Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 226: 116392, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942091

RESUMEN

Bitter taste receptors (TAS2Rs) Tas2r108 gene possesses a high abundance in mouse kidney; however, the biological functions of Tas2r108 encoded receptor TAS2Rs member 4 (TAS2R4) are still unknown. In the present study, we found that mouse TAS2R4 (mTAS2R4) signaling was inactivated in chronic high glucose-stimulated mouse podocyte cell line MPC, evidenced by the decreased protein expressions of mTAS2R4 and phospholipase C ß2 (PLCß2), a key downstream molecule of mTAS2R4 signaling. Nonetheless, agonism of mTAS2R4 by quinine recovered mTAS2R4 and PLCß2 levels, and increased podocyte cell viability as well as protein expressions of ZO-1 and nephrin, biomarkers of podocyte slit diaphragm, in high glucose-cultured MPC cells. However, blockage of mTAS2R4 signaling with mTAS2R4 blockers γ-aminobutyric acid and abscisic acid, a Gßγ inhibitor Gallein, or a PLCß2 inhibitor U73122 all abolished the effects of quinine on NLRP3 inflammasome and p-NF-κB p65 as well as the functional podocyte proteins in MPC cells in a high glucose condition. Furthermore, knockdown of mTAS2R4 with lentivirus-carrying Tas2r108 shRNA also ablated the effect of quinine on the key molecules of the above inflammatory signalings and podocyte functions in high glucose-cultured MPC cells. In summary, we demonstrated that activation of TAS2R4 signaling alleviated the podocyte injury caused by chronic high glucose, and inhibition of NF-κB p65 and NLRP3 inflammasome mediated the protective effects of TAS2R4 activation on podocytes. Moreover, activation of TAS2R4 signaling could be an important strategy for prevention and treatment of diabetic kidney disease.


Asunto(s)
Glucosa , Podocitos , Receptores Acoplados a Proteínas G , Transducción de Señal , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Animales , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Glucosa/toxicidad , Glucosa/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Línea Celular
2.
Methods Mol Biol ; 2653: 221-252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995630

RESUMEN

Medicago truncatula is the model plant species for studying symbioses with nitrogen-fixing rhizobia and arbuscular mycorrhizae, where edited mutants are invaluable for elucidating the contributions of known genes in these processes. Streptococcus pyogenes Cas9 (SpCas9)-based genome editing is a facile means of achieving loss of function, including where multiple gene knockouts are desired in a single generation. We describe how the user can customize our vector to target single or multiple genes, then how the vector is used to make M. truncatula transgenic plants containing target site mutations. Finally, obtaining transgene-free homozygous mutants is covered.


Asunto(s)
Agrobacterium , Medicago truncatula , Agrobacterium/genética , Sistemas CRISPR-Cas/genética , Medicago truncatula/genética , Técnicas de Inactivación de Genes , Genotipo
3.
BMC Plant Biol ; 22(1): 77, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193491

RESUMEN

BACKGROUND: Structural variants (SVs) constitute a large proportion of the genomic variation that results in phenotypic variation in plants. However, they are still a largely unexplored feature in most plant genomes. Here, we present the whole-genome landscape of SVs between two model legume Medicago truncatula ecotypes-Jemalong A17 and R108- that have been extensively used in various legume biology studies. RESULTS: To catalogue SVs, we first resolved the previously published R108 genome assembly (R108 v1.0) to chromosome-scale using 124 × Hi-C data, resulting in a high-quality genome assembly. The inter-chromosomal reciprocal translocations between chromosomes 4 and 8 were confirmed by performing syntenic analysis between the two genomes. Combined with the Hi-C data, it appears that these translocation events had a significant effect on chromatin organization. Using both whole-genome and short-read alignments, we identified the genomic landscape of SVs between the two genomes, some of which may account for several phenotypic differences, including their differential responses to aluminum toxicity and iron deficiency, and the development of different anthocyanin leaf markings. We also found extensive SVs within the nodule-specific cysteine-rich gene family which encodes antimicrobial peptides essential for terminal bacteroid differentiation during nitrogen-fixing symbiosis. CONCLUSIONS: Our results provide a near-complete R108 genome assembly and the first genomic landscape of SVs obtained by comparing two M. truncatula ecotypes. This may provide valuable genomic resources for the functional and molecular research of legume biology in the future.


