33]; P = 0.11). CONCLUSIONS: Quantitative SMFF, but not IMAT, is an independent predictor of impaired glucose metabolism, and discrimination is not significantly different from BMI, making it a promising alternative for the currently established approach. Automated methods such as the proposed model may provide a feasible option for opportunistic screening of myosteatosis and, thus, a low-cost personalized risk assessment solution.

3.
MAGMA ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003384

RESUMEN

OBJECTIVES: Signal drift has been put forward as one of the fundamental confounding factors in diffusion MRI (dMRI) of the brain. This study characterizes signal drift in dMRI of the brain, evaluates correction methods, and exemplifies its impact on parameter estimation for three intravoxel incoherent motion (IVIM) protocols. MATERIALS AND METHODS: dMRI of the brain was acquired in ten healthy subjects using protocols designed to enable retrospective characterization and correction of signal drift. All scans were acquired twice for repeatability analysis. Three temporal polynomial correction methods were evaluated: (1) global, (2) voxelwise, and (3) spatiotemporal. Effects of acquisition order were simulated using estimated drift fields. RESULTS: Signal drift was around 2% per 5 min in the brain as a whole, but reached above 5% per 5 min in the frontal regions. Only correction methods taking spatially varying signal drift into account could achieve effective corrections. Altered acquisition order introduced both systematic changes and differences in repeatability in the presence of signal drift. DISCUSSION: Signal drift in dMRI of the brain was found to be spatially varying, calling for correction methods taking this into account. Without proper corrections, choice of protocol can affect dMRI parameter estimates and their repeatability.

4.
J Neurol ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003428

RESUMEN

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional characterization of lesions with different longitudinal phenotypes. METHODS: We analysed T1 and T2 relaxometry maps from a longitudinal cohort of MS patients. Lesions were classified as enlarging, shrinking, new or stable based on their longitudinal volumetric change using a newly developed automated technique. Voxelwise deviations were computed as z-scores by comparing individual patient data to T1, T2 and T2/T1 normative values from healthy subjects. We studied the distribution of microstructural properties inside lesions and within perilesional tissue. RESULTS AND CONCLUSIONS: Stable lesions exhibited the highest T1 and T2 z-scores in lesion tissue, while the lowest values were observed for new lesions. Shrinking lesions presented the highest T1 z-scores in the first perilesional ring while enlarging lesions showed the highest T2 z-scores in the same region. Finally, a classification model was trained to predict the longitudinal lesion type based on microstructural metrics and feature importance was assessed. Z-scores estimated in lesion and perilesional tissue from T1, T2 and T2/T1 quantitative maps carry discriminative and complementary information to classify longitudinal lesion phenotypes, hence suggesting that multiparametric MRI approaches are essential for a better understanding of the pathophysiological mechanisms underlying disease activity in MS lesions.

5.
NMR Biomed ; : e5182, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993048

RESUMEN

Currently, brain iron content represents a new neuromarker for understanding the physiopathological mechanisms leading to Parkinson's disease (PD). In vivo quantification of biological iron is possible by reconstructing magnetic susceptibility maps obtained using quantitative susceptibility mapping (QSM). Applying QSM is challenging, as up to now, no standardization of acquisition protocols and phase image processing has emerged from referenced studies. Our objectives were to compare the accuracy and the sensitivity of 10 QSM pipelines built from algorithms from the literature, applied on phantoms data and on brain data. Two phantoms, with known magnetic susceptibility ranges, were created from several solutions of gadolinium chelate. Twenty healthy volunteers from two age groups were included. Phantoms and brain data were acquired at 1.5 and 3 T, respectively. Susceptibility-weighted images were obtained using a 3D multigradient-recalled-echo sequence. For brain data, 3D anatomical T1- and T2-weighted images were also acquired to segment the deep gray nuclei of interest. Concerning in vitro data, the linear dependence of magnetic susceptibility versus gadolinium concentration and deviations from the theoretically expected values were calculated. For brain data, the accuracy and sensitivity of the QSM pipelines were evaluated in comparison with results from the literature and regarding the expected magnetic susceptibility increase with age, respectively. A nonparametric Mann-Whitney U-test was used to compare the magnetic susceptibility quantification in deep gray nuclei between the two age groups. Our methodology enabled quantifying magnetic susceptibility in human brain and the results were consistent with those from the literature. Statistically significant differences were obtained between the two age groups in all cerebral regions of interest. Our results show the importance of optimizing QSM pipelines according to the application and the targeted magnetic susceptibility range, to achieve accurate quantification. We were able to define the optimal QSM pipeline for future applications on patients with PD.

