Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Sci Total Environ ; 950: 175234, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39102962

RESUMEN

Concerns are rising about the contamination of recreational waters from human and animal waste, along with associated risks to public health. However, existing guidelines for managing pathogens in these environments have not yet fully integrated risk-based pathogen-specific criteria, which, along with recent advancements in indicators and markers, are essential to improve the protection of public health. This study aimed to establish risk-based critical concentration benchmarks for significant enteric pathogens, i.e., norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, Salmonella spp., and Escherichia coli O157:H7. Applying a 0.036 risk benchmark to both marine and freshwater environments, the study identified the lowest critical concentrations for children, who are the most susceptible group. Norovirus, C. jejuni, and Cryptosporidium presented lowest median critical concentrations for virus, bacteria, and protozoa, respectively: 0.74 GC, 1.73 CFU, and 0.39 viable oocysts per 100 mL in freshwater for children. These values were then used to determine minimum sample volumes corresponding to different recovery rates for culture method, digital polymerase chain reaction and quantitative PCR methods. The results indicate that for children, norovirus required the largest sample volumes of freshwater and marine water (52.08 to 178.57 L, based on the 5th percentile with a 10 % recovery rate), reflecting its low critical concentration and high potential for causing illness. In contrast, adenovirus and rotavirus required significantly smaller volumes (approximately 0.24 to 1.33 L). C. jejuni and Cryptosporidium, which required the highest sampling volumes for bacteria and protozoa, needed 1.72 to 11.09 L and 4.17 to 25.51 L, respectively. Additionally, the presented risk-based framework could provide a model for establishing pathogen thresholds, potentially guiding the creation of extensive risk-based criteria for various pathogens in recreational waters, thus aiding public health authorities in decision-making, strengthening pathogen monitoring, and improving water quality testing accuracy for enhanced health protection.


Asunto(s)
Cryptosporidium , Monitoreo del Ambiente , Microbiología del Agua , Monitoreo del Ambiente/métodos , Humanos , Cryptosporidium/aislamiento & purificación , Norovirus/aislamiento & purificación , Agua Dulce/virología , Medición de Riesgo/métodos , Giardia lamblia/aislamiento & purificación , Recreación , Agua de Mar/virología , Campylobacter jejuni/aislamiento & purificación , Rotavirus/aislamiento & purificación , Salmonella/aislamiento & purificación
2.
Environ Sci Pollut Res Int ; 31(36): 49330-49341, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066945

RESUMEN

Contamination of water bodies, associated with urbanization, agricultural, and industrial activities, is a serious environmental challenge, with particular concern about microbial pollution due to its public health implications. This study is aimed at evaluating the spatial and temporal variations in the microbiological and physicochemical quality of a floodplain lake used for recreational purposes, whose watershed has been disturbed by diverse anthropogenic activities. The results showed that, while the spatial variation of water quality principally depends on the basin characteristics, temporal variation of water quality depends on land uses, hydrological conditions, and climatic conditions. Rainfall and rising water level intensified the influence of land use on the water quality by increasing concentrations of Escherichia coli, thermotolerant coliforms, and organic matter and decreasing dissolved oxygen. Thus, the residents and tourists are potentially exposed to microbiological risks given that it exceeds the international standards suggested for recreational waters on some occasions. It would be advisable to improve routine bathing water monitoring and management to preserve the health of the inhabitants and limit the recreational use of the water body in the days following heavy rainfall as well as during the beginning of the increase in the hydrometric level.


Asunto(s)
Monitoreo del Ambiente , Lagos , Estaciones del Año , Calidad del Agua , Lagos/química , Argentina
3.
mBio ; 15(7): e0065524, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38864636

