Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 532(2): e25569, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104270

RESUMEN

In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.


Asunto(s)
Núcleo Amigdalino Central , Animales , Hormona Liberadora de Corticotropina/metabolismo , Pollos/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Mamíferos
2.
J Comp Neurol ; 528(1): 135-159, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31299095

RESUMEN

The Pax6 gene encodes a regulatory transcription factor that is key in brain development. The molecular structure of Pax6, the roles it plays and its patterns of expression in the brain have been highly conserved during vertebrate evolution. As neurodevelopment proceeds, the Pax6 expression changes from the mitotic germinal zone in the ventricular zone to become distributed in cell groups in the adult brain. Studies in various vertebrates, from fish to mammals, found that the Pax6 expression is maintained in adults in most regions that express it during development. Specifically, in amphibians, Pax6 is widely expressed in the adult brain and its distribution pattern serves to highlight regional organization of the brain. In the present study, we analyzed the detailed distribution of Pax6 cells in the adult central nervous system of lungfishes, the closest living relatives of all tetrapods. Immunohistochemistry performed using double labeling techniques with several neuronal markers of known distribution patterns served to evaluate the actual location of Pax6 cells. Our results show that the Pax6 expression is maintained in the adult brain of lungfishes, in distinct regions of the telencephalon (pallium and subpallium), diencephalon, mesencephalon, hindbrain, spinal cord, and retina. The pattern of Pax6 expression is largely shared with amphibians and helps to understand the primitive condition that would have characterized the common ancestors to all sarcopterygians (lobe-finned fishes and tetrapods), in which Pax6 would be needed to maintain specific entities of subpopulations of neurons.


Asunto(s)
Química Encefálica , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Factor de Transcripción PAX6/biosíntesis , Animales , Química Encefálica/fisiología , Peces , Expresión Génica , Factor de Transcripción PAX6/análisis , Factor de Transcripción PAX6/genética , Vertebrados
3.
J Comp Neurol ; 527(1): 174-186, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29405294

RESUMEN

Choline acetyltransferase (ChAT) expressing retinal amacrine cells are present across vertebrates. These interneurons play important roles in the development of retinal projections to the brain and in motion detection, specifically in generating direction-selective responses to moving stimuli. ChAT amacrine cells typically comprise two spatially segregated populations that form circuits in the 'ON' or 'OFF' synaptic layers of the inner retina. This stereotypic arrangement is also found across the adult human retina, with the notable exception that ChAT expression is evident in the ON but not OFF layer of the fovea, a region specialized for high-acuity vision. We thus investigated whether the human fovea exhibits a developmental path for ON and OFF ChAT cells that is retinal location-specific. Our analysis shows that at each retinal location, human ON and OFF ChAT cells differentiate, form their separate synaptic layers, and establish non-random mosaics at about the same time. However, unlike in the adult fovea, ChAT immunostaining is initially robust in both ON and OFF populations, up until at least mid-gestation. ChAT expression in the OFF layer in the fovea is therefore significantly reduced after mid-gestation. OFF ChAT cells in the human fovea and in the retinal periphery thus follow distinct maturational paths.


Asunto(s)
Células Amacrinas/citología , Neuronas Colinérgicas/citología , Neurogénesis/fisiología , Células Amacrinas/fisiología , Animales , Diferenciación Celular/fisiología , Neuronas Colinérgicas/fisiología , Feto , Humanos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...