Asunto(s)
Cromatina/genética , Genoma de Planta , Medicago truncatula/genética , Cromosomas de las Plantas , Elementos Transponibles de ADN , Ecotipo , Eucromatina/química , Eucromatina/genética , Genes de Plantas , Heterocromatina/química , Heterocromatina/genética , Medicago truncatula/fisiología , Fijación del Nitrógeno/genética , Filogenia , Secuenciación Completa del Genoma
4.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919286

RESUMEN

Legumes are of great interest for sustainable agricultural production as they fix atmospheric nitrogen to improve the soil. Medicago truncatula is a well-established model legume, and extensive studies in fundamental molecular, physiological, and developmental biology have been undertaken to translate into trait improvements in economically important legume crops worldwide. However, M. truncatula reference genome was generated in the accession Jemalong A17, which is highly recalcitrant to transformation. M. truncatula R108 is more attractive for genetic studies due to its high transformation efficiency and Tnt1-insertion population resource for functional genomics. The need to perform accurate synteny analysis and comprehensive genome-scale comparisons necessitates a chromosome-length genome assembly for M. truncatula cv. R108. Here, we performed in situ Hi-C (48×) to anchor, order, orient scaffolds, and correct misjoins of contigs in a previously published genome assembly (R108 v1.0), resulting in an improved genome assembly containing eight chromosome-length scaffolds that span 97.62% of the sequenced bases in the input assembly. The long-range physical information data generated using Hi-C allowed us to obtain a chromosome-length ordering of the genome assembly, better validate previous draft misjoins, and provide further insights accurately predicting synteny between A17 and R108 regions corresponding to the known chromosome 4/8 translocation. Furthermore, mapping the Tnt1 insertion landscape on this reference assembly presents an important resource for M. truncatula functional genomics by supporting efficient mutant gene identification in Tnt1 insertion lines. Our data provide a much-needed foundational resource that supports functional and molecular research into the Leguminosae for sustainable agriculture and feeding the future.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Medicago truncatula/genética , Genómica , Retroelementos , Análisis de Secuencia de ADN
5.
Plant Methods ; 15: 20, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30858871

RESUMEN

BACKGROUND: Tissue culture transformation of plants has an element of art to it, with protocols passed on between labs but often not directly compared. As Medicago truncatula has become popular as a model system for legumes, rapid transformation is critical, and many protocols exist, with varying results. RESULTS: The M. truncatula ecotypes, R108 and A17, were utilized to compare the effect of a modification to a previously used protocol based on shoot explants on the percentage of transformed plants produced from calli. This percentage was then compared to that of two additional transformation protocols based on root explants in the R108 ecotype. Variations in embryonic tissue sources, media components, time for transformation, and vectors were analyzed. CONCLUSIONS: While no A17 transgenic plants were obtained, transgenic plantlets from the R108 ecotype were produced in as little as 4 months with a comparison of the two widely studied ecotypes under a single set of conditions. While the protocols tested gave similar results in percentage of transformed plants produced, considerations of labor and time to transgenics that vary between the root explant protocols tested were discovered. These considerations may influence which protocol to choose for introducing a single transgene versus creating lines with multiple mutations utilizing a CRISPR/Cas9 construct.

6.
J Plant Physiol ; 171(8): 639-47, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24709157

RESUMEN

Medicago truncatula Gaertn is a model legume species with a wide genetic diversity. To evaluate the responses of the two M. truncatula ecotypes, the effect of Fe deficiency on ecotype A17 and ecotype R108, which have been widely used in physiological and molecular studies, was investigated. A greater reduction in shoot Fe concentration of R108 plants than that of A17 plants was observed under Fe-deficient conditions. Exposure to Fe-deficient medium led to a greater increase in ferric chelate reductase (FCR) activity in roots of A17 than those of R108 plants, while expression of genes encoding FCR in roots of A17 and R108 plants was similarly up-regulated by Fe deficiency. Exposure of A17 plants to Fe-deficient medium evoked an ethylene evolution from roots, while the same treatment had no effect on ethylene evolution from R108 roots. There was a significant increase in expression of MtIRT encoding a Fe transporter in A17, but not in R108 plants, upon exposure to Fe-deficient medium. Transcripts of MtFRD3 that is responsible for loading of iron chelator citrate into xylem were up-regulated by Fe deficiency in A17, but not in R108 plants. These results suggest that M. truncatula ecotypes A17 and R108 differed in their response and adaptation to Fe deficiency, and that ethylene may play an important role in regulation of greater tolerance of A17 plant to Fe deficiency. These findings provide important clues for further elucidation of molecular mechanism by which legume plants respond and adapt to low soil Fe availability.


Asunto(s)
Ecotipo , Regulación de la Expresión Génica de las Plantas , Deficiencias de Hierro , Medicago truncatula/fisiología , FMN Reductasa/genética , FMN Reductasa/metabolismo , Medicago truncatula/anatomía & histología , Medicago truncatula/enzimología , Medicago truncatula/genética , Raíces de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...