Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446335

RESUMEN

Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica.


Asunto(s)
ARN Pequeño no Traducido , Yersinia enterocolitica , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Hierro/metabolismo , Homeostasis/genética , Regulación Bacteriana de la Expresión Génica
2.
EMBO J ; 42(3): e111129, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504222

RESUMEN

The widely occurring bacterial RNA chaperone Hfq is a key factor in the post-transcriptional control of hundreds of genes in Pseudomonas aeruginosa. How this broadly acting protein can contribute to the regulatory requirements of many different genes remains puzzling. Here, we describe cryo-EM structures of higher order assemblies formed by Hfq and its partner protein Crc on control regions of different P. aeruginosa target mRNAs. Our results show that these assemblies have mRNA-specific quaternary architectures resulting from the combination of multivalent protein-protein interfaces and recognition of patterns in the RNA sequence. The structural polymorphism of these ribonucleoprotein assemblies enables selective translational repression of many different target mRNAs. This system elucidates how highly complex regulatory pathways can evolve with a minimal economy of proteinogenic components in combination with RNA sequence and fold.


Asunto(s)
Proteínas Bacterianas , Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo
3.
Biomolecules ; 11(11)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34827651

RESUMEN

Under the oxidative stress condition, the small RNA (sRNA) OxyS that acts as essential post-transcriptional regulators of gene expression is produced and plays a regulatory function with the assistance of the RNA chaperone Hfq protein. Interestingly, experimental studies found that the N48A mutation of Hfq protein could enhance the binding affinity with OxyS while resulting in the defection of gene regulation. However, how the Hfq protein interacts with sRNA OxyS and the origin of the stronger affinity of N48A mutation are both unclear. In this paper, molecular dynamics (MD) simulations were performed on the complex structure of Hfq and OxyS to explore their binding mechanism. The molecular mechanics generalized born surface area (MM/GBSA) and interaction entropy (IE) method were combined to calculate the binding free energy between Hfq and OxyS sRNA, and the computational result was correlated with the experimental result. Per-residue decomposition of the binding free energy revealed that the enhanced binding ability of the N48A mutation mainly came from the increased van der Waals interactions (vdW). This research explored the binding mechanism between Oxys and chaperone protein Hfq and revealed the origin of the strong binding affinity of N48A mutation. The results provided important insights into the mechanism of gene expression regulation affected by protein mutations.


Asunto(s)
Proteína de Factor 1 del Huésped , Proteínas de Escherichia coli , ARN Bacteriano , ARN Pequeño no Traducido
4.
Front Microbiol ; 12: 689619, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335515

RESUMEN

RNA chaperone protein Hfq is an important post-transcriptional regulator in bacteria, while c-di-GMP is a second messenger signaling molecule widely distributed in bacteria. Both factors have been found to play key roles in post-transcriptional regulation and signal transduction pathways, respectively. Intriguingly, the two factors show some common aspects in the regulation of certain physiological functions such as bacterial motility, biofilm formation, pathogenicity and so on. Therefore, there may be regulatory relationship between Hfq and c-di-GMP. For example, Hfq can directly regulate the activity of c-di-GMP metabolic enzymes or alter the c-di-GMP level through other systems, while c-di-GMP can indirectly enhance or inhibit the hfq gene expression through intermediate factors. In this article, after briefly introducing the Hfq and c-di-GMP regulatory systems, we will focus on the direct and indirect regulation reported between Hfq and c-di-GMP, aiming to compare and link the two regulatory systems to further study the complicated physiological and metabolic systems of bacteria, and to lay a solid foundation for drawing a more complete global regulatory network.

5.
Mol Plant Pathol ; 22(8): 921-938, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33963656

RESUMEN

The biocontrol rhizobacterium Pseudomonas protegens H78 can produce a large array of antimicrobial secondary metabolites, including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). Our preliminary study showed that the biosynthesis of antibiotics including Plt is activated by the RNA chaperone Hfq in P. protegens H78. This prompted us to explore the global regulatory mechanism of Hfq, as well as the catabolite repression control (Crc) protein in H78. The antimicrobial capacity of H78 was positively controlled by Hfq while slightly down-regulated by knockout of crc. Similarly, cell growth of H78 was significantly impaired by deletion of hfq and slightly inhibited by knockout of crc. Transcriptomic profiling revealed that hfq mutation resulted in significant down-regulation of 688 genes and up-regulation of 683 genes. However, only 113 genes were significantly down-regulated and 105 genes up-regulated by the crc mutation in H78. Hfq positively regulated the expression of gene clusters involved in secondary metabolism (plt, prn, phl, hcn, and pvd), the type VI secretion system, and aromatic compound degradation. However, Crc only positively regulated the biosynthesis of Plt but not other antibiotics. Hfq also regulated expression of genes involved in oxidative phosphorylation and flagellar biogenesis. In addition, Hfq and Crc activated transcription of crcY/Z sRNAs by feedback. In summary, Hfq processes far more extensive and intensive regulatory capacity than Crc and shows small cross-regulation with Crc in H78. This study lays the foundation for clarifying the Hfq and/or Crc-dependent global regulatory network and improving antibiotic production by genetic engineering in P. protegens.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas/genética
6.
J Biol Chem ; 294(44): 16465-16478, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31540970

RESUMEN

RNase E is a component of the RNA degradosome complex and plays a key role in RNA degradation and maturation in Escherichia coli RNase E-mediated target RNA degradation typically involves the RNA chaperone Hfq and requires small guide RNAs (sRNAs) acting as a seed by binding to short (7-12-bp) complementary regions in target RNA sequences. Here, using recombinantly expressed and purified proteins, site-directed mutagenesis, and RNA cleavage and protein cross-linking assays, we investigated Hfq-independent RNA decay by RNase E. Exploring its RNA substrate preferences in the absence of Hfq, we observed that RNase E preferentially cleaves AU-rich sites of single-stranded regions of RNA substrates that are annealed to an sRNA that contains a monophosphate at its 5'-end. We further found that the quaternary structure of RNase E is also important for complete, Hfq-independent cleavage at sites both proximal and distal to the sRNA-binding site within target RNAs containing monophosphorylated 5'-ends. Of note, genetic RNase E variants with unstable quaternary structure exhibited decreased catalytic activity. In summary, our results show that RNase E can degrade its target RNAs in the absence of the RNA chaperone Hfq. We conclude that RNase E-mediated, Hfq-independent RNA decay in E. coli requires a cognate sRNA sequence for annealing to the target RNA, a 5'-monophosphate at the RNA 5'-end, and a stable RNase E quaternary structure.


Asunto(s)
Endorribonucleasas/metabolismo , Estabilidad del ARN/fisiología , Sitios de Unión , Endorribonucleasas/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/metabolismo , Proteína de Factor 1 del Huésped/fisiología , Chaperonas Moleculares/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Pequeño no Traducido/metabolismo , Ribonucleasa Pancreática , Ribonucleasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...