6.
Magn Reson Med ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953429

RESUMEN

PURPOSE: To assess the potential for accelerating continuous-wave (CW) T1ρ dispersion measurement with compressed sensing approach via studying the effect that the data reduction has on the ability to detect differences between intact and degenerated articular cartilage with different spin-lock amplitudes and to assess quantitative bias due to acceleration. METHODS: Osteochondral plugs (n = 27, 4 mm diameter) from femur (n = 14) and tibia (n = 13) regions from human cadaver knee joints were obtained from commercial biobank (Science Care, USA) under Ethical permission 134/2015. MRI of specimens was performed at 9.4T with magnetization prepared radial balanced SSFP (bSSFP) readout sequence, and the CWT1ρ relaxation time maps were computed from the measured data. The relaxation time maps were evaluated in the cartilage zones for different acceleration factors. For reference, Osteoarthritis Research Society International (OARSI) grading and biomechanical measurements were performed and correlated with the MRI findings. RESULTS: Four-fold acceleration of CWT1ρ dispersion measurement by compressed sensing approach was feasible without meaningful loss in the sensitivity to osteoarthritic (OA) changes within the articular cartilage. Differences were significant between intact and OA groups in the superficial and transitional zones, and CWT1ρ correlated moderately with the reference measurements (0.3 < r < 0.7). CONCLUSION: CWT1ρ was able to differentiate between intact and OA cartilage even with four-fold acceleration. This indicates that acceleration of CWT1ρ dispersion measurement by compressed sensing approach is feasible with negligible loss in the sensitivity to osteoarthritic changes in articular cartilage.

7.
J Magn Reson Imaging ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949101

RESUMEN

BACKGROUND: Myocardial T1-rho (T1ρ) mapping is a promising method for identifying and quantifying myocardial injuries without contrast agents, but its clinical use is hindered by the lack of dedicated analysis tools. PURPOSE: To explore the feasibility of clinically integrated artificial intelligence-driven analysis for efficient and automated myocardial T1ρ mapping. STUDY TYPE: Retrospective. POPULATION: Five hundred seventy-three patients divided into a training (N = 500) and a test set (N = 73) including ischemic and nonischemic cases. FIELD STRENGTH/SEQUENCE: Single-shot bSSFP T1ρ mapping sequence at 1.5 T. ASSESSMENT: The automated process included: left ventricular (LV) wall segmentation, right ventricular insertion point detection and creation of a 16-segment model for segmental T1ρ value analysis. Two radiologists (20 and 7 years of MRI experience) provided ground truth annotations. Interobserver variability and segmentation quality were assessed using the Dice coefficient with manual segmentation as reference standard. Global and segmental T1ρ values were compared. Processing times were measured. STATISTICAL TESTS: Intraclass correlation coefficients (ICCs) and Bland-Altman analysis (bias ±2SD); Paired Student's t-tests and one-way ANOVA. A P value <0.05 was considered significant. RESULTS: The automated approach significantly reduced processing time (3 seconds vs. 1 minute 51 seconds ± 22 seconds). In the test set, automated LV wall segmentation closely matched manual results (Dice 81.9% ± 9.0) and closely aligned with interobserver segmentation (Dice 82.2% ± 6.5). Excellent ICCs were achieved on a patient basis (0.94 [95% CI: 0.91 to 0.96]) with bias of -0.93 cm2 ± 6.60. There was no significant difference in global T1ρ values between manual (54.9 msec ± 4.6; 95% CI: 53.8 to 56.0 msec, range: 46.6-70.9 msec) and automated processing (55.4 msec ± 5.1; 95% CI: 54.2 to 56.6 msec; range: 46.4-75.1 msec; P = 0.099). The pipeline demonstrated a high level of agreement with manual-derived T1ρ values at the patient level (ICC = 0.85; bias +0.52 msec ± 5.18). No significant differences in myocardial T1ρ values were found between methods across the 16 segments (P = 0.75). DATA CONCLUSION: Automated myocardial T1ρ mapping shows promise for the rapid and noninvasive assessment of heart disease. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

