RESUMEN
Horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare, autosomal recessively inherited disorder characterized by a congenital absence of conjugated horizontal eye movements with progressive scoliosis developing in childhood and adolescence. HGPPS is caused by mutations of the ROBO3 gene that disrupts the midline crossing of the descending corticospinal and ascending lemniscal sensory tracts in the medulla. We present two siblings, 5-year-old and 2-year-old boys with HGPPS, from non-consanguineous parents. The older brother was brought for the evaluation of moderate psychomotor retardation. He had bilateral horizontal gaze palsy with preserved vertical gaze and convergence. Scoliosis was absent. Cranial MRI showed brainstem abnormalities, and diffusion tensor imaging showed absent decussation of cortico-spinal tracts in the medulla. Clinical diagnosis of HGPPS was confirmed by sequencing of ROBO3 gene, IVS4-1G > A (c.767-1G > A) and c.328_329delinsCCC (p.Asp110Profs*57) compound heterozygous variations were found, and segregated in parents. The younger boy was first reported at 16 months of age and had the same clinical and neuroradiological findings, unlike mild psychomotor retardation. ROBO3 gene analysis showed the same variants in his brother. Our cases show the importance of evaluating eye movements in children with neurodevelopmental abnormalities and looking for brainstem abnormalities in children with bilateral horizontal gaze palsy.
RESUMEN
BACKGROUND: Homozygous or compound heterozygous ROBO3 gene mutations cause horizontal gaze palsy with progressive scoliosis (HGPPS). This is an autosomal recessive disorder that is characterized by congenital absence or severe restriction of horizontal gaze and progressive scoliosis. To date, almost 100 patients with HGPPS have been reported and 55 ROBO3 mutations have been identified. METHODS: We described an HGPPS patient and performed whole-exome sequencing (WES) to identify the causative gene. RESULTS: We identified a missense variant and a splice-site variant in the ROBO3 gene in the proband. Sanger sequencing of cDNA revealed the presence of an aberrant transcript with retention of 700 bp from intron 17, which was caused by a variation in the noncanonical splicing site. We identified five additional ROBO3 variants, which were likely pathogenic, and estimated the overall allele frequency in the southern Chinese population to be 9.44 × 10-4 , by a review of our in-house database. CONCLUSION: This study has broadened the mutation spectrum of the ROBO3 gene and has expanded our knowledge of variants in noncanonical splicing sites. The results could help to provide more accurate genetic counseling to affected families and prospective couples. We suggest that the ROBO3 gene should be included in the local screening strategy.
Asunto(s)
Trastornos de la Motilidad Ocular , Escoliosis , Humanos , Receptores Inmunológicos/genética , Receptores de Superficie Celular/genética , Trastornos de la Motilidad Ocular/diagnóstico , Trastornos de la Motilidad Ocular/genética , Escoliosis/patología , Estudios Prospectivos , ParálisisRESUMEN
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy, which is the most common and severe acute leukemia in adults. Its occurrence, development and prognosis are affected by many factors, and more research is still needed to further guide its treatment. Here, we found that roundabout3 (ROBO3) was associated with poor prognosis in AML through bioinformatics analysis. We then found that overexpression of ROBO3 promoted AML cell proliferation, adhesion and migration while knockdown of ROBO3 had opposite effects. We subsequently found that ROBO3 regulated CD34 expression in AML cells, and this regulatory effect may be achieved through the Hippo-YAP pathway. The inhibitors of this pathway, K-975 and verteporfin, showed an inhibitory effect on AML cells with high ROBO3 expression. ROBO3 was also found to be significantly increased in bone marrow samples from AML patients. Our research indicates that ROBO3 plays an important role in the development of AML, which suggests that ROBO3 can be a prognostic biomarker and potential therapeutic target for AML.
