Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Front Rehabil Sci ; 5: 1384582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813371

RESUMEN

Background: Dual tasking (i.e., concurrent performance of motor and cognitive task) is significantly impaired in older adults with mild cognitive impairment (OAwMCI) compared to cognitively intact older adults (CIOA) and has been associated with increased fall risk. Dual task studies have primarily examined volitionally driven events, and the effects of mild cognitive impairment on reactive balance control (i.e., the ability to recover from unexpected balance threats) are unexplored. We examined the effect of cognitive tasks on reactive balance control in OAwMCI compared to CIOA. Methods: Adults >55 years were included and completed the Montreal Cognitive Assessment (MoCA) to categorize them as OAwMCI (MoCA: 18-24, n = 15) or CIOA (MoCA: ≥25, n = 15). Both OAwMCI [MoCA: 22.4 (2.2), 65.4 (6.1) years, 3 females] and CIOA [MoCA: 28.4 (1.3), 68.2 (5.5) years, 10 females] responded to large magnitude stance slip-like perturbations alone (single task) and while performing perceptual cognitive tasks targeting the visuomotor domain (target and tracking game). In these tasks, participants rotated their head horizontally to control a motion mouse and catch a falling target (target game) or track a moving object (track). Margin of stability (MOS) and fall outcome (harness load cell >30% body weight) were used to quantify reactive balance control. Cognitive performance was determined using performance error (target) and sum of errors (tracking). A 3 × 2 repeated measures ANOVA examined the effect of group and task on MOS, and generalized estimating equations (GEE) model was used to determine changes in fall outcome between groups and tasks. 2 × 2 repeated measures ANOVAs examined the effect of group and task on cognitive performance. Results: Compared to CIOA, OAwMCI exhibited significantly deteriorated MOS and greater number of falls during both single task and dual task (p < 0.05), and lower dual task tracking performance (p < 0.01). Compared to single task, both OAwMCI and CIOA exhibited significantly deteriorated perceptual cognitive performance during dual task (p < 0.05); however, no change in MOS or fall outcome between single task and dual task was observed. Conclusion: Cognitive impairment may diminish the ability to compensate and provide attentional resources demanded by sensory systems to integrate perturbation specific information, resulting in deteriorated ability to recover balance control among OAwMCI.

2.
J Pharm Bioallied Sci ; 16(Suppl 1): S452-S455, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38595384

RESUMEN

Objective: This study aims to assess the comparative efficacy of two distinct balancing training intervention strategies, namely, Wii Fit Balance Training (WFT) and Reactive Balance Training (RBT), in reducing older individuals' fear of falling, as well as enhancing their balance and functional mobility. Materials and Methods: One of the two groups was randomly assigned a total of 45 individuals. The first group received Wii Fit training, whereas the second group engaged in reactive balancing challenges. The efficiency of the techniques was evaluated using three outcome measures: the Fullerton Advanced Balance (FAB), Scale Time up and Go Test (TUG), and Berg Balance Scale (BBS). To facilitate the comparison between the groups, an independent student t-test was employed. Results: Both experimental groups showed significant improvements compared to their respective control groups in the research study (BBS: P = 0.023; P = 0.036; FAB: P = 0.027; P = 0.044; and TUG: P = 0.017; P = 0.025). Conclusion: It can be inferred that both reactive balance training and Wii Fit training have the potential to serve as efficacious treatment interventions aimed at mitigating balance deterioration among older individuals.

3.
Gerontology ; 70(6): 661-668, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38565079

RESUMEN

INTRODUCTION: Perturbation-based balance training (PBT) is promising for fall prevention in older adults, mimicking real-life fall situations at a person's stability thresholds to improve reactive balance. Hence, it can be associated with anxiety, but knowledge about the acceptability of PBT is scarce. METHOD: This is a secondary analysis of a randomized controlled trial comparing the effects of two different PBT paradigms that aims to evaluate and compare the acceptability of those training paradigms in fall-prone older adults. Participants (74.9 ± 5.7 years) who completed the training (6 weeks, 3x/week) on either a perturbation treadmill (PBTtreadmill: n = 22) or unstable surfaces in the presence of perturbations (PBTstability: n = 27) were surveyed on the acceptability of PBT using a 21-item questionnaire addressing seven domains (perceived effectiveness, tailoring, demand, safety, burden, devices, affective attitude), based on the theoretical framework of acceptability and context-specific factors. Relative scores (% of absolute maximum) for single items and domains were calculated. RESULTS: Median domain scores of perceived effectiveness, tailoring, safety, devices, and affective attitude were all ≥70% for both paradigms. The highest scores were obtained for tailoring (both paradigms = 100% [interquartile range 80-100%]). Domain scores of demand and burden were in the medium range (40-45%) for both paradigms. No significant differences between paradigms were found for any domain score. Two single items of safety differed significantly, with PBTtreadmill perceived as needing less support (p = 0.015) and leading less often to balance loss (p = 0.026) than PBTstability. CONCLUSION: PBT conducted on a perturbation treadmill or unstable surfaces is well accepted in this fall-prone older sample, even though it is conducted at individual stability thresholds. Tailoring may play a key role in achieving high levels of perceived effectiveness, appropriate levels of demand and burden, and a high sense of safety. PBT delivered on treadmills might be more appropriate for more anxious persons.