8.
J Magn Reson Imaging ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970359

RESUMEN

Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract in which repeated episodes of acute inflammation may lead to long-term bowel damage. Cross-sectional imaging is used in conjunction with endoscopy to diagnose and monitor disease and detect complications. Magnetic resonance imaging (MRI) has demonstrable utility in evaluating inflammatory activity. However, subjective interpretation of conventional MR sequences is limited in its ability to fully phenotype the underlying histopathological processes in chronic disease. In particular, conventional MRI can be confounded by the presence of mural fibrosis and muscle hypertrophy, which can mask or sometimes mimic inflammation. Quantitative MRI (qMRI) methods provide a means to better differentiate mural inflammation from fibrosis and improve quantification of these processes. qMRI may also provide more objective measures of disease activity and enable better tailoring of treatment. Here, we review quantitative MRI methods for imaging the small bowel in CD and consider the path to their clinical translation. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

9.
Brain Behav ; 14(7): e3619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970221

RESUMEN

OBJECTIVE: Normal aging is associated with brain volume change, and brain segmentation can be performed within an acceptable scan time using synthetic magnetic resonance imaging (MRI). This study aimed to investigate the brain volume changes in healthy adult according to age and gender, and provide age- and gender-specific reference values using synthetic MRI. METHODS: A total of 300 healthy adults (141 males, median age 48; 159 females, median age 50) were underwent synthetic MRI on 3.0 T. Brain parenchymal volume (BPV), gray matter volume (GMV), white matter volume (WMV), myelin volume (MYV), and cerebrospinal fluid volume (CSFV) were calculated using synthetic MRI software. These volumes were normalized by intracranial volume to normalized GMV (nGMV), normalized WMV (nWMV), normalized MYV (nMYV), normalized BPV (nBPV), and normalized CSFV (nCSFV). The normalized brain volumes were plotted against age in both males and females, and a curve fitting model that best explained the age dependence of brain volume was identified. The normalized brain volumes were compared between different age and gender groups. RESULTS: The approximate curves of nGMV, nWMV, nCSFV, nBPV, and nMYV were best fitted by quadratic curves. The nBPV decreased monotonously through all ages in both males and females, while the changes of nCSFV showed the opposite trend. The nWMV and nMYV in both males and females increased gradually and then decrease with age. In early adulthood (20s), nWMV and nMYV in males were lower and peaked later than that in females (p < .005). The nGMV in both males and females decreased in the early adulthood until the 30s and then remains stable. A significant decline in nWMV, nBPV, and nMYV was noted in the 60s (Turkey test, p < .05). CONCLUSIONS: Our study provides age- and gender-specific reference values of brain volumes using synthetic MRI, which could be objective tools for discriminating brain disorders from healthy brains.


Asunto(s)
Envejecimiento , Encéfalo , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Adulto Joven , Envejecimiento/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/anatomía & histología , Tamaño de los Órganos/fisiología , Factores Sexuales , Sustancia Blanca/diagnóstico por imagen , Valores de Referencia , Caracteres Sexuales , Factores de Edad
10.
Sci Rep ; 14(1): 16455, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014184