RESUMEN

Sewage contamination of environmental waters is increasingly assessed by measuring DNA from sewage-associated microorganisms in microbial source tracking (MST) approaches. However, DNA can persist through wastewater treatment and reach surface waters when treated sewage/recycled water is discharged, which may falsely indicate pollution from untreated sewage. Recycled water discharged from an advanced wastewater treatment (AWT) facility into a Florida stream elevated the sewage-associated HF183 marker 1,000-fold, with a minimal increase in cultured Escherichia coli. The persistence of sewage-associated microorganisms was compared by qPCR in untreated sewage and recycled water from conventional wastewater treatment (CWT) and AWT facilities. E. coli (EC23S857) and sewage-associated markers HF183, H8, and viral crAssphage CPQ_056 were always detected in untreated sewage (6.5-8.7 log10 GC/100 mL). Multivariate analysis found a significantly greater reduction of microbial variables via AWT vs CWT. Bacterial markers decayed ~4-5 log10 through CWT, but CPQ_056 was ~100-fold more persistent. In AWT facilities, the log10 reduction of all variables was ~5. In recycled water, bacterial marker concentrations were significantly correlated (P ≤ 0.0136; tau ≥ 0.44); however, CPQ_056 was not correlated with any marker, suggesting varying drivers of decay. Concentrations of cultured E. coli carrying the H8 marker (EcH8) in untreated sewage were 5.24-6.02 log10 CFU/100 mL, while no E. coli was isolated from recycled water. HF183 and culturable EcH8 were also correlated in contaminated surface waters (odds ratio ß1 = 1.701). Culturable EcH8 has a strong potential to differentiate positive MST marker signals arising from treated (e.g., recycled water) and untreated sewage discharged into environmental waters. IMPORTANCE: Genes in sewage-associated microorganisms are widely accepted indicators of sewage pollution in environmental waters. However, DNA persists through wastewater treatment and can reach surface waters when recycled water is discharged, potentially causing false-positive indications of sewage contamination. Previous studies have found that bacterial and viral sewage-associated genes persist through wastewater treatment; however, these studies did not compare different facilities or identify a solution to distinguish sewage from recycled water. In this study, we demonstrated the persistence of bacterial marker genes and the greater persistence of a viral marker gene (CPQ_056 of crAssphage) through varying wastewater treatment facilities. We also aim to provide a tool to confirm sewage contamination in surface waters with recycled water inputs. This work showed that the level of wastewater treatment affects the removal of microorganisms, particularly viruses, and expands our ability to identify sewage in surface waters.


Asunto(s)
Escherichia coli , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/virología , Marcadores Genéticos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/virología , Florida , Purificación del Agua , Microbiología del Agua , Aguas Residuales/microbiología , Aguas Residuales/virología , Reciclaje , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Monitoreo del Ambiente/métodos
4.
Water Environ Res ; 96(5): e11037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726833

RESUMEN

Microbial pollution of recreational waters leads to millions of skin, respiratory, and gastrointestinal illnesses globally. Fecal indicator bacteria (FIB) are monitored to assess recreational waters but may not reflect the presence of Staphylococcus aureus, a global leader in bacterial fatalities. Since many community-acquired S. aureus skin infections are associated with high recreational water usage, this study measured and modeled S. aureus, methicillin-resistant S. aureus (MRSA), and FIB (Enterococcus spp., Clostridium perfringens) concentrations in seawater and sand at six beaches in Hilo, Hawai'i, USA, over 37 sample dates from July 2016 to February 2019 using culturing techniques. Generalized linear models predicted bacterial concentrations with physicochemical and environmental data. Beach visitors were also surveyed on their preferred activities. S. aureus and FIB concentrations were roughly 6-78 times higher at beaches with freshwater discharge than at those without. Seawater concentrations of Enterococcus spp. were positively associated with MRSA but not S. aureus. Elevated S. aureus was associated with lower tidal heights, higher freshwater discharge, onsite sewage disposal system density, and turbidity. Regular monitoring of beaches with freshwater input, utilizing real-time water quality measurements with robust modeling techniques, and raising awareness among recreational water users may mitigate exposure to S. aureus, MRSA, and FIB. PRACTITIONER POINTS: Staphylococcus aureus and fecal bacteria concentrations were higher in seawater and sand at beaches with freshwater discharge. In seawater, Enterococcus spp. positively correlated with MRSA, but not S. aureus. Freshwater discharge, OSDS density, water turbidity, and tides significantly predicted bacterial concentrations in seawater and sand. Predictive bacterial models based upon physicochemical and environmental data developed in this study are readily available for user-friendly application.


