Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(7): 1425-1437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839936

RESUMEN

Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.


Asunto(s)
Fibrosis , Ratones Endogámicos C57BL , Infarto del Miocardio , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Masculino , Proteínas Señalizadoras YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacología , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Acetiltransferasa E N-Terminal/metabolismo , Vía de Señalización Hippo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Células Cultivadas , Transducción de Señal , Acetiltransferasas N-Terminal/metabolismo , Miocardio/patología , Miocardio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Protein Sci ; 33(1): e4847, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38058280

RESUMEN

Histone lysine methyltransferases (HKMTs) perform vital roles in cellular life by controlling gene expression programs through the posttranslational modification of histone tails. Since many of them are intimately involved in the development of different diseases, including several cancers, understanding the molecular mechanisms that control their target recognition and activity is vital for the treatment and prevention of such conditions. RNA binding has been shown to be an important regulatory factor in the function of several HKMTs, such as the yeast Set1 and the human Ezh2. Moreover, many HKMTs are capable of RNA binding in the absence of a canonical RNA binding domain. Here, we explored the RNA binding capacity of KMT2D, one of the major H3K4 monomethyl transferases in enhancers, using RNA immunoprecipitation followed by sequencing. We identified a broad range of coding and non-coding RNAs associated with KMT2D and confirmed their binding through RNA immunoprecipitation and quantitative PCR. We also showed that a separated RNA binding region within KMT2D is capable of binding a similar RNA pool, but differences in the binding specificity indicate the existence of other regulatory elements in the sequence of KMT2D. Analysis of the bound mRNAs revealed that KMT2D preferentially binds co-transcriptionally to the mRNAs of the genes under its control, while also interacting with super enhancer- and splicing-related non-coding RNAs. These observations, together with the nuclear colocalization of KMT2D with differentially phosphorylated forms of RNA Polymerase II suggest a so far unexplored role of KMT2D in the RNA processing of the nascent transcripts.


Asunto(s)
Histonas , Neoplasias , Humanos , Histonas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN
3.
J Biol Chem ; 299(10): 105195, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633333

RESUMEN

The regulation of translation provides a rapid and direct mechanism to modulate the cellular proteome. In eukaryotes, an established model for the recruitment of ribosomes to mRNA depends upon a set of conserved translation initiation factors. Nevertheless, how cells orchestrate and define the selection of individual mRNAs for translation, as opposed to other potential cytosolic fates, is poorly understood. We have previously found significant variation in the interaction between individual mRNAs and an array of translation initiation factors. Indeed, mRNAs can be separated into different classes based upon these interactions to provide a framework for understanding different modes of translation initiation. Here, we extend this approach to include new mRNA interaction profiles for additional proteins involved in shaping the cytoplasmic fate of mRNAs. This work defines a set of seven mRNA clusters, based on their interaction profiles with 12 factors involved in translation and/or RNA binding. The mRNA clusters share both physical and functional characteristics to provide a rationale for the interaction profiles. Moreover, a comparison with mRNA interaction profiles from a host of RNA binding proteins suggests that there are defined patterns in the interactions of functionally related mRNAs. Therefore, this work defines global cytoplasmic mRNA binding modules that likely coordinate the synthesis of functionally related proteins.

