RESUMEN
iRhoms are pseudoprotease members of the rhomboid-like superfamily and are cardinal regulators of inflammatory and growth factor signaling; they function primarily by recognizing transmembrane domains of their clients. Here, we report a mechanistically distinct nuclear function of iRhoms, showing that both human and mouse iRhom2 are non-canonical substrates of signal peptidase complex (SPC), the protease that removes signal peptides from secreted proteins. Cleavage of iRhom2 generates an N-terminal fragment that enters the nucleus and modifies the transcriptome, in part by binding C-terminal binding proteins (CtBPs). The biological significance of nuclear iRhom2 is indicated by elevated levels in skin biopsies of patients with psoriasis, tylosis with oesophageal cancer (TOC), and non-epidermolytic palmoplantar keratoderma (NEPPK); increased iRhom2 cleavage in a keratinocyte model of psoriasis; and nuclear iRhom2 promoting proliferation of keratinocytes. Overall, this work identifies an unexpected SPC-dependent ER-to-nucleus signaling pathway and demonstrates that iRhoms can mediate nuclear signaling.
Asunto(s)
Psoriasis , Transducción de Señal , Animales , Humanos , Ratones , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Psoriasis/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismoRESUMEN
The impact of RHBDF2 on the expression and potential function in many cancers is still unknown. Therefore, the expression and methylation modification of RHBDF2 were evaluated across TCGA cancers in this study. Moreover, two methods, COX regression and Kaplan-Meier, were utilized for analyses of the prognoses of RHBDF2 in patients. Besides, the association between RHBDF2 and immune microenvironment, mutation, tumor mutation burden and microsatellite instability was analyzed with Pearson correlation. We verified RHBDF2 expression in hepatocellular carcinoma (HCC) compared with normal cell and tissue samples, detected the effects of RHBDF2 knockdown on biological functions in HCC cells, and detected CD4, CD8 and CD68 expression in hepatocellular carcinoma tissues and paired normal tissues. Given these results, the significant mRNA overexpression and promoter hypomethylation of RHBDF2 in various tumor types was showed, and a clear relationship between RHBDF2 overexpression and unfavourable overall survival and progression-free survival was observed, including liver hepatocellular carcinoma (LIHC), glioma (GBMLGG) and pancreatic adenocarcinoma (PAAD). Additionally, hypomethylation of RHBDF2 can affect the overall survival in some tumors. Furthermore, a clear correlation between RHBDF2 and infiltration of immune cells, immune-related molecules, TMB and MSI was observed. Besides, RHBDF2 expression is upregulated in HCC cells and tissues, and RHBDF2 knockdown could decrease the cell adhesion ability of HCC cells. More importantly, the expression of CD4, CD8 and CD68 was higher in HCC tissues. Altogether, the research denoted that RHBDF2 can be a prognostic biomarker for cancers according to these results and participate in cell adhesion of HCC cells.
RESUMEN
Immune checkpoint inhibitors have been approved for the treatment of advanced hepatocellular carcinoma (HCC). However, immunotherapy requires the identification of suitable biomarkers to guide treatment. The gene for rhomboid 5 homolog 2 (IRHom2), which encodes the rhombus protease iRhom2, activates the MAP3K7-dependent pathway and promotes hepatic steatosis. Thus, we hypothesized an involvement of this gene in HCC. We report that RHBDF2 expression is dramatically upregulated in HCC. RHBDF2 upregulation is associated with tumor stage, lymph node metastasis, tumor protein P53 mutation, and worse prognoses in HCC patients. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis enrichment analysis indicated that RHBDF2 was involved in immune signal pathways. Moreover, RHBDF2 expression was positively related not only to immune infiltration, but also to immune cell markers. Examination of several types of HCC infiltrated by immune cells revealed that the group with high expression of RHBDF2 showed the worst outcomes. Therefore, RHBDF2 may have potential as a novel biomarker for predicting prognosis and is related to immune infiltrates in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Activación Transcripcional , Biomarcadores , Endopeptidasas , Péptidos y Proteínas de Señalización IntracelularRESUMEN