Asunto(s)
Accidentes por Caídas , Equilibrio Postural , Humanos , Equilibrio Postural/fisiología , Accidentes por Caídas/prevención & control , Masculino , Femenino , Anciano , Terapia por Ejercicio/métodos , Anciano de 80 o más Años , Encuestas y Cuestionarios , Prueba de Esfuerzo/métodos , Aceptación de la Atención de Salud/psicología
4.
Gait Posture ; 109: 303-310, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38412683

RESUMEN

BACKGROUND: People with degenerative cervical myelopathy are known to have impaired standing balance and walking abilities, but less is known about balance responses during walking. RESEARCH QUESTION: The aim of this project was to assess reactive balance impairments during walking in people with degenerative cervical myelopathy (PwDCM). We hypothesized that center of mass motion following perturbations would be larger in PwDCM and gluteus medius electromyographic amplitude responses would be decreased in PwDCM. METHODS: Reactive balance responses were quantified during unanticipated lateral pulls to the waist while treadmill walking. Walking biomechanics data were collected from 10 PwDCM (F=6) and 10 non-myelopathic controls (F=7) using an 8 camera Vicon System (Vicon MX T-Series). Electromyography was collected from lower limb muscles. Participants walked on an instrumented treadmill and received lateral pulls at random intervals and in randomized direction at 5% and 2.5% body mass. Participants walked at 3 prescribed foot placements to control for effects of the size of base of support. RESULTS: As compared with controls, the perturbation-related positional change of the center of mass motion (ΔCOM) was increased in PwDCM (p=0.001) with similar changes in foot placement (p>0.05). Change in gluteus medius electromyography, however, was less in PwDCM than in controls (p<0.001). SIGNIFICANCE: After experimentally controlling step width, people with mild-to-moderate degenerative cervical myelopathy at least 3 months following cervical spine surgery have impaired reactive balance during walking likely coupled with reduced gluteus medius electromyographic responses. Rehabilitation programs focusing on reactive balance and power are likely necessary for this population.


Asunto(s)
Enfermedades de la Médula Espinal , Caminata , Humanos , Caminata/fisiología , Músculo Esquelético/fisiología , Electromiografía , Enfermedades de la Médula Espinal/complicaciones , Equilibrio Postural/fisiología , Nalgas
5.
Gait Posture ; 107: 281-286, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349937

RESUMEN

BACKGROUND: The present study investigated neural mechanisms for suppressing a highly automatic balance recovery step. Response inhibition has typically been researched using focal hand reaction tasks performed by seated participants, and this has revealed a neural stopping network including the Inferior Frontal Gyrus (IFG). It is unclear if the same neural networks contribute to suppressing an unwanted balance reaction. RESEARCH QUESTION: Is there greater IFG activation when suppressing an automatic balance recovery step? METHODS: Functional near-infrared spectroscopy (fNIRS) was used to measure brain activity in 21 young adults as they performed a balance recovery task that demanded rapid step suppression following postural perturbation. The hypothesis was that the IFG would show heightened activity when suppressing an automatic balance recovery step. A lean and-release system was used to impose temporally unpredictable forward perturbations by releasing participants from a supported forward lean. For most trials (80%), participants were told to recover balance by quickly stepping forward (STEP). However, on 20% of trials at random, a high-pitch tone was played immediately after postural perturbation signaling participants to suppress a step and fully relax into a catch harness (STOP). This allowed us to target the ability to cancel an already initiated step in a balance recovery context. Average oxygenated hemoglobin changes were contrasted between STEP and STOP trials, 1-6 s post perturbation. RESULTS: The results showed a greater bilateral prefrontal response during STOP trials, supporting the idea that executive brain networks are active when suppressing a balance recovery step. SIGNIFICANCE: Our study demonstrates one way in which higher brain processes may help us prevent falls in complex environments where behavioral flexibility is necessary. This study also presents a novel method for assessing response inhibition in an upright postural context where rapid stepping reactions are required.