4.
J Cancer ; 13(1): 62-75, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976171

RESUMEN

BACKGROUND: Patients with hepatocellular carcinoma (HCC) have very limited treatment options. For the last fourteen years, the multi-tyrosine kinase inhibitor sorafenib has been used as standard-of-care therapeutic agent in advanced HCC. Unfortunately, drug resistance develops in many cases. Therefore, we aimed to find a way to mitigate drug resistance and to improve the sorafenib efficacy in HCC cells. MicroRNAs play a significant role in targeting genes involved in tumor control suggesting microRNA/sorafenib combination therapy as a promising treatment option in advanced HCC. METHODS: MiR-449a-5p target genes were identified by Ago-RIP sequencing and validated by luciferase reporter assays and expression analyses. Target gene expression and survival data were analyzed in public HCC datasets. Tumor-relevant functional effects of miR-449a-5p and its target genes as well as their impact on the effects of sorafenib were analyzed using in vitro assays. An indirect transwell co-culture system was used to survey anti-angiogenic effects of miR-449a-5p. RESULTS: PEA15, PPP1CA and TUFT1 were identified as direct target genes of miR-449a-5p. Overexpression of these genes correlated with a poor outcome of HCC patients. Transfection with miR-449a-5p and repression of miR-449a-5p target genes inhibited cell proliferation and angiogenesis, induced apoptosis and reduced AKT and ERK signaling in HLE and Huh7 cells. Importantly, miR-449a-5p potentiated the efficacy of sorafenib in HCC cells via downregulation of PEA15, PPP1CA and TUFT1. CONCLUSIONS: This study provides detailed insights into the targetome and regulatory network of miR-449a-5p. Our results demonstrate for the first time that targeting PEA15, PPP1CA and TUFT1 via miR-449a overexpression could have significant implications in counteracting sorafenib resistance suggesting miR-449a-5p as a promising candidate for a microRNA/sorafenib combination therapy.

5.
Virol J ; 16(1): 29, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30832682

RESUMEN

BACKGROUND: Alternative splicing (AS) is an important mRNA maturation step that allows increased variability and diversity of proteins in eukaryotes. AS is dysregulated in numerous diseases, and its implication in the carcinogenic process is well known. However, progress in understanding how oncogenic viruses modulate splicing, and how this modulation is involved in viral oncogenicity has been limited. Epstein-Barr virus (EBV) is involved in various cancers, and its EBNA1 oncoprotein is the only viral protein expressed in all EBV malignancies. METHODS: In the present study, the ability of EBNA1 to modulate the AS of cellular genes was assessed using a high-throughput RT-PCR approach to examine AS in 1238 cancer-associated genes. RNA immunoprecipitation coupled to RNA sequencing (RIP-Seq) assays were also performed to identify cellular mRNAs bound by EBNA1. RESULTS: Upon EBNA1 expression, we detected modifications to the AS profiles of 89 genes involved in cancer. Moreover, we show that EBNA1 modulates the expression levels of various splicing factors such as hnRNPA1, FOX-2, and SF1. Finally, RNA immunoprecipitation coupled to RIP-Seq assays demonstrate that EBNA1 immunoprecipitates specific cellular mRNAs, but not the ones that are spliced differently in EBNA1-expressing cells. CONCLUSION: The EBNA1 protein can modulate the AS profiles of numerous cellular genes. Interestingly, this modulation protein does not require the RNA binding activity of EBNA1. Overall, these findings underline the novel role of EBNA1 as a cellular splicing modulator.


Asunto(s)
Empalme Alternativo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Genes Relacionados con las Neoplasias , Herpesvirus Humano 4/genética , Interacciones Microbiota-Huesped/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Genes Virales , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Virales/genética
6.
Bioessays ; 40(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29205437

RESUMEN

Messenger RNA is a flexible tool box that plays a key role in the dynamic regulation of gene expression. RNA modifications variegate the message conveyed by the mRNA. Similar to DNA and histone modifications, mRNA modifications are reversible and play a key role in the regulation of molecular events. Our understanding about the landscape of RNA modifications is still rudimentary in contrast to DNA and histone modifications. The major obstacle has been the lack of sensitive detection methods since they are non-editing events. However, with the advent of next-generation sequencing techniques, RNA modifications are being identified precisely at single nucleotide resolution. In recent years, methylation at the N6 position of adenine (m6 A) has gained the attention of RNA biologists. The m6 A modification has a set of writers (methylases), erasers (demethylases), and readers. Here, we provide a summary of interesting facts, conflicting findings, and recent advances in the technical and functional aspects of the m6 A epitranscriptome.


Asunto(s)
Adenosina/análogos & derivados , ARN Mensajero/genética , Adenosina/metabolismo , Animales , Línea Celular Tumoral , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...