Asunto(s)
Leucemia Mieloide Aguda , Adulto , Humanos , Regulación hacia Arriba , Leucemia Mieloide Aguda/patología , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Receptores de Superficie Celular/metabolismoRESUMEN
OBJECTIVE: To investigate the expression of ROBO3 in pediatric AML patients and explore its function on cell proliferation and apoptosis. METHODS: The expression of ROBO3 in pediatric AML patients at different treatment stage was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The relationship between the expression of ROBO3 and clinic pathological characteristics in newly diagnosed pediatric AML patients was analyzed. Moreover, the effects of ROBO3 on the proliferation and apoptosis of AML cell lines HL-60 and THP-1 were estimated by using CCK-8 and flow cytometry after transfection with ROBO3 siRNA. RESULTS: It was found that ROBO3 expression was significantly increased in most of newly diagnosed pediatric AML patients, especially in non-M3 subtype, younger patients (<10 years old), and high risk group, compared to corresponding controls. Furthermore, the expression level of ROBO3 was sharply decreased in patients who achieved complete remission. Targeting ROBO3 significantly inhibited AML cell proliferation, as well as increased apoptosis by ROBO3 siRNA transfection in vitro. CONCLUSION: ROBO3 is differentially expressed within distinct subtypes of the pediatric AML patients, which suggested that ROBO3 may be a potential biomarker and a new therapeutic target for pediatric AML.
Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Niño , Humanos , Leucemia Mieloide Aguda/genética , MicroARNs/genética , ARN Interferente Pequeño , Receptores de Superficie Celular , SincalidaRESUMEN
Background: Horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare disorder mainly involved in ocular movement and spinal development. It is caused by a roundabout guidance receptor 3 (ROBO3) gene mutation. This study aimed to describe the clinical features of six patients with HGPPS and investigate the corresponding ROBO3 gene mutations. Methods: Patients underwent detailed clinical and imaging examinations. Whole-exome sequencing was performed to detect nucleotide variations in the disease-causing genes of HGPPS. Results: Six pathogenic variants were detected in the ROBO3 gene from six patients with HGPPS, including two novel compound heterozygous mutations, c.1447C > T (p.R483X) and c.2462G > C (p.R821P); c.1033G > C (p.V345L) and c.3287G > T (p.C1096F); a novel homozygous indel mutation, c.565dupC (p.R191Pfs*61); and a known missense mutation, c.416G > T (p.G139V). Patients with HGPPS had horizontal conjugated eye movement defects and scoliosis with variable degrees, as well as flattened pontine tegmentum and uncrossed corticospinal tracts on magnetic resonance imaging. Conclusion: Our genetic findings will expand the spectrum of ROBO3 mutations and help inform future research on the molecular mechanism of HGPPS.
RESUMEN
Inferior olivary (IO) neurons are born in the dorsal hindbrain and migrate tangentially toward the ventral midline. During their dorsoventral migration, IO neurons extend long leading processes that cross the midline, transform into axons, and project into the contralateral cerebellum. In absence of the axon guidance receptor Robo3, IO axons fail to cross the midline and project to the ipsilateral cerebellum. Remarkably, the IO cell bodies still reach the midline where they form a nucleus of abnormal cytoarchitecture. The mechanisms underlying the migration of Robo3-deficient IO neurons are unknown. Here, we used three-dimensional imaging and transgenic mice to label subsets of IO neurons and study their migratory behavior in Robo3 knockout. We show that IO migration is delayed in absence of Robo3. Strikingly, Robo3-deficient IO neurons progress toward the midline in a direction opposite to their axons. This occurs through a change of polarity and the generation of a second leading process at the rear of the cell. These results suggest that Robo3 receptor controls the establishment of neuronal polarity and the coupling of axonogenesis and cell body migration in IO neurons.
Asunto(s)
Orientación del Axón , Proteínas del Tejido Nervioso , Animales , Axones/metabolismo , Movimiento Celular/fisiología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/metabolismo , Núcleo Olivar/metabolismoRESUMEN
Horizontal gaze palsy with progressive scoliosis is a rare entity with few cases in the literature. Despite the fact the patient will not present with typical symptoms of this syndrome, clinical suspicion should be raised particularly in terms of imaging findings. Imaging findings are characteristic to flag the possibility of this syndrome. Keeping in mind such congenital abnormalities on magnetic resonance imaging particularly for radiologists might help in the management process. Multidisciplinary teams play a crucial role in terms of communication to find the clinical, radiological and genetic studies to reach the diagnosis.
RESUMEN
In Robo3R3-5cKO mouse brain, rhombomere 3-derived trigeminal principal nucleus (PrV) neurons project bilaterally to the somatosensory thalamus. As a consequence, whisker-specific neural modules (barreloids and barrels) representing whiskers on both sides of the face develop in the sensory thalamus and the primary somatosensory cortex. We examined the morphological complexity of layer 4 barrel cells, their postsynaptic partners in layer 3, and functional specificity of layer 3 pyramidal cells. Layer 4 spiny stellate cells form much smaller barrels and their dendritic fields are more focalized and less complex compared to controls, while layer 3 pyramidal cells did not show notable differences. Using in vivo 2-photon imaging of a genetically encoded fluorescent [Ca2+] sensor, we visualized neural activity in the normal and Robo3R3-5cKO barrel cortex in response to ipsi- and contralateral single whisker stimulation. Layer 3 neurons in control animals responded only to their contralateral whiskers, while in the mutant cortex layer 3 pyramidal neurons showed both ipsi- and contralateral whisker responses. These results indicate that bilateral whisker map inputs stimulate different but neighboring groups of layer 3 neurons which normally relay contralateral whisker-specific information to other cortical areas.