Background: Breast cancer is the second leading cause of cancer-related deaths globally, and its prevalence rates are increasing daily. In the past, studies predicting therapeutic drug targets for cancer therapy focused on the assumption that one gene is responsible for producing one protein. Therefore, there is always an immense need to find promising and novel anti-cancer drug targets. Furthermore, proteases have an integral role in cell proliferation and growth because the proteolysis mechanism is an irreversible process that aids in regulating cellular growth during tumorigenesis. Therefore, an inactive rhomboid protease known as iRhom2 encoded by the gene RHBDF2 can be considered an important target for cancer treatment. Speculatively, previous studies on gene expression analysis of RHBDF2 showed heterogenous behaviour during tumorigenesis. Consistent with this, several studies have reported the antagonistic role of iRhom2 in tumorigenesis, i.e., either they are involved in negative regulation of EGFR ligands via the ERAD pathway or positively regulate EGFR ligands via the EGFR signalling pathway. Additionally, different opinions suggest iRhom2 mediated cleavage of EGFR ligands takes place TACE dependently or TACE independently. However, reconciling these seemingly opposing roles is still unclear and might be attributed to more than one transcript isoform of iRhom2. Methods: To observe the differences at isoform resolution, the current strategy identified isoform switching in RHBDF2 via differential transcript usage using RNA-seq data during breast cancer initiation and progression. Furthermore, interacting partners were found via correlation and enriched to explain their antagonistic role. Results: Isoform switching was observed at DCIS, grade 2 and grade 3, from canonical to the cub isoform. Neither EGFR nor ERAD was found enriched. However, pathways leading to TACE-dependent EGFR signalling pathways were more observant, specifically MAPK signalling pathways, GPCR signalling pathways, and toll-like receptor pathways. Nevertheless, it was noteworthy that during CTCs, the cub isoform switches back to the canonical isoform, and the proteasomal degradation pathway and cytoplasmic ribosomal protein pathways were significantly enriched. Therefore, it could be inferred that cub isoform functions during cancer initiation in EGFR signalling. In contrast, during metastasis, where invasion is the primary task, the isoform switches back to the canonical isoform.
Asunto(s)
Neoplasias de la Mama , Proteínas Portadoras , Humanos , Femenino , Proteínas Portadoras/genética , Neoplasias de la Mama/genética , Receptores ErbB/genética , Isoformas de Proteínas/genética , Carcinogénesis , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
AIMS: Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and anti-inflammatory treatment strategies are currently pursued to lower cardiovascular disease burden. Modulation of recently discovered inactive rhomboid protein 2 (iRhom2) attenuates shedding of tumour necrosis factor-alpha (TNF-α) selectively from immune cells. The present study aims at investigating the impact of iRhom2 deficiency on the development of atherosclerosis. METHODS AND RESULTS: Low-density lipoprotein receptor (LDLR)-deficient mice with additional deficiency of iRhom2 (LDLR-/-iRhom2-/-) and control (LDLR-/-) mice were fed a Western-type diet (WD) for 8 or 20 weeks to induce early or advanced atherosclerosis. Deficiency of iRhom2 resulted in a significant decrease in the size of early atherosclerotic plaques as determined in aortic root cross-sections. LDLR-/-iRhom2-/- mice exhibited significantly lower serum levels of TNF-α and lower circulating and hepatic levels of cholesterol and triglycerides compared to LDLR-/- mice at 8 weeks of WD. Analyses of hepatic bile acid concentration and gene expression at 8 weeks of WD revealed that iRhom2 deficiency prevented WD-induced repression of hepatic bile acid synthesis in LDLR-/- mice. In contrast, at 20 weeks of WD, plaque size, plaque composition, and serum levels of TNF-α or cholesterol were not different between genotypes. CONCLUSION: Modulation of inflammation by iRhom2 deficiency attenuated diet-induced hyperlipidaemia and early atherogenesis in LDLR-/- mice. iRhom2 deficiency did not affect diet-induced plaque burden and composition in advanced atherosclerosis in LDLR-/- mice.
Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Proteínas Portadoras/metabolismo , Hiperlipidemias/prevención & control , Animales , Aorta/patología , Enfermedades de la Aorta/sangre , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/sangre , Aterosclerosis/genética , Aterosclerosis/patología , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/genética , Citocinas/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hiperlipidemias/sangre , Hiperlipidemias/genética , Mediadores de Inflamación/sangre , Lípidos/sangre , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismoRESUMEN
Palmoplantar keratodermas (PPK) comprise a heterogenous group of acquired and hereditary disorders marked by excessive thickening of the epidermis of palms and soles. Hereditary PPKs can be classified into 3 groups: 1) isolated non-syndromic PPKs; 2) complex non-syndromic PPKs associated with other ectodermal defects; and 3) syndromic PPKs associated with extracutaneous manifestations. All types of inheritance have been observed: autosomal dominant, autosomal recessive, X-linked recessive, and mitochondrial. Some of these disorders are restricted to geographic isolates. This review describes the different genetic causes of hereditary syndromic and complex PPKs for which the genes have been identified. The identification of pathogenic variants has consequences in terms of genetic counseling, appropriate medical care and follow-up, especially for PPKs predisposing to hearing loss, cardiomyopathies, benign tumors or carcinomas. In addition, the development of targeted therapies based on pathophysiology of disorders should allow a more effective treatment of these conditions in the near future.
Asunto(s)
Queratodermia Palmoplantar , Humanos , Queratodermia Palmoplantar/diagnóstico , Queratodermia Palmoplantar/genética , LinajeRESUMEN
BACKGROUND: The rhomboids are a family of multi-transmembrane proteins, many of which have been implicated in facilitating tumor progression. Little is yet known, however, about rhomboid-associated biomarkers in cancers. An analysis of such biomarkers could yield important insights into the role of the rhomboids in cancer pathology. METHODS: In this study, we carried out the univariate Cox regression analysis and compared gene expression patterns of several rhomboid genes in 30 types of cancers by using The Cancer Genome Atlas (TCGA) database and the methods delineated in Gene Expression Profiling Interactive Analysis (GEPIA). We then used datasets GSE47032, GSE126964, GSE68417 and 75 paired pathological specimens to verify the influences of the rhomboid genes in cancer progression. Moreover, we carried out Weighted Gene Correlation Network Analysis (WGCNA) to investigate gene-related functions and we exploited potential correlations between rhomboid genes expression and immune cell infiltration in cancer tissues. Furthermore, we constructed gene-knockdown cancer cell lines to investigate rhomboid gene functions. RESULTS: We find that kidney renal clear cell carcinoma (KIRC) disease progression is affected by fluctuations in the expression of a number of the rhomboid family of genes and, more specifically, high levels of RHBDF2 gene expression are a good indicator of poor prognosis of the disease, as patients with high RHBDF2 expression levels exhibit less favorable survival rates compared to those with low RHBDF2 levels. Silencing of the RHBDF2 gene in KIRC cell lines leads to significantly diminished cell proliferation and migration; this is in good agreement with the identification of an enhanced presence of a number of cell growth and migration promoting signaling molecules in KIRC tumors. We found that, although high level of RHBDF2 correlated with increased infiltration of lymphocytes in cancer tissues, artificially overexpressed RHBDF2 led to an inhibition of the activity of the infiltrated immune cells through sustaining PD-L1 protein level. Furthermore, we show that RHBDF2 related cell migration and PD-L1 regulation were potentially mediated by EGFR signaling pathway. CONCLUSIONS: RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression and may serve as a critical prognostic biomarker for the disease.