Asunto(s)
Heces , Agua de Mar , Staphylococcus aureus , Agua de Mar/microbiología , Staphylococcus aureus/aislamiento & purificación , Hawaii , Heces/microbiología , Playas , Monitoreo del Ambiente , Arena/microbiología , Microbiología del Agua , Enterococcus/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación
5.
Wilderness Environ Med ; 35(2): 173-182, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38613339

RESUMEN

INTRODUCTION: From April 1 to May 31, 2022, Grand Canyon National Park received increased acute gastroenteritis reports. Pooled portable toilet specimens identified norovirus genogroups I and II. We sought to determine outbreak transmission contributors and individual risk factors while rafting or backpacking in the park. METHODS: Grand Canyon rafters and backpackers were surveyed online from June 13-July 8, 2022, and a Cox proportional hazards model was used to identify predictors associated with illness and adjusted for potential confounding factors. RESULTS: Among 762 surveys, 119 cases and 505 well persons submitted complete survey data. Illness among rafters was associated with interaction with ill persons during the trip (adjusted hazard ratio [adjHR] = 3.4 [95%CI 2.3-5.0]) and lack of any hand hygiene (1.2 [0.7-1.9]) or use of only sanitizer or water (1.6 [1.04-2.6]) before snacks. Younger rafters had higher illness rates compared to those ≥60 y (1.5 [1.2-1.8] for ages 40-59 and 2.2 [1.4-3.5] for ages <40 y). CONCLUSIONS: Person-to-person transmission likely accounted for the widespread outbreak. Future outbreak mitigation efforts on river trips could focus on symptom screening before the trip starts, prompt separation of ill and well passengers, strict adherence to hand hygiene with soap and water, minimizing social interactions among rafting groups, and widespread outbreak notices and education to all park users.


Asunto(s)
Brotes de Enfermedades , Gastroenteritis , Humanos , Adulto , Persona de Mediana Edad , Gastroenteritis/epidemiología , Gastroenteritis/virología , Masculino , Femenino , Colorado/epidemiología , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/transmisión , Infecciones por Caliciviridae/virología , Adulto Joven , Factores de Riesgo , Parques Recreativos , Anciano , Natación , Norovirus , Adolescente
6.
Water Res ; 254: 121319, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422692

RESUMEN

To support the reactivation of urban rivers and estuaries for bathing while ensuring public safety, it is critical to have access to real-time information on microbial water quality and associated health risks. Predictive modelling can provide this information, though challenges concerning the optimal size of training data, model transferability, and communication of uncertainty still need attention. Further, urban estuaries undergo distinctive hydrological variations requiring tailored modelling approaches. This study assessed the use of Bayesian Networks (BNs) for the prediction of enterococci exceedances and extrapolation of health risks at planned bathing sites in an urban estuary in Sydney, Australia. The transferability of network structures between sites was assessed. Models were validated using a novel application of the k-fold walk-forward validation procedure and further tested using independent compliance and event-based sampling datasets. Learning curves indicated the model's sensitivity reached a minimum performance threshold of 0.8 once training data included ≥ 400 observations. It was demonstrated that Semi-Naïve BN structures can be transferred while maintaining stable predictive performance. In all sites, salinity and solar exposure had the greatest influence on Posterior Probability Distributions (PPDs), when combined with antecedent rainfall. The BNs provided a novel and transparent framework to quantify and visualise enterococci, stormwater impact, health risks, and associated uncertainty under varying environmental conditions. This study has advanced the application of BNs in predicting recreational water quality and providing decision support in urban estuarine settings, proposed for bathing, where uncertainty is high.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Monitoreo del Ambiente/métodos , Estuarios , Salud Pública , Teorema de Bayes , Enterococcus
7.
Environ Manage ; 73(2): 443-456, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37658902