Asunto(s)
Encéfalo , Corteza Prefrontal , Adulto Joven , Humanos , Encéfalo/fisiología , Posición de Pie , Mano/fisiología , Extremidad Superior , Equilibrio Postural/fisiología
6.
Appl Ergon ; 117: 104236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38237306

RESUMEN

Backpacks are common devices for carrying external posterior loads. However, relatively little is known about how these external loads affect the ability to recover from balance loss. In this exploratory investigation, 16 young adults (8 female, 8 male) performed forward and backward lean-and-release balance recovery trials, while wearing a backpack that was unloaded or loaded (at 15% of individual body weight). We quantified the effects of backpack loading on balance recovery in terms of maximum recoverable lean angles, center-of-mass kinematics, and temporal-spatial stepping characteristics. Mean values of maximum lean angles were 20° and 9° in response to forward and backward perturbations, respectively. These angles significantly decreased when wearing the additional load for only backward losses of balance. During backward losses of balance, the additional load decreased peak center-of-mass velocity and increased acceleration by ∼10 and 18% respectively, which was accompanied by ∼5% faster stepping responses and steps that were ∼9% longer, 11% higher, and had an ∼10% earlier onset. Thus, wearing a backpack decreases backward balance recovery ability and changes backward recovery stepping characteristics.


Asunto(s)
Aceleración , Equilibrio Postural , Adulto Joven , Humanos , Masculino , Femenino , Equilibrio Postural/fisiología , Fenómenos Biomecánicos , Soporte de Peso/fisiología
7.
Gait Posture ; 107: 121-129, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-36990910

RESUMEN

BACKGROUND: Balance impairments are common in children with cerebral palsy (CP). Muscle activity during perturbed standing is higher in children with CP than in typically developing (TD) children, but we know surprisingly little about how sensorimotor processes for balance control are altered in CP. Sensorimotor processing refers to how the nervous system translates incoming sensory information about body motion into motor commands to activate muscles. In healthy adults, muscle activity in response to backward support-surface translations during standing can be reconstructed by center of mass (CoM) feedback, i.e., by a linear combination of delayed (due to neural transmission times) CoM displacement, velocity, and acceleration. The level of muscle activity in relation to changes in CoM kinematics, i.e., the feedback gains, provides a metric of the sensitivity of the muscle response to CoM perturbations. RESEARCH QUESTION: Can CoM feedback explain reactive muscle activity in children with CP, yet with higher feedback gains than in TD children? METHODS: We perturbed standing balance by backward support-surface translations of different magnitudes in 20 children with CP and 20 age-matched TD children and investigated CoM feedback pathways underlying reactive muscle activity in the triceps surae and tibialis anterior. RESULTS: Reactive muscle activity could be reconstructed by delayed feedback of CoM kinematics and hence similar sensorimotor pathways might underlie balance control in children with CP and TD children. However, sensitivities of both agonistic and antagonistic muscle activity to CoM displacement and velocity were higher in children with CP than in TD children. The increased sensitivity of balance correcting responses to CoM movement might explain the stiffer kinematic response, i.e., smaller CoM movement, observed in children with CP. SIGNIFICANCE: The sensorimotor model used here provided unique insights into how CP affects neural processing underlying balance control. Sensorimotor sensitivities might be a useful metric to diagnose balance impairments.


Asunto(s)
Parálisis Cerebral , Adulto , Humanos , Niño , Parálisis Cerebral/complicaciones , Movimiento/fisiología , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Retroalimentación
8.
J Athl Train ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014789