RESUMEN
Chronic obesity is associated with metabolic imbalance leading to diabetes, dyslipidemia, and cardiovascular diseases (CVDs), in which inflammation is caused by exposure to inflammatory stimuli, such as accumulating sphingolipid ceramides or intracellular stress. This inflammatory response is likely to be prolonged by the effects of dietary and blood cholesterol, thereby leading to chronic low-grade inflammation and endothelial dysfunction. Elevated levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF) are predictive of CVDs and have been widely studied for potential therapeutic strategies. The release of TNF is controlled by a disintegrin and metalloprotease (ADAM) 17 and both are positively associated with CVDs. ADAM17 also cleaves most of the ligands of the epidermal growth factor receptor (EGFR) which have been associated with hypertension, atherogenesis, vascular dysfunction, and cardiac remodeling. The inactive rhomboid protein 2 (iRhom2) regulates the ADAM17-dependent shedding of TNF in immune cells. In addition, iRhom2 also regulates the ADAM17-mediated cleavage of EGFR ligands such as amphiregulin and heparin-binding EGF-like growth factor. Targeting iRhom2 has recently become a possible alternative therapeutic strategy in chronic inflammatory diseases such as lupus nephritis and rheumatoid arthritis. However, what role this intriguing interacting partner of ADAM17 plays in the vasculature and how it functions in the pathologies of obesity and associated CVDs, are exciting questions that are only beginning to be elucidated. In this review, we discuss the role of iRhom2 in cardiovascular-related pathologies such as atherogenesis and obesity by providing an evaluation of known iRhom2-dependent cellular and inflammatory pathways.
RESUMEN
Ambient particulate matter (PM2.5)-induced metabolic syndromes is a critical contributor to the pathological processes of neurological diseases, but the underlying molecular mechanisms remain poorly understood. The rhomboid 5 homolog 2 (Rhbdf2), an essential regulator in the production of TNF-α, has recently been confirmed to exhibit a key role in regulating inï¬ammation-associated diseases. Thus, we examined whether Rhbdf2 contributes to hypothalamic inflammation via NF-κB associated inflammation activation in long-term PM2.5-exposed mice. Specifically, proopiomelanocortin-specific Rhbdf2 deficiency (Rhbdf2Pomc) and corresponding littermates control mice were used for the current study. After 24 weeks of PM2.5 inhalation, systemic-metabolism disorder was confirmed in WT mice in terms of impaired glucose tolerance, increased insulin resistance, and high blood pressure. Markedly, PM2.5-treated Rhbdf2Pomc mice displayed a significantly opposite trend in these parameters compared with those of the controls group. We next confirmed hypothalamic injury accompanied by abnormal POMC neurons loss, as indicated by increased inflammatory cytokines, chemokines, and oxidative-stress levels and decreased antioxidant activity. These results were further supported by blood routine examination. In summary, our findings suggest that Rhbdf2 plays an important role in exacerbating PM2.5-stimulated POMC neurons loss associated hypothalamic injury, thus providing a possible target for blocking pathological development of air pollution-associated diseases.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/toxicidad , Animales , Inflamación/inducido químicamente , Inflamación/genética , Ratones , Neuronas , Estrés Oxidativo , Material Particulado/toxicidad , ProopiomelanocortinaRESUMEN
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled "inactive" rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas ADAM/genética , Proteína ADAM17/metabolismo , Animales , Proteínas Portadoras/metabolismo , Receptores ErbB/metabolismo , Humanos , Inmunidad Innata/inmunología , Inmunidad Innata/fisiología , Transporte de Proteínas , Transducción de Señal , Especificidad por Sustrato , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: Low-grade inflammation and metabolic dysregulation are common comorbidities of obesity, both of which are associated with alterations in iRhom2-regulated pro-inflammatory cytokine and epidermal growth factor receptor (EGFR) ligand signaling. OBJECTIVE: Our objective was to determine the role of iRhom2 in the regulation of low-grade inflammation and metabolic dysregulation in a murine model of diet-induced obesity. METHODS: Wild type (WT) and iRhom2-deficient mice were fed normal chow (NC) or a high-fat diet (HFD) starting at 5â¯weeks of age for up to 33â¯weeks. Body composition, glucose and insulin tolerance, feeding behavior, and indirect calorimetry were measured at defined time points. Adipose tissue cytokine expression and inflammatory lesions known as crown-like structures (CLS) were analyzed at the end-point of the study. RESULTS: iRhom2-deficient mice show accelerated fat gain on a HFD, accompanied by insulin resistance. Indirect calorimetry did not demonstrate changes in energy expenditure or food intake, but locomotor activity was significantly reduced in HFD iRhom2-deficient mice. Interestingly, CLS, macrophage infiltration, and tumor necrosis factor (TNF) production were decreased in adipose tissue from HFD iRhom2-deficient mice, but circulating cytokines were unchanged. In inguinal and perigonadal fat, the EGFR ligand amphiregulin was markedly induced in HFD controls but completely prevented in iRhom2-deficient mice, suggesting a potentially dominant role of EGFR-dependent mechanisms over TNF in the modulation of insulin sensitivity. CONCLUSIONS: This study elucidates a novel role for iRhom2 as an immuno-metabolic regulator that affects adipose tissue inflammation independent of insulin resistance.
Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Portadoras/fisiología , Dieta Alta en Grasa , Inflamación/patología , Resistencia a la Insulina/genética , Obesidad/etiología , Aumento de Peso/genética , Tejido Adiposo/patología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Paniculitis/genética , Paniculitis/metabolismo , Paniculitis/patologíaRESUMEN
The metalloprotease ADAM17 (a disintegrin and metalloprotease 17) is a key regulator of tumor necrosis factor α (TNFα), interleukin 6 receptor (IL-6R), and epidermal growth factor receptor (EGFR) signaling. ADAM17 maturation and function depend on the seven-membrane-spanning inactive rhomboid-like proteins 1 and 2 (iRhom1/2 or Rhbdf1/2). Most studies to date have focused on overexpressed iRhom1 and -2, so only little is known about the properties of the endogenous proteins. Here, we show that endogenous iRhom1 and -2 can be cell surface-biotinylated on mouse embryonic fibroblasts (mEFs), revealing that endogenous iRhom1 and -2 proteins are present on the cell surface and that iRhom2 also is present on the surface of lipopolysaccharide-stimulated primary bone marrow-derived macrophages. Interestingly, very little, if any, iRhom2 was detectable in mEFs or bone marrow-derived macrophages lacking ADAM17, suggesting that iRhom2 is stabilized by ADAM17. By contrast, the levels of iRhom1 were slightly increased in the absence of ADAM17 in mEFs, indicating that its stability does not depend on ADAM17. These findings support a model in which iRhom2 and ADAM17 are obligate binding partners and indicate that iRhom2 stability requires the presence of ADAM17, whereas iRhom1 is stable in the absence of ADAM17.
Asunto(s)
Proteína ADAM17/genética , Proteínas Portadoras/genética , Proteínas de la Membrana/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Membrana Celular , Receptores ErbB/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Receptores de Interleucina-6/genética , Transducción de Señal/genéticaRESUMEN
iRhoms are related to a family of intramembrane serine proteinases called rhomboids but lack proteolytic activity. In mammals, there are two iRhoms, iRhom1 and iRhom2, which have similar domain structures and overlapping specificities as well as distinctive functions. These catalytically inactive rhomboids are essential regulators for the maturation and trafficking of the disintegrin metalloprotease ADAM17 from the endoplasmic reticulum to the cell surface, and are required for the cleavage and release of a variety of membrane-associated proteins, including the IL-6 receptor, l-selectin, TNF, and EGFR ligands. iRhom2-dependent regulation of ADAM17 function has been recently implicated in the development and progression of several autoimmune diseases including rheumatoid arthritis, lupus nephritis, as well as hemophilic arthropathy. In this review, we discuss our current understanding of iRhom biology, their implications in autoimmune pathologies, and their potential as therapeutic targets.