Asunto(s)
Corteza Somatosensorial , Vibrisas , Animales , Ratones , Neuronas/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Tálamo , Vibrisas/fisiologíaRESUMEN
Horizontal gaze palsy and progressive scoliosis (HGPPS) is a rare autosomal recessive disorder caused by mutations in the ROBO3 gene. Clinical presentation consists of impairment of conjugate horizontal eye movements together with a progressive scoliosis beginning in childhood. We report dizygotic twins with HGPPS that had absence of conjugate horizontal eye movements combined with divergent strabismus and synergistic divergence. One of them also had a congenital palpebral ptosis and vertical strabismus of the right eye. Onset of scoliosis occurred in childhood with rapid progression in the second decade of life. Brain imaging showed characteristic features of the disease such as hypoplasia of the pons and a midline cleft of the brainstem with a butterfly-like bifid appearance. Genetic analysis revealed a pathogenic homozygous mutation on the ROBO3 gene. These siblings and a previous report of two other individuals with the same disorder from the same small geographical region with less than 38000 inhabitants, likely represent a founder effect.
Asunto(s)
Trastornos de la Motilidad Ocular , Oftalmoplejía Externa Progresiva Crónica , Escoliosis , Estrabismo , Humanos , Imagen por Resonancia Magnética , Trastornos de la Motilidad Ocular/diagnóstico , Trastornos de la Motilidad Ocular/genética , Oftalmoplejía Externa Progresiva Crónica/genética , Receptores de Superficie Celular/genética , Escoliosis/diagnóstico , Escoliosis/genética , Gemelos DicigóticosRESUMEN
BAF chromatin remodeling complexes play important roles in chromatin regulation and cancer. Here, we report that Ewing sarcoma cells are dependent on the autocrine signaling mediated by NELL2, a secreted glycoprotein that has been characterized as an axon guidance molecule. NELL2 uses Robo3 as the receptor to transmit critical growth signaling. NELL2 signaling inhibits cdc42 and upregulates BAF complexes and EWS-FLI1 transcriptional output. We demonstrate that cdc42 is a negative regulator of BAF complexes, inducing actin polymerization and complex disassembly. Furthermore, we identify NELL2highCD133highEWS-FLI1high and NELL2lowCD133lowEWS-FLI1low populations in Ewing sarcoma, which display phenotypes consistent with high and low NELL2 signaling, respectively. We show that NELL2, CD133, and EWS-FLI1 positively regulate each other and upregulate BAF complexes and cell proliferation in Ewing sarcoma. These results reveal a signaling pathway regulating critical chromatin remodeling complexes and cancer cell proliferation.
Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo , Antígeno AC133/metabolismo , Actinas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Ensamble y Desensamble de Cromatina , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones SCID , Proteínas de Fusión Oncogénica/metabolismo , Fenotipo , Polimerizacion , Subunidades de Proteína/metabolismo , Proteómica , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Receptores de Superficie Celular/metabolismo , Sarcoma de Ewing/genética , Regulación hacia ArribaRESUMEN
Breast tissue has a branching structure that contains double-layered cells, consisting primarily of luminal epithelial cells inside and myoepithelial cells outside. Ductal carcinoma in situ (DCIS) still has myoepithelial cells surrounding the cancer cells. However, myoepithelial cells disappear in invasive ductal carcinoma. In this study, we detected expression of neural EGFL like (NELL) 2 and one of its receptors, roundabout guidance receptor (ROBO) 3, in myoepithelial and luminal epithelial cells (respectively) in normal breast tissue. NELL2 also was expressed in myoepithelial cells surrounding the non-cancerous intraductal proliferative lesions and DCIS. However, the expression level and proportion of NELL2-positive cells in DCIS were lower than those in normal and non-cancerous intraductal proliferative lesions. ROBO3 expression was decreased in invasive ductal carcinoma compared to that in normal and non-cancerous intraductal proliferative lesions. An evaluation of NELL2's function in breast cancer cell lines demonstrated that full-length NELL2 suppressed cell adhesion and migration in vitro. In contrast, the N-terminal domain of NELL2 increased cell adhesion in the early phase and migration in vitro in some breast cancer cells. These results suggested that full-length NELL2 protein, when expressed in myoepithelial cells, might serve as an inhibitor of breast cancer cell migration.
Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Receptores de Superficie Celular/metabolismo , Biomarcadores de Tumor/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , HumanosRESUMEN
Roundabout guidance receptor proteins are crucial components of the SLIT/ROBO signaling pathway. This pathway is important for the nervous system and in embryonic development. Recently, increasing evidence has shown that roundabout guidance receptor proteins and the SLIT/ROBO signaling pathway also participate in tumorigenesis. Here, by analyzing transcriptome data from the TCGA and GEO databases, we found that ROBO3 is highly expressed in non-M3 acute myeloid leukemia. High ROBO3 expression was associated with increased age at diagnosis and poorer risk classification (both P < 0.01). Patients with high ROBO3 expression had higher rates of TP53 and RUNX1 mutations (both P < 0.05). Significantly worse overall survival and event-free survival were observed in high ROBO3 expression patients compared with low ROBO3 expression patients (OS: P = 0.004; EFS: P= 0.012). High ROBO3 expression was also associated with poorer overall survival and event-free survival in a subgroup of patients who received intensive chemotherapy (OS: P = 0.024; EFS: P = 0.040). Moreover, multivariate analysis indicated that high ROBO3 expression was an independent risk factor for poor overall survival in non-M3 acute myeloid leukemia patients who are younger than 60 and received intensive chemotherapy during remission induction. Bioinformatics analysis by Kyoto Encyclopedia of Genes and Genomes and Gene Ontology revealed that high ROBO3 expression significantly altered cell adhesion and extracellular matrix-related pathways (adjusted P < 0.05). Taken together, the data demonstrate that ROBO3 is upregulated in non-M3 acute myeloid leukemia and may be a potent biomarker of inferior prognosis.
Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Receptores de Superficie Celular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Pronóstico , Mapas de Interacción de Proteínas/genética , Receptores de Superficie Celular/genética , Medición de Riesgo , Análisis de Supervivencia , Regulación hacia Arriba/genética , Adulto JovenRESUMEN
Horizontal gaze palsy with progressive scoliosis (HGPPS) is an autosomal recessive disorder caused by ROBO3 gene mutations. To date, the number of confirmed HGPPS cases caused by gene mutations is estimated at 76. However, HGPPS caused by ROBO3 gene mutation has not been reported in the Chinese population. In this study, the clinical data, brain imaging features, somatosensory evoked potentials (SEP), and ROBO3 gene mutations were obtained for two Chinese patients with HGPPS. The proband was an 11-year-old boy. He developed horizontal eye movement disorder at the age of 1 year and scoliosis at the age of 11 years. Two eyeballs fixed in the midline position were revealed by neurological examination. A dorsal cleft in the pons and a butterfly-shaped medulla were shown by brain magnetic resonance imaging. Again, most corticospinal bundles did not cross in the brainstem, as revealed by diffusion tensor imaging. SEP confirmed that most somatosensory projections were uncrossed. The proband's 7-year-old brother exhibited similar clinical manifestations and imaging features. The brothers had compound heterozygous mutations c.3165G>A (p.W1055X) and c.955G>A (p.E319K) of the ROBO3 gene. The c.3165G>A mutation is a novel nonsense mutation that has not been previously reported. This study reports the first two cases of HGPPS carrying a novel ROBO3 gene mutation in patients from a Chinese family, thereby expanding the disease spectrum. Reports from the literature show that missense mutation is the most common mutational type in the ROBO3 gene. Early ROBO3 gene detection is required for patients exhibiting early-onset eyeball movement disorder to confirm HGPPS disease.