RESUMEN

CONTEXT: Wearable sensors are increasingly popular in concussion research because of their objective quantification of subtle balance deficits. However, normative data and minimum detectable change values are necessary to serve as a references for diagnostic use and tracking longitudinal recovery. OBJECTIVE: Identify normative values and minimal detectable change values for instrumented static and reactive balance tests, an instrumented static Mediolateral Root Mean Square (ML RMS) sway standing balance assessment, and the instrumented, modified Push & Release (I-mP&R), respectively. DESIGN: Cross-Sectional Study. SETTING: Clinical Setting. PATIENTS OR OTHER PARTICIPANTS: Normative static ML RMS sway and I-mP&R data were collected on 377 (n=184 females) healthy National Collegiate Athletic Association Division I athletes at the beginning of their competitive seasons. Test-retest data were collected in 36 healthy control athletes based on standard recovery timelines after concussion. RESULTS: Descriptive statistics, intraclass correlation coefficients (ICC), and minimal detectable change (MDC) values were calculated for primary outcomes of mediolateral (ML) root-mean-square (RMS) sway in a static double limb-stance standing on firm ground and a foam block, and time to stability and latency from the I-mP&R in single- and dual-task conditions. RESULTS: Normative outcomes across static ML RMS sway and I-mP&R were sensitive to sex and type of footwear. ML RMS sway demonstrated moderate reliability in the firm condition (ICC=0.73; MDC=2.7cm/s2), but poor reliability in the foam condition (ICC=0.43; MDC=11.1cm/s2). Single- and dual-task time to stability from the I-mP&R exhibited good reliability (ICC=0.84 and 0.80, respectfully; MDC=0.25s, 0.59s, respectfully). Latency from the I-mP&R had poor to moderate reliability (ICC=0.38, 0.55; MDC=107ms, 105ms). CONCLUSIONS: Sex-matched references should be used for instrumented static and reactive balance assessments. Footwear may explain variability in static ML RMS sway and time to stability of the I-mP&R. Moderate-to-good reliability suggest time to stability from the I-mP&R and ML RMS static sway on firm ground can be used for longitudinal assessments.

9.
Front Sports Act Living ; 5: 1195773, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780126

RESUMEN

Background: Perturbation-based training has shown to be effective in reducing fall-risk in people with chronic stroke (PwCS). However, most evidence comes from treadmill-based stance studies, with a lack of research focusing on training overground perturbed walking and exploring the relative contributions of the paretic and non-paretic limbs. This study thus examined whether PwCS could acquire motor adaptation and demonstrate immediate retention of fall-resisting skills following bilateral overground gait-slip perturbation training. Methods: 65 PwCS were randomly assigned to either (i) a training group, that received blocks of eight non-paretic (NP-S1 to NP-S8) and paretic (P-S1 to P-S8) overground slips during walking followed by a mixed block (seven non-paretic and paretic slips each interspersed with unperturbed walking trials) (NP-S9/P-S9 to NP-S15/P-S15) or (ii) a control group, that received a single non-paretic and paretic slip in random order. The assessor and training personnel were not blinded. Immediate retention was tested for the training group after a 30-minute rest break. Primary outcomes included laboratory-induced slip outcomes (falls and balance loss) and center of mass (CoM) state stability. Secondary outcomes to understand kinematic contributors to stability included recovery strategies, limb kinematics, slipping kinematics, and recovery stride length. Results: PwCS within the training group showed reduced falls (p < 0.01) and improved post-slip stability (p < 0.01) from the first trial to the last trial of both paretic and non-paretic slip blocks (S1 vs. S8). During the mixed block training, there was no further improvement in stability and slipping kinematics (S9 vs. S15) (p > 0.01). On comparing the first and last training trial (S1 vs. S15), post-slip stability improved on both non-paretic and paretic slips, however, pre-slip stability improved only on the non-paretic slip (p < 0.01). On the retention trials, the training group had fewer falls and greater post-slip stability than the control group on both non-paretic and paretic slips (p < 0.01). Post-slip stability on the paretic slip was lower than that on the non-paretic slip for both groups on retention trials (p < 0.01). Conclusion: PwCS can reduce laboratory-induced slip falls and backward balance loss outcomes by adapting their post-slip CoM state stability after bilateral overground gait-slip perturbation training. Such reactive adaptations were better acquired and retained post-training in PwCS especially on the non-paretic slips than paretic slips, suggesting a need for higher dosage for paretic slips. Clinical registry number: NCT03205527.

10.
Brain Sci ; 13(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37891855

RESUMEN

Stepping to recover balance is an important way we avoid falling. However, when faced with obstacles in the step path, we must adapt such reactions. Physical obstructions are typically detected through vision, which then cues step modification. The present study describes a novel method to assess visually prompted step inhibition in a reactive balance context. In our task, participants recovered balance by quickly stepping after being released from a supported forward lean. On rare trials, however, an obstacle blocked the stepping path. The timing of vision relative to postural perturbation was controlled using occlusion goggles to regulate task difficulty. Furthermore, we explored step suppression in our balance task related to inhibitory capacity measured at the hand using a clinically feasible handheld device (ReacStick). Our results showed that ReacStick and step outcomes were significantly correlated in terms of successful inhibition (r = 0.57) and overall reaction accuracy (r = 0.76). This study presents a novel method for assessing rapid inhibition in a dynamic postural context, a capacity that appears to be a necessary prerequisite to a subsequent adaptive strategy. Moreover, this capacity is significantly related to ReacStick performance, suggesting a potential clinical translation.