RESUMEN

Fecal pollution of surface water is a pervasive problem that negatively affects waterbodies concerning both public health and ecological functions. Current assessment methods monitor fecal indicator bacteria (FIB) to identify pollution sources using culture-based quantification and microbial source tracking (MST). These types of information assist stakeholders in identifying likely sources of fecal pollution, prioritizing them for remediation, and choosing appropriate best management practices. While both culture-based quantification and MST are useful, they yield different kinds of information, potentially increasing uncertainty in prioritizing sources for management. This study presents a conceptual framework that takes separate human health risk estimates based on measured MST and E. coli concentrations as inputs and produces an estimate of the overall fecal impairment risk as its output. The proposed framework is intended to serve as a supplemental screening tool for existing monitoring programs to aid in identifying and prioritizing sites for remediation. In this study, we evaluated the framework by applying it to two primarily agricultural watersheds and several freshwater recreational beaches using existing routine monitoring data. Based on a combination of E. coli and MST results, the proposed fecal impairment framework identified four sites in the watersheds as candidates for remediation and identified temporal trends in the beach application. As these case studies demonstrate, the proposed fecal impairment framework is an easy-to-use and cost-effective supplemental screening tool that provides actionable information to managers using existing routine monitoring data, without requiring specialized expertize.


Asunto(s)
Monitoreo del Ambiente , Escherichia coli , Humanos , Monitoreo del Ambiente/métodos , Contaminación del Agua/análisis , Bacterias , Agua Dulce , Heces/microbiología , Microbiología del Agua
8.
Water Res ; 249: 120981, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091698

RESUMEN

Rapid population growth and coastal development has led to increased fecal contamination of coastal surface waters worldwide, enhancing the potential risk of waterborne human pathogens in bathing areas. More frequent heavy rainfall events, attributed to global warming, have further exacerbated the problem by causing sometimes sewer overflows into recreational waters. As traditional bacterial indicators have limited accuracy for predicting health risks associated with waterborne viruses, the additional use of viral indicators such as coliphages is recommended. In this study, we compared the behavior of bacterial and viral indicators of water quality at 10 Barcelona beaches during three bathing seasons, in dry conditions, and after four rainstorms that caused specific pollution events due to rain runoff with combined sewer overflows (CSO). Levels of all target indicators increased after the rainstorms, but compared to Escherichia coli and intestinal enterococci, somatic coliphages exhibited a slower decline and higher environmental persistence following a rain event. Daily continuous sampling carried out during the days following a rainstorm allowed not only the determination of the decay kinetics of each target indicator but also the day when the water quality recovered the values established in the current European regulation in approximately 2 -3 days after each CSO. These observations indicate that the combined use of bacterial and viral indicators can enhance the surveillance of microbial quality of bathing waters. Moreover, coliphages can swiftly provide insights into transient fecal pollution linked to rainfall episodes, thanks to available analytical techniques that enable same-day recommendations. The management of urban wastewater and recreational water regulations should consistently employ microbial indicators to address rainwater runoff or sewer overflows resulting from heavy rainfall.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Humanos , Monitoreo del Ambiente/métodos , Enterococcus , Bacterias , Colifagos , Lluvia , Escherichia coli , Heces/microbiología , Microbiología del Agua
9.
Microorganisms ; 11(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38137977

RESUMEN

Antibiotic-resistant bacteria represent a major public health concern, especially impacting medical care centers and hospitals, thereby challenging the effectiveness of current infection treatment protocols. The emergence and persistence of antimicrobial resistance in the environment have been thoroughly researched, with a focus on the aquatic environment as a potential reservoir of these bacteria in areas with anthropogenic contamination. Having this in mind, this work aims to investigate the water streams of Riguinha and Brito Capelo Street, both of which ultimately flow into Matosinhos Beach in Portugal, to determine the potential presence of fecal contamination. Six water samples were collected and analyzed within twenty-four hours from these two water streams. A phenotypic characterization was performed in various volumes on MacConkey agar with antibiotics. Randomly selected lactose-fermenting gram-negative bacteria underwent antimicrobial susceptibility tests using the agar diffusion method following EUCAST guidelines, covering ß-lactam and non-ß-lactam antibiotics. The isolates were analyzed through Polymerase Chain Reaction. The findings of this study confirm that both water streams were contaminated by multidrug-resistant bacteria such as Enterobacteriaceae, including Escherichia coli, the KESC group, and Pseudomonas, exhibiting extended-spectrum ß-lactamases (ESBL), AmpC ß-lactamases, and carbapenemases. These indicate the presence of fecal contamination with relevant antimicrobial-resistant threats.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37887670