RESUMEN

Diffusion Kurtosis Imaging (DKI)-derived metrics are recognized as indicators of maturation in neonates with low-grade germinal matrix and intraventricular hemorrhage (GMH-IVH). However, it is not yet known if these factors are associated with neurodevelopmental outcomes. The objective of this study was to acquire DKI-derived metrics in neonates with low-grade GMH-IVH, and to demonstrate their association with later neurodevelopmental outcomes. In this prospective study, neonates with low-grade GMH-IVH and control neonates were recruited, and DKI were performed between January 2020 and March 2021. These neonates underwent the Bayley Scales of Infant Development test at 18 months of age. Mean kurtosis (MK), radial kurtosis (RK) and gray matter values were measured. Spearman correlation analyses were conducted for the measured values and neurodevelopmental outcome scores. Forty controls (18 males, average gestational age (GA) 30 weeks ± 1.3, corrected GA at MRI scan 38 weeks ± 1) and thirty neonates with low-grade GMH-IVH (13 males, average GA 30 weeks ± 1.5, corrected GA at MRI scan 38 weeks ± 1). Neonates with low-grade GMH-IVH exhibited lower MK and RK values in the PLIC and the thalamus (P < 0.05). The MK value in the thalamus was associated with Mental Development Index (MDI) (r = 0.810, 95% CI 0.695-0.13; P < 0.001) and Psychomotor Development Index (PDI) (r = 0.852, 95% CI 0.722-0.912; P < 0.001) scores. RK value in the caudate nucleus significantly and positively correlated with MDI (r = 0.496, 95% CI 0.657-0.933; P < 0.001) and PDI (r = 0.545, 95% CI 0.712-0.942; P < 0.001) scores. The area under the curve (AUC) were used to assess diagnostic performance of MK and RK in thalamus (AUC = 0.866, 0.787) and caudate nucleus (AUC = 0.833, 0.671) for predicting neurodevelopmental outcomes. As quantitative neuroimaging markers, MK in thalamus and RK in caudate nucleus may help predict neurodevelopmental outcomes in neonates with low-grade GMH-IVH.


Asunto(s)
Imagen de Difusión Tensora , Humanos , Masculino , Recién Nacido , Femenino , Imagen de Difusión Tensora/métodos , Estudios Prospectivos , Hemorragia Cerebral/diagnóstico por imagen , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/etiología , Lactante , Hemorragia Cerebral Intraventricular/diagnóstico por imagen , Edad Gestacional , Desarrollo Infantil , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología
12.
Magn Reson Med ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934408

RESUMEN

PURPOSE: To develop a fast denoising framework for high-dimensional MRI data based on a self-supervised learning scheme, which does not require ground truth clean image. THEORY AND METHODS: Quantitative MRI faces limitations in SNR, because the variation of signal amplitude in a large set of images is the key mechanism for quantification. In addition, the complex non-linear signal models make the fitting process vulnerable to noise. To address these issues, we propose a fast deep-learning framework for denoising, which efficiently exploits the redundancy in multidimensional MRI data. A self-supervised model was designed to use only noisy images for training, bypassing the challenge of clean data paucity in clinical practice. For validation, we used two different datasets of simulated magnetization transfer contrast MR fingerprinting (MTC-MRF) dataset and in vivo DWI image dataset to show the generalizability. RESULTS: The proposed method drastically improved denoising performance in the presence of mild-to-severe noise regardless of noise distributions compared to previous methods of the BM3D, tMPPCA, and Patch2self. The improvements were even pronounced in the following quantification results from the denoised images. CONCLUSION: The proposed MD-S2S (Multidimensional-Self2Self) denoising technique could be further applied to various multi-dimensional MRI data and improve the quantification accuracy of tissue parameter maps.

13.
MAGMA ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856839

RESUMEN

Prostate cancer poses significant diagnostic challenges, with conventional methods like prostate-specific antigen (PSA) screening and transrectal ultrasound (TRUS)-guided biopsies often leading to overdiagnosis or miss clinically significant cancers. Multiparametric MRI (mpMRI) has emerged as a more reliable tool. However, it is limited by high inter-observer variability and radiologists missing up to 30% of clinically significant cancers. This article summarizes a few of these recent advancements in quantitative MRI techniques that look at the "Virtual Pathology" of the prostate with an aim to enhance prostate cancer detection and characterization. These techniques include T2 relaxation-based techniques such as luminal water imaging, diffusion based such as vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) and restriction spectrum imaging or combined relaxation-diffusion techniques such as hybrid multi-dimensional MRI (HM-MRI), time-dependent diffusion imaging, and diffusion-relaxation correlation spectrum imaging. These methods provide detailed insights into underlying prostate microstructure and tissue composition and have shown improved diagnostic accuracy over conventional MRI. These innovative MRI methods hold potential for augmenting mpMRI, reducing variability in diagnosis, and paving the way for MRI as a 'virtual histology' tool in prostate cancer diagnosis. However, they require further validation in larger multi-center clinical settings and rigorous in-depth radiological-pathology correlation are needed for broader implementation.