11.
BMC Geriatr ; 23(1): 656, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833653

RESUMEN

BACKGROUND: 'Reactive balance training' (RBT) was developed to improve balance reactions to unexpected losses of balance. Although this training method is effective, its practical usage in the field of physical-therapy in Israel and world-wide is still unclear. AIMS: This study aimed to evaluate the extent of RBT use in physical-therapy clinics in Israel, to identify the significant barriers to/facilitators for implementing RBT in clinical practice among physical therapists, and to determine which aspects of RBT most interest physical therapists in Israel. METHODS: Physical therapists in Israel completed a survey using a questionnaire regarding their knowledge and use of RBT in their clinical practices. We compared the specific use of RBT among users; non-users; and open-to-use physical therapists. The odds ratios of the facilitators and barriers were calculated using univariate and multivariate logistic regression models. RESULTS: Four-hundred and two physical therapists responded to a yes/no question regarding their use of RBT. Three-quarters (75.4%) of physical therapists reported using RBT in their practices. The most prevalent barrier cited was insufficient space for setting up equipment and most prevalent facilitator was having a colleague who uses RBT. Most of the respondents wanted to learn more about RBT, and most of the non-users wanted to expand their knowledge and mastery of RBT principles. CONCLUSIONS: There are misconceptions and insufficient knowledge about RBT among physical therapists in Israel, indicating that they may falsely believe that RBT requires large and expensive equipment, suggesting they categorize RBT as external perturbation training only. Reliable information may help to improve general knowledge regarding RBT, and to facilitate the more widespread implementation of RBT as an effective fall-prevention intervention method.


Asunto(s)
Fisioterapeutas , Humanos , Israel , Modalidades de Fisioterapia , Encuestas y Cuestionarios , Equilibrio Postural
12.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37765803

RESUMEN

Reactive balance is postulated to be attentionally demanding, although it has been underexamined in dual-tasking (DT) conditions. Further, DT studies have mainly included only one cognitive task, leaving it unknown how different cognitive domains contribute to reactive balance. This study examined how DT affected reactive responses to large-magnitude perturbations and compared cognitive-motor interference (CMI) between cognitive tasks. A total of 20 young adults aged 18-35 (40% female; 25.6 ± 3.8 y) were exposed to treadmill support surface perturbations alone (single-task (ST)) and while completing four cognitive tasks: Target, Track, Auditory Clock Test (ACT), Letter Number Sequencing (LNS). Three perturbations were delivered over 30 s in each trial. Cognitive tasks were also performed while seated and standing (ST). Compared to ST, post-perturbation MOS was lower when performing Track, and cognitive performance was reduced on the Target task during DT (p < 0.05). There was a larger decline in overall (cognitive + motor) performance from ST for both of the visuomotor tasks compared to the ACT and LNS (p < 0.05). The highest CMI was observed for visuomotor tasks; real-life visuomotor tasks could increase fall risk during daily living, especially for individuals with difficulty attending to more than one task.

13.
Front Neurol ; 14: 1041434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139074

RESUMEN

Background: Older adults with mild cognitive impairment (OAwMCI) experience a two-fold increased risk of falling compared to their cognitively intact counterparts. This increased risk could be attributed to impairments in balance control mechanisms (both volitional and reactive), however, the exact neural substrates contributing to the balance impairments remain unclear. While changes in functional connectivity (FC) networks in volitional balance control tasks have been well highlighted, the relationship between these changes and reactive balance control has not been examined. Therefore, this study aims to explore the relationship between FC networks of the brain obtained during resting state fMRI (no visualization or active task performed) and behavioral measures on a reactive balance task in OAwMCI. Methods: Eleven OAwMCI (< 25/30 on MoCA, > 55 years) underwent fMRI and were exposed to slip-like perturbations on the Activestep treadmill. Postural stability, i.e., dynamic center of mass motion state (i.e., its position and velocity) was computed to determine reactive balance control performance. The relationship between reactive stability and FC networks was explored using the CONN software. Results: OAwMCI with greater FC in default mode network-cerebellum (r2 = 0.43, p < 0.05), and sensorimotor-cerebellum (r2 = 0.41, p < 0.05) network exhibited lower reactive stability. Further, people with lower FC in middle frontal gyrus-cerebellum (r2 = 0.37, p < 0.05), frontoparietal-cerebellum (r2 = 0.79, p < 0.05) and cerebellar network-brainstem (r2 = 0.49, p < 0.05) exhibited lower reactive stability. Conclusion: Older adults with mild cognitive impairment demonstrate significant associations between reactive balance control and cortico-subcortical regions involved in cognitive-motor control. Results indicate that the cerebellum and its communications with higher cortical centers could be potential substrates contributing to impaired reactive responses in OAwMCI.