Asunto(s)
Pueblo Asiatico/genética , Codón sin Sentido , Oftalmoplejía Externa Progresiva Crónica/genética , Receptores de Superficie Celular/genética , Escoliosis/genética , Adulto , Niño , Imagen de Difusión Tensora , Potenciales Evocados Somatosensoriales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Bulbo Raquídeo/diagnóstico por imagen , Bulbo Raquídeo/patología , Neuroimagen , Oftalmoplejía Externa Progresiva Crónica/diagnóstico por imagen , Oftalmoplejía Externa Progresiva Crónica/etnología , Oftalmoplejía Externa Progresiva Crónica/fisiopatología , Puente/diagnóstico por imagen , Puente/patología , Tractos Piramidales/anomalías , Tractos Piramidales/diagnóstico por imagen , Receptores de Superficie Celular/fisiología , Escoliosis/diagnóstico por imagen , Escoliosis/etnología , Escoliosis/fisiopatologíaRESUMEN
Background: Horizontal Gaze Palsy with Progressive Scoliosis (HGPPS) is a rare autosomal recessive congenital disorder characterized by the absence of conjugate horizontal eye movements, and progressive debilitating scoliosis during childhood and adolescence. HGPPS is associated with mutations of the ROBO3 gene. In this study, the objective is to identify pathogenic variants in a cohort of Tunisian patients with HGPPS and to further define ROBO3 genotype-phenotype correlations. Methods: Thirteen Tunisian patients from six unrelated consanguineous families all manifesting HGPPS were genetically investigated. We searched for the causative variants for HGPPS using classical Sanger and whole exome sequencing. Results: Four distinct homozygous mutations were identified in ROBO3 gene. Two of these were newly identified homozygous and non-synonymous mutations, causing effectively damage to the protein by in silico analysis. The other two mutations were previously reported in Tunisian patients with HGPPS. Mutations were validated by Sanger sequencing in parents and affected individuals. Conclusion: To the best of our knowledge, this is the largest ever reported cohort on families with HGPPS in whom ROBO3 mutations were identified. These molecular findings have expanded our knowledge of the ROBO3 mutational spectrum. The relevance of our current study is two-fold; first to assist proper management of the scoliosis and second to protect families at risk.
RESUMEN
Horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare autosomal recessive disorder. The ROBO 3 gene mutation is responsible for the disease. We present a boy aged 12 years who was admitted for scoliosis surgery who had also had horizontal gaze palsy since birth. His brainstem abnormalities were compatible with the syndrome of HGPPS. HGPPS is one of the rare congenital diseases of childhood. Horizontal gaze palsy, ametropia, and progressive scoliosis are the main findings of the disease. This syndrome should be kept in mind for both ophthalmologists and orthopaedic surgeons in patients who present with gaze palsy and scoliosis. Early diagnosis of scoliosis makes it possible to treat the disease at an early stage, and early diagnosis of ametropia is important in the prevention of amblyopia.
RESUMEN
The two sides of the nervous system coordinate and integrate information via commissural neurons, which project axons across the midline. Commissural neurons in the spinal cord are a highly heterogeneous population of cells with respect to their birthplace, final cell body position, axonal trajectory, and neurotransmitter phenotype. Although commissural axon guidance during development has been studied in great detail, neither the developmental origins nor the mature phenotypes of commissural neurons have been characterized comprehensively, largely due to lack of selective genetic access to these neurons. Here, we generated mice expressing Cre recombinase from the Robo3 locus specifically in commissural neurons. We used Robo3 Cre mice to characterize the transcriptome and various origins of developing commissural neurons, revealing new details about their extensive heterogeneity in molecular makeup and developmental lineage. Further, we followed the fate of commissural neurons into adulthood, thereby elucidating their settling positions and molecular diversity and providing evidence for possible functions in various spinal cord circuits. Our studies establish an important genetic entry point for further analyses of commissural neuron development, connectivity, and function.
Asunto(s)
Mapeo Cromosómico/métodos , Interneuronas Comisurales/metabolismo , Perfilación de la Expresión Génica/métodos , Integrasas/biosíntesis , Receptores de Superficie Celular/biosíntesis , Médula Espinal/metabolismo , Animales , Interneuronas Comisurales/química , Femenino , Integrasas/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas/química , Neuronas/metabolismo , Receptores de Superficie Celular/genética , Médula Espinal/química , Médula Espinal/citologíaRESUMEN
BACKGROUND: Horizontal gaze palsy and progressive scoliosis (HGPPS) is a rare autosomal recessive disorder due to mutations in ROBO3 gene. Patients have characteristic clinical and imaging findings. We report six patients from two families with this disorder with two novel mutations. MATERIALS AND METHODS: One patient from a non-consanguineous family and five patients from extended consanguineous families were clinically and radiologically examined. Blood samples from the patients and their parents were obtained and all the coding exons and flanking intronic sequences of the ROBO3 gene were amplified and subjected to bidirectional DNA sequencing. RESULTS: All six patients had the characteristic clinical and radiological findings of HGPPS. Genetic testing showed two novel mutations including frame-shift and nonsense. CONCLUSION: Two novel mutations in the ROBO3 gene were identified in two Jordanian families with six affected individuals. To our knowledge, this is the first molecular study of HGPPS in Jordan.