14.
Phys Med Biol ; 69(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917824

RESUMEN

Objective.A model-based alternating reconstruction coupling fitting, termed Model-based Alternating Reconstruction COupling fitting (MARCO), is proposed for accurate and fast magnetic resonance parameter mapping.Approach.MARCO utilizes the signal model as a regularization by minimizing the bias between the image series and the signal produced by the suitable signal model based on iteratively updated parameter maps when reconstructing. The technique can incorporate prior knowledge of both image series and parameters by adding sparsity constraints. The optimization problem is decomposed into three subproblems and solved through three alternating steps involving reconstruction and nonlinear least-square fitting, which can produce both contrast-weighted images and parameter maps simultaneously.Main results.The algorithm is applied toT2mapping with extended phase graph algorithm integrated and validated on undersampled multi-echo spin-echo data from both phantom and in vivo sources. Compared with traditional compressed sensing and model-based methods, the proposed approach yields more accurateT2maps with more details at high acceleration factors.Significance.The proposed method provides a basic framework for quantitative MR relaxometry, theoretically applicable to all quantitative MR relaxometry. It has the potential to improve the diagnostic utility of quantitative imaging techniques.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Factores de Tiempo , Encéfalo/diagnóstico por imagen
15.
Artículo en Inglés | MEDLINE | ID: mdl-38923326

RESUMEN

BACKGROUND: We investigated the potential of magnetic resonance elastography (MRE) stiffness measurements in skeletal muscles as an outcome measure, by determining its test-retest reliability, as well as its sensitivity to change in a longitudinal follow-up study. METHODS: We assessed test-retest reliability of muscle MRE in 20 subjects with (n = 5) and without (n = 15) muscle diseases and compared this to Dixon proton density fat fraction (PDFF) and volume measurements. Next, we measured MRE muscle stiffness in 21 adults with Becker muscular dystrophy (BMD) and 21 age-matched healthy controls at baseline, and after 9 and 18 months. We compared two different methods of analysing MRE data in this study: 'Method A' used the stiffness maps generated by the Philips MRE software, and 'Method B' applied a custom-made procedure based on wavelength measurements on the MRE images. RESULTS: Intraclass correlation coefficients (ICC) of muscle stiffness ranged from good (0.83 for left vastus medialis, P < 0.001) to poor (0.19 for right rectus femoris, P = 0.212) for the examined thigh muscles with Method A, but we did not find a significant test-retest reliability with Method B (P > 0.050 for all). The ICC of muscle PDFF and volume measurements was excellent (>0.90; P < 0.001) for all muscles. At baseline, the average stiffness of all thigh muscles was significantly lower in adults with BMD than in controls for both Method A (-0.2 kPa, P = 0.025) and Method B (-0.6 kPa, P < 0.001). Regardless of which method was used, there was no significant difference in the evolution of muscle stiffness in patients and controls over 18 months. CONCLUSIONS: Test-retest reliability of muscle MRE using a simple 2D technique was suboptimal, and did not reliably measure muscle stiffness changes in adults with BMD as compared with controls over 18 months. While the results provide motivation for testing more advanced 3D MRE methods, we conclude that the simple 2D MRE implementation used in this study is not suitable as an outcome measure for characterizing thigh muscle in clinical trials.

16.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730562

RESUMEN

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Asunto(s)
Encéfalo , Colaboración de las Masas , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Masculino , Femenino , Adulto , Algoritmos
17.
Magn Reson Med ; 92(3): 1138-1148, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730565

RESUMEN

PURPOSE: To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS: TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS: The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION: TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.


Asunto(s)
Algoritmos , Neoplasias Renales , Riñón , Fantasmas de Imagen , Humanos , Neoplasias Renales/diagnóstico por imagen , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Femenino , Adulto , Masculino , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Persona de Mediana Edad , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Contencion de la Respiración
18.
Magn Reson Med ; 92(4): 1638-1648, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38703042

RESUMEN

PURPOSE: To develop neural network (NN)-based quantitative MRI parameter estimators with minimal bias and a variance close to the Cramér-Rao bound. THEORY AND METHODS: We generalize the mean squared error loss to control the bias and variance of the NN's estimates, which involves averaging over multiple noise realizations of the same measurements during training. Bias and variance properties of the resulting NNs are studied for two neuroimaging applications. RESULTS: In simulations, the proposed strategy reduces the estimates' bias throughout parameter space and achieves a variance close to the Cramér-Rao bound. In vivo, we observe good concordance between parameter maps estimated with the proposed NNs and traditional estimators, such as nonlinear least-squares fitting, while state-of-the-art NNs show larger deviations. CONCLUSION: The proposed NNs have greatly reduced bias compared to those trained using the mean squared error and offer significantly improved computational efficiency over traditional estimators with comparable or better accuracy.