14.
Gait Posture ; 102: 186-192, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031629

RESUMEN

BACKGROUND: Impaired reactive responses to sudden environmental perturbations contribute to heightened fall-risk in healthy aging and neurologically impaired populations. Previous studies have demonstrated individual contributions of paretic and non-paretic sides to fall-risk in people with stroke with variable levels of motor impairment. However, the combined effect of aging and unilateral cortical lesion on reactive balance control is not clearly understood. We therefore aimed to examine age-related differences in reactive balance control and fall-risk during laboratory-induced gait-slips in people with comparable stroke-related motor impairments. METHODS: Thirteen younger (45.61 ± 4.61 years) and thirteen older (71.92 ± 6.50 years) adults with similar stroke-related impairment (on Fugl-Meyer Lower Extremity Assessment) were exposed to one overground gait-slip under each limb (paretic and non-paretic). Center of mass state stability and slipping kinematics (slip displacement and velocity) were computed. Clinical balance and mobility were also assessed. RESULTS: On non-paretic slips, older adults with chronic stroke demonstrated greater falls and lower center of mass stability (its position and velocity) at post-slip touchdown compared to younger adults with chronic stroke (p < 0.01). This was accompanied with a greater peak slip displacement and faster peak slip velocity (p < 0.01). However, there were no such group differences noted on the paretic slips (p > 0.01). CONCLUSION: Aging may have an independent, detrimental effect on reactive balance control in people with chronic stroke. Non-paretic deficits in controlling slip intensities (slip displacement and velocity) can accentuate fall-risk in older adults with chronic stroke. Further investigation is necessary to identify additional factors attributing to heightened fall-risk in older adults with chronic stroke.


Asunto(s)
Equilibrio Postural , Accidente Cerebrovascular , Humanos , Anciano , Equilibrio Postural/fisiología , Accidente Cerebrovascular/complicaciones , Marcha/fisiología , Envejecimiento/fisiología , Fenómenos Biomecánicos , Extremidad Inferior , Caminata/fisiología
15.
Mult Scler Relat Disord ; 73: 104607, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004274

RESUMEN

BACKGROUND: This study examined the feasibility and efficacy of reactive balance training for improving stepping performance and reducing laboratory-induced falls in people with multiple sclerosis (MS). METHODS: Thirty people diagnosed with MS (18-70 years) participated in a blinded randomized controlled trial (ACTRN12618001436268). The intervention group (n = 14) underwent two 50-minute sessions (total 100 min) that exposed them to a total of 24 trips and 24 slips in mixed order, over one week. The control group (n = 16) received sham training (stepping over foam obstacles) with equivalent dosage. The primary outcome was falls into the harness (defined as >30% body weight) when exposed to trips and slips that were unpredictable in timing, location and type at post-assessment. Physical and psychological measures were also assessed at baseline and post assessments. RESULTS: The intervention and control groups completed 86% and 95% of the training protocols respectively. Incidence rate ratios (95% confidence intervals) of the intervention group relative to the control group were 0.57 (0.25, 1.26) for all falls, 0.80 (0.30, 2.11) for slip falls and 0.20 (0.04, 0.96) for trip falls in the laboratory. Kinematic analyses indicated the intervention participants improved dynamic stability, with higher centre of mass position and reduced trunk sway during recovery steps following a trip, compared to control. There were no significant differences between the intervention and control participants at post-assessment for other secondary outcome measures. CONCLUSIONS: Reactive balance training improved trip-induced dynamic stability, limb support, trunk control and reduced falls in people with MS. More research is required to optimise the training protocol and determine whether the beneficial effects of reactive balance training can be retained long term and generalize to fewer daily-life falls.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/terapia , Equilibrio Postural , Marcha , Terapia por Ejercicio
16.
J Biomech ; 151: 111519, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906967