Asunto(s)
Enfermedad , Inmunidad , Serina Proteasas/metabolismo , Proteínas ADAM/metabolismo , Animales , Descubrimiento de Drogas , Humanos , Modelos BiológicosRESUMEN
Inflammatory bowel disease (IBD) is a heterogeneous group of inflammation-mediated pathologies that include Crohn's disease and ulcerative colitis and primarily affects the colon and small intestine. Previous studies have shown that a disintegrin and metalloprotease (ADAM) 17, a membrane-bound sheddase, capable of cleaving the proinflammatory cytokine TNF and epidermal growth factor receptor ligands, plays a critical role in maintaining gut homeostasis and modulating intestinal inflammation during IBD. Rhomboid 5 homolog 2 (RHBDF2), a catalytically inactive member of the rhomboid family of intramembrane serine proteases, was recently identified as a crucial regulator of ADAM17. Here, we assessed the role of RHBDF2 in the development of colitis in the context of IL10 deficiency. Il10-/- /Rhbdf2-/- mice developed spontaneous colitis and experienced severe weight loss starting at 8 wk of age, without the need for exogenous triggers. Severity of disease pathology in Il10-/- /Rhbdf2-/- mice correlated with a dysbiotic gut microbiota and elevated Th1-associated immune responses with increased interferon gamma and IL2 production. In addition, Il10-/- /Rhbdf2-/- mice failed to maintain their epithelial cell homeostasis, although the intestinal epithelial barrier of Rhbdf2-/- mice is intact and loss of Rhbdf2 did not significantly exacerbate sensitivity to dextran sulfate sodium-induced colitis, suggesting differences in the underlying disease pathway of intestinal inflammation in this model. Taken together, our results demonstrate a critical regulatory role for RHBDF2 in the maintenance of the unique homeostasis between intestinal microbiota and host immune responses in the gut that is dysregulated during the pathogenesis of IBD.
Asunto(s)
Proteínas Portadoras/metabolismo , Colitis/metabolismo , Colitis/patología , Animales , Permeabilidad de la Membrana Celular , Colitis/complicaciones , Colitis/microbiología , Colon/inmunología , Colon/patología , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextran , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Microbioma Gastrointestinal , Interleucina-10/deficiencia , Interleucina-10/metabolismo , Ratones , Solubilidad , Células TH1/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Úlcera/complicaciones , Úlcera/patología , Regulación hacia ArribaRESUMEN
Tylosis with esophageal cancer syndrome (TOC) is a rare autosomal dominant proliferative skin disease caused by missense mutations in the rhomboid 5 homolog 2 (RHBDF2) gene. TOC is characterized by thickening of the skin in the palms and feet and is strongly linked with the development of esophageal squamous cell carcinoma. Murine models of human diseases have been valuable tools for investigating the underlying genetic and molecular mechanisms of a broad range of diseases. Although current mouse models do not fully recapitulate all aspects of human TOC, and the molecular mechanisms underlying TOC are still emerging, the available mouse models exhibit several key aspects of the disease, including a proliferative skin phenotype, a rapid wound healing phenotype, susceptibility to epithelial cancer, and aberrant epidermal growth factor receptor (EGFR) signaling. Furthermore, we and other investigators have used these models to generate new insights into the causes and progression of TOC, including findings suggesting a tissue-specific role of the RHBDF2-EGFR pathway, rather than a role of the immune system, in mediating TOC; and indicating that amphiregulin, an EGFR ligand, is a functional driver of the disease. This review highlights the mouse models of TOC available to researchers for use in investigating the disease mechanisms and possible therapies, and the significance of genetic modifiers of the disease identified in these models in delineating the underlying molecular mechanisms.
RESUMEN
The epidermal growth factor (EGF)-receptor ligand amphiregulin (AREG) is a potent growth factor implicated in proliferative skin diseases and in primary and metastatic epithelial cancers. AREG, synthesized as a propeptide, requires conversion to an active peptide by metalloproteases by a process known as ectodomain shedding. Although (ADAM17) a disintegrin and metalloprotease 17 is a key sheddase of AREG, ADAM8-, ADAM15-, and batimastat (broad metalloprotease inhibitor)-sensitive metalloproteases have also been implicated in AREG shedding. In the present study, using a curly bare (Rhbdf2cub ) mouse model that shows loss-of-hair, enlarged sebaceous gland, and rapid cutaneous wound-healing phenotypes mediated by enhanced Areg mRNA and protein levels, we sought to identify the principal ectodomain sheddase of AREG. To this end, we generated Rhbdf2cub mice lacking ADAM17 specifically in the skin and examined the above phenotypes of Rhbdf2cub mice. We find that ADAM17 deficiency in the skin of Rhbdf2cub mice restores a full hair coat, prevents sebaceous gland enlargement, and impairs the rapid wound-healing phenotype observed in Rhbdf2cub mice. Furthermore, in vitro, stimulated shedding of AREG is abolished in Rhbdf2cub mouse embryonic keratinocytes lacking ADAM17. Thus, our data support previous findings demonstrating that ADAM17 is the major ectodomain sheddase of AREG.