Asunto(s)
Algoritmos , Encéfalo , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Sesgo , Neuroimagen/métodos , Reproducibilidad de los Resultados , Análisis de los Mínimos Cuadrados
19.
Phys Imaging Radiat Oncol ; 30: 100579, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38707628

RESUMEN

Background and Purpose: The feasibility of acquiring diffusion-weighted imaging (DWI) images on an MR-Linac for quantitative response assessment during radiotherapy was explored. DWI data obtained with a Spin Echo Echo Planar Imaging sequence adapted for a 0.35 T MR-Linac were examined and compared with DWI data from a conventional 3 T scanner. Materials and Methods: Apparent diffusion coefficient (ADC) measurements and a distortion correction technique were investigated using DWI-calibrated phantoms and in the brains of seven volunteers. All DWI utilized two phase-encoding directions for distortion correction and off-resonance field estimation. ADC maps in the brain were analyzed for automatically segmented normal tissues. Results: Phantom ADC measurements on the MR-Linac were within a 3 % margin of those recorded by the 3 T scanner. The maximum distortion observed in the phantom was 2.0 mm prior to correction and 1.1 mm post-correction on the MR-Linac, compared to 6.0 mm before correction and 3.6 mm after correction at 3 T. In vivo, the average ADC values for gray and white matter exhibited variations of 14 % and 4 %, respectively, for different selections of b-values on the MR-Linac. Distortions in brain images before correction, estimated through the off-resonance field, reached 2.7 mm on the MR-Linac and 12 mm at 3 T. Conclusion: Accurate ADC measurements are achievable on a 0.35 T MR-Linac, both in phantom and in vivo. The selection of b-values significantly influences ADC values in vivo. DWI on the MR-Linac demonstrated lower distortion levels, with a maximum distortion reduced to 1.1 mm after correction.

20.
J Magn Reson Imaging ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708951

RESUMEN

BACKGROUND: Irregular cardiac motion can render conventional segmented cine MRI nondiagnostic. Clustering has been proposed for cardiac motion binning and may be optimized for complex arrhythmias. PURPOSE: To develop an adaptive cluster optimization method for irregular cardiac motion, and to generate the corresponding time-resolved cine images. STUDY TYPE: Prospective. SUBJECTS: Thirteen with atrial fibrillation, four with premature ventricular contractions, and one patient in sinus rhythm. FIELD STRENGTH/SEQUENCE: Free-running balanced steady state free precession (bSSFP) with sorted golden-step, reference real-time sequence. ASSESSMENT: Each subject underwent both the sorted golden-step bSSFP and the reference Cartesian real-time imaging. Golden-step bSSFP images were reconstructed using the dynamic regularized adaptive cluster optimization (DRACO) method and k-means clustering. Image quality (4-point Likert scale), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge sharpness, and ventricular function were assessed. STATISTICAL TESTS: Paired t-tests, Friedman test, regression analysis, Fleiss' Kappa, Bland-Altman analysis. Significance level P < 0.05. RESULTS: The DRACO method had the highest percent of images with scores ≥3 (96% for diastolic frame, 93% for systolic frame, and 93% for multiphase cine) and the percentages were significantly higher compared with both the k-means and real-time methods. Image quality scores, SNR, and CNR were significantly different between DRACO vs. k-means and between DRACO vs. real-time. Cardiac function analysis showed no significant differences between DRACO vs. the reference real-time. CONCLUSION: DRACO with time-resolved reconstruction generated high quality images and has early promise for quantitative cine cardiac MRI in patients with complex arrhythmias including atrial fibrillation. TECHNICAL EFFICACY: Stage 2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...