RESUMEN

Incomplete spinal cord injury (iSCI) causes impairment of reactive balance control, leading to higher fall risk. In our previous work, we found that individuals with iSCI were more likely to exhibit multiple-step response during the lean-and-release (LR) test, where the participant leaned forward while a tether supported 8-12% of the body weight and received a sudden release, inducing reactive steps. Here we investigated the foot placement of people with iSCI during the LR test using margin-of-stability (MOS). Twenty-one individuals with iSCI (age: 56.1 ± 16.1 years old; mass: 72.5 ± 19.0 kg; height: 166 ± 12 cm), and fifteen age- and sex-matched able-bodied (AB) individuals (age: 56.1 ± 12.9 years old; mass: 57.4 ± 10.9 kg; height: 164 ± 8 cm) participated in the study. The participants performed ten trials of the LR test and also completed clinical assessment of balance and strengths, including the Mini-Balance Evaluations Systems Test, the Community Balance and Mobility Scale, gait speed, and lower extremity manual muscle testing. MOS was significantly smaller during multiple-step responses than during single-step responses for both individuals with iSCI and AB counterparts. Using binary logistic regression and receiver operating characteristic analyses, we demonstrated that MOS can distinguish single- and multiple-step responses. In addition, individuals with iSCI demonstrated significantly larger intra-subject variability of MOS compared to AB individuals at first foot contact. Further, we found that MOS correlated with clinical measures of balance including one for reactive balance. We conclude that individuals with iSCI were less likely to demonstrate foot placement with sufficiently large MOS, which may increase the tendency to exhibit multiple-step responses.


Asunto(s)
Equilibrio Postural , Traumatismos de la Médula Espinal , Humanos , Adulto , Persona de Mediana Edad , Anciano , Equilibrio Postural/fisiología , Velocidad al Caminar , Extremidad Inferior , Pie , Caminata/fisiología
17.
Gerontology ; 69(7): 910-922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36921581

RESUMEN

INTRODUCTION: There is increasing evidence that perturbation-based balance training (PBT) is highly effective in preventing falls at older age. Different PBT paradigms have been presented so far, yet a systematic comparison of PBT approaches with respect to feasibility and effectiveness is missing. Two different paradigms of PBT seem to be promising for clinical implementation: (1) technology-supported training on a perturbation treadmill (PBTtreadmill); (2) training of dynamic stability mechanisms in the presence of perturbations induced by unstable surfaces (PBTstability). This study aimed to compare both program's feasibility and effectiveness in fall-prone older adults. METHODS: In this three-armed randomized controlled trial, seventy-one older adults (74.9 ± 6.0 years) with a verified fall risk were randomly assigned into three groups: PBTtreadmill on a motorized treadmill, PBTstability using unstable conditions such as balance pads, and a passive control group (CG). In both intervention groups, participants conducted a 6-week intervention with 3 sessions per week. Effects were assessed in fall risk (Brief-BEST), balance ability (Stepping Threshold Test, center of pressure, limits of stability), leg strength capacity, functional performance (Timed Up and Go Test, Chair-Stand), gait (preferred walking speed), and fear of falling (Short FES-I). RESULTS: Fifty-one participants completed the study. Training adherence was 91% for PBTtreadmill and 87% for PBTstability, while no severe adverse events occurred. An analysis of covariance with an intention-to-treat approach revealed statistically significant group effects in favor of PBTstability in the Brief-BEST (p = 0.009, η2 = 0.131) and the limits of stability (p = 0.020, η2 = 0.110) and in favor of PBTtreadmill in the Stepping Threshold Test (p < 0.001, η2 = 0.395). The other outcomes demonstrated no significant group effects. CONCLUSION: Both training paradigms demonstrated high feasibility and were effective in improving specific motor performances in the fall-prone population and these effects were task specific. PBTtreadmill showed higher improvements in reactive balance, which might have been promoted by the unpredictable nature of the included perturbations and the similarity to the tested surface perturbation paradigm. PBTstability showed more wide-ranging effects on balance ability. Consequently, both paradigms improved fall risk-associated measures. The advantages of both formats should be evaluated in light of individual needs and preferences. Larger studies are needed to investigate the effects of these paradigms on real-life fall rates.