RESUMEN
The TNFα-induced NF-κB signaling pathway plays critical roles in multiple biological processes. Extensive studies have explored the mechanisms regulating this signaling cascade, and identified an E2 complex, Uev1A-Ubc13, that mediates K63-linked poly-Ub chain formation and thus recruits NEMO to activate the signaling transduction. In this study, we demonstrate that the Uev1A-Ubc13 complex simultaneously serves as a repressor of the NF-κB pathway. It was found that cells overexpressing UEV1A silence the signal cascade earlier than control cells. Importantly, UEV1A overexpression enhances TACE maturation to shed the TNFα receptor. The Uev1A-Ubc13 complex interacts with RHBDF2, a key factor promoting TACE maturation, and inhibition of the Uev1A-Ubc13 activity interferes with RHBDF2-promoted TACE maturation. Furthermore, upon TNFα stimulation, the Uev1A-Ubc13 complex cooperates with CHIP to promote K63-linked ubiquitination of RHBDF2, enhancing its activity toward TACE maturation and subsequently blocking TNFα-induced NF-κB signaling.
Asunto(s)
Proteína ADAM17/metabolismo , Proteínas Portadoras/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteína ADAM17/genética , Biocatálisis , Proteínas Portadoras/genética , Retroalimentación Fisiológica , Células HeLa , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , UbiquitinaciónRESUMEN
Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha (TNF-α) converting enzyme, which is the molecule responsible for the release of TNF-α. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of TNF-α release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative TNF-α related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to TNF-α.
RESUMEN
OBJECTIVE: Gain-of-function (GOF) mutations in RHBDF2 cause tylosis. Patients present with hyperproliferative skin, and keratinocytes from tylosis patients' skin show an enhanced wound-healing phenotype. The curly bare mouse model of tylosis, carrying a GOF mutation in the Rhbdf2 gene (Rhbdf2 cub ), presents with epidermal hyperplasia and shows accelerated cutaneous wound-healing phenotype through enhanced secretion of the epidermal growth factor receptor family ligand amphiregulin. Despite these advances in our understanding of tylosis, key questions remain. For instance, it is not known whether the disease is skin-specific, whether the immune system or the surrounding microenvironment plays a role, and whether mouse genetic background influences the hyperproliferative-skin and wound-healing phenotypes observed in Rhbdf2 cub mice. RESULTS: We performed bone marrow transfers and reciprocal skin transplants and found that bone marrow transfer from C57BL/6 (B6)-Rhbdf2 cub/cub donor mice to B6 wildtype recipient mice failed to transfer the hyperproliferative-skin and wound-healing phenotypes in B6 mice. Furthermore, skin grafts from B6 mice to the dorsal skin of B6-Rhbdf2 cub/cub mice maintained the phenotype of the donor mice. To test the influence of mouse genetic background, we backcrossed Rhbdf2 cub onto the MRL/MpJ strain and found that the hyperproliferative-skin and wound-healing phenotypes caused by the Rhbdf2 cub mutation persisted on the MRL/MpJ strain.
Asunto(s)
Proteínas Portadoras/fisiología , Queratinocitos , Queratodermia Palmar y Plantar Difusa/genética , Trasplante de Piel , Cicatrización de Heridas/genética , Animales , Trasplante de Médula Ósea , Proliferación Celular/genética , Modelos Animales de Enfermedad , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , FenotipoRESUMEN
In humans, gain-of-function (GOF) mutations in RHBDF2 cause the skin disease tylosis. We generated a mouse model of human tylosis and show that GOF mutations in RHBDF2 cause tylosis by enhancing the amount of amphiregulin (AREG) secretion. Furthermore, we show that genetic disruption of AREG ameliorates skin pathology in mice carrying the human tylosis disease mutation. Collectively, our data suggest that RHBDF2 plays a critical role in regulating EGFR signaling and its downstream events, including development of tylosis, by facilitating enhanced secretion of AREG. Thus, targeting AREG could have therapeutic benefit in the treatment of tylosis.