Asunto(s)
Mutación , Oftalmoplejía Externa Progresiva Crónica/genética , Receptores de Superficie Celular/genética , Escoliosis/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Consanguinidad , Exones , Femenino , Humanos , Jordania , Imagen por Resonancia Magnética , Masculino , Oftalmoplejía Externa Progresiva Crónica/diagnóstico por imagen , Linaje , Escoliosis/diagnóstico por imagen , Análisis de Secuencia de ADN , Tomografía Computarizada por Rayos XRESUMEN
In Bilaterians, commissural neurons project their axons across the midline of the nervous system to target neurons on the opposite side. In mammals, midline crossing at the level of the hindbrain and spinal cord requires the Robo3 receptor which is transiently expressed by all commissural neurons. Unlike other Robo receptors, mammalian Robo3 receptors do not bind Slit ligands and promote midline crossing. Surprisingly, not much is known about Robo3 distribution and mechanism of action in other vertebrate species. Here, we have used whole-mount immunostaining, tissue clearing and light-sheet fluorescent microscopy to study Robo3 expression pattern in embryonic tissue from diverse representatives of amniotes at distinct stages, including squamate (African house snake), birds (chicken, duck, pigeon, ostrich, emu and zebra finch), early postnatal marsupial mammals (fat-tailed dunnart), and eutherian mammals (mouse and human). The analysis of this rich and unique repertoire of amniote specimens reveals conserved features of Robo3 expression in midbrain, hindbrain and spinal cord commissural circuits, which together with subtle but meaningful modifications could account for species-specific evolution of sensory-motor and cognitive capacities. Our results also highlight important differences of precerebellar nuclei development across amniotes.
Asunto(s)
Encéfalo/embriología , Desarrollo Embrionario , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Vertebrados/embriología , Animales , Humanos , Receptores de Superficie Celular/metabolismoRESUMEN
The whisker system is an important sensory organ with extensive neural representations in the brain of the mouse. Patterned neural modules (barrelettes) in the ipsilateral principal sensory nucleus of the trigeminal nerve (PrV) correspond to the whiskers. Axons of the PrV barrelette neurons cross the midline and confer the whisker-related patterning to the contralateral ventroposteromedial nucleus of the thalamus, and subsequently to the cortex. In this way, specific neural modules called barreloids and barrels in the contralateral thalamus and cortex represent each whisker. Partial midline crossing of the PrV axons, in a conditional Robo3 mutant (Robo3R3-5cKO) mouse line, leads to the formation of bilateral whisker maps in the ventroposteromedial, as well as the barrel cortex. We used voltage-sensitive dye optical imaging and somatosensory and motor behavioral tests to characterize the consequences of bifacial maps in the thalamocortical system. Voltage-sensitive dye optical imaging verified functional, bilateral whisker representation in the barrel cortex and activation of distinct cortical loci following ipsilateral and contralateral stimulation of the specific whiskers. The mutant animals were comparable with the control animals in sensorimotor tests. However, they showed noticeable deficits in all of the whisker-dependent or -related tests, including Y-maze exploration, horizontal surface approach, bridge crossing, gap crossing, texture discrimination, floating in water, and whisking laterality. Our results indicate that bifacial maps along the thalamocortical system do not offer a functional advantage. Instead, they lead to impairments, possibly due to the smaller size of the whisker-related modules and interference between the ipsilateral and contralateral whisker representations in the same thalamus and cortex.SIGNIFICANCE STATEMENT The whisker sensory system plays a quintessentially important role in exploratory behavior of mice and other nocturnal rodents. Here, we studied a novel mutant mouse line, in which the projections from the brainstem to the thalamus are disrupted. This led to formation of bilateral whisker maps in both the thalamus and the cortex. The two whisker maps crowd in a space normally devoted to the contralateral map alone and in a nonoverlapping fashion. Stimulation of the whiskers on either side activates the corresponding region of the map. Mice with bilateral whisker maps perform well in general sensorimotor tasks but show poor performance in specific tests that require whisker-dependent tactile discrimination. These observations indicate that contralateral, instead of bilateral, representation of the sensory space plays a critical role in acuity and fine discrimination during somesthesis.