Asunto(s)
Terapia por Ejercicio , Equilibrio Postural , Humanos , Anciano , Terapia por Ejercicio/métodos , Miedo , Estudios de Tiempo y Movimiento , Marcha
18.
Hum Mov Sci ; 89: 103070, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36878025

RESUMEN

Despite progress in understanding the mechanisms governing walking balance control, the number of falls in our older adult population is projected to increase. Falls prevention systems and strategies may benefit from understanding how anticipation of a balance perturbation affects the planning and execution of biomechanical responses to mitigate instability. However, the extent to which anticipation affects the proactive and reactive adjustments to perturbations has yet to be fully investigated, even in young adults. Our purpose was to investigate the effects of anticipation on susceptibility to two different mechanical balance perturbations - namely, treadmill-induced perturbations and impulsive waist-pull perturbations. Twenty young adults (mean ± standard deviation age: 22.8 ± 3.3 years) walked on a treadmill without perturbations and while responding to treadmill belt (200 ms, 6 m/s2) and waist-pull (100 ms, 6% body weight) perturbations delivered in the anterior and posterior directions. We used 3D motion capture to calculate susceptibility to perturbations during the perturbed and preceding strides via whole-body angular momentum (WBAM) and anterior-posterior margin of stability (MoSAP). Contrary to our hypotheses, anticipation did not affect young adults' susceptibility to walking balance challenges. Conversely, perturbation direction significantly affected walking instability. We also found that susceptibility to different perturbation contexts is dependent on the outcome measure chosen. We suggest that the absence of an effect of anticipation on susceptibility to walking balance perturbations in healthy young adults is a consequence of their having high confidence in their reactive balance integrity. These data provide a pivotal benchmark for the future identification of how anticipation of a balance challenge affects proactive and reactive balance control in populations at risk of falls.


Asunto(s)
Marcha , Equilibrio Postural , Humanos , Adulto Joven , Anciano , Adulto , Marcha/fisiología , Equilibrio Postural/fisiología , Caminata/fisiología , Prueba de Esfuerzo , Fenómenos Biomecánicos
19.
J Sci Med Sport ; 26(2): 114-119, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669902

RESUMEN

Identifying risk factors for musculoskeletal injury is critical to maintain the health and safety of athletes. While current tests consider isolated assessments of function or subjective ratings, objective tests of reactive postural responses, especially when in cognitively demanding scenarios, may better identify risk of musculoskeletal injury than traditional tests alone. OBJECTIVES: Examine if objective assessments of reactive postural responses, quantified using wearable inertial measurement units, are associated with the risk for acute lower extremity musculoskeletal injuries in collegiate athletes. DESIGN: Prospective survival analysis. METHODS: 191 Division I National Collegiate Athletic Association athletes completed an instrumented version of a modified Push and Release (I-mP&R) test at the beginning of their competitive season. The I-mP&R was performed with eyes closed under single- and dual-task (concurrent cognitive task) conditions. Inertial measurement units recorded acceleration and angular velocity data that was used to calculate time-to-stability. Acute lower extremity musculoskeletal injuries were tracked from first team activity for six months. Cox proportional hazard models were used to determine if longer times to stability were associated with faster time to injury. RESULTS: Longer time-to-stability was associated with increased risk of injury; every 250 ms increase in dual-task median time-to-stability was associated with a 36% increased risk of acute, lower-extremity musculoskeletal injury. CONCLUSIONS: Tests of reactive balance, particularly under dual-task conditions, may be able to identify athletes most at risk of acute lower extremity musculoskeletal injury. Clinically-feasible, instrumented tests of reactive should be considered in assessments for prediction and mitigation of musculoskeletal injury in collegiate athletes.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Traumatismos de la Pierna , Humanos , Estudios Prospectivos , Atletas , Equilibrio Postural
20.
J Aging Phys Act ; 31(1): 7-17, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35562104

RESUMEN

We examined whether older adults who cycle outdoors regularly have better reactive balance control than noncycling older adults. Sixteen cyclist older adults and 24 age-, sex-, and health-matched controls who did not cycle (noncyclists) were exposed to unannounced perturbations of increased magnitudes in standing. We evaluated the strategies and kinematics employed at each perturbation magnitude. We found that cyclists exhibited a significantly higher stepping threshold, lower probability of stepping at each perturbation magnitude, and lower number of trials in which the participant needed to make a step to retain their balance. Cyclists also tended to recover balance using unloaded leg strategies in the first recovery step rather than a loaded leg strategy; they showed faster swing phase duration in the first recovery step, better controlling the displacement of center of mass than noncyclists. Older adults who cycle regularly outdoors preserve their reactive balance functions, which may reduce fall risks.


Asunto(s)
Ciclismo , Equilibrio Postural , Humanos , Anciano , Estudios de Casos y Controles , Fenómenos Biomecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...