RESUMEN

In recent years, a global increase in the number of reports of human vibriosis involving V. cholerae non-O1/O139 (NOVC) and other Vibrio spp. has been observed. In this context, the Belgian National Reference Center for Vibrio conducted an assessment of the presence of Vibrio spp. in recreational waters. Water sampling was performed monthly in different lakes in Wallonia and Flanders, including the North Sea. The collected water was then filtrated and cultured, and Vibrio spp. was quantified according to the Most Probable Number (MPN). Presumptive colonies were confirmed via MALDI-TOF, and PCR for virulence genes was applied if justified. No Vibrio spp. was found in the analyzed water bodies in Wallonia. However, NOVC was isolated from three different lakes in Flanders and from coastal water. In addition, V. alginolyticus and V. parahaemolyticus were also detected in coastal water. No clear impact of the pH and temperature was observed on Vibrio spp. occurrence. Our study demonstrates the presence of Vibrio spp. in different bathing water bodies, mostly in the north of Belgium, and supports the recommendation to include Vibrio spp. as a water quality indicator for bathing water quality assessment to ensure the safety of water recreational users in Belgium.


Asunto(s)
Vibriosis , Vibrio cholerae , Vibrio , Humanos , Bélgica , Estaciones del Año , Vibrio/genética , Vibrio cholerae/genética , Vibriosis/epidemiología
11.
Sci Total Environ ; 905: 167100, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717747

RESUMEN

The increasing prevalence of extended-spectrum beta-lactamase (ESBL) producing Enterobacterales (ESBL-PE) and carbapenemase-producing Enterobacterales (CPE) is a major public health concern worldwide. Despite the associated risk of infection from gut colonisation with a resistant Enterobacterales, the incidence and duration of carriage in healthy individuals is poorly studied. This "persistence study" is the first in Ireland to assess the longitudinal carriage of ESBL-PE and CPE in healthy individuals. A cohort of 45 participants, 22 of whom were colonised with ESBL-PE, was recruited from a recently completed point prevalence study that investigated colonisation in recreational water users (WU) versus controls. Six bi-monthly faecal samples per participant were analysed for CPE and ESBL-PE over one year and the relationship between persistent colonisation and exposure to natural waters was investigated. For 11 of 45 participants (24.4 %) ESBL-E. coli (ESBL-EC) was detected in at least one sample. Genomic analysis revealed that six participants harboured the same ESBL-EC strains as identified in the preceding study. ESBL-EC persisted in the gut for a median duration of 10.3 months (range 4-23 months), consistent with previous research. Five participants (11.1 %) carried ESBL-EC for the entire study year. The carbapenemase gene blaIMI-2 was detected once. Colonisation was higher in water users during the non-bathing season (n = 10, November 2021-April 2022), than during the bathing season (n = 5, May 2022-September 2022) [relative risk 1.99 (95 % CI 0.34-11.71)]. However, overall WU were less likely to be colonised with ESBL-EC than controls (19 % vs 25 % respectively, RR 0.76, CI 0.24-2.34). Further research is warranted to better understand the factors influencing the persistence of gut colonisation with ESBL-EC and CPE and to what extent bathing water quality impacts colonisation for those regularly exposed.


Asunto(s)
Antiinfecciosos , Escherichia coli , Humanos , Escherichia coli/genética , Enterobacteriaceae/genética , Irlanda/epidemiología , beta-Lactamasas/genética , Heces , Antibacterianos
12.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37480231

RESUMEN

This study aimed to understand the performance and utility of US EPA-approved coliphage methods in comparison to fecal indicator bacteria (FIB) and molecular microbial source tracking (MST) methods in recreational waters. We used US EPA Method 1642 to quantify concentrations of coliphage along with culture- and molecular-based enumeration of E. coli and Enterococcus sp, and human fecal source marker HF183. We also conducted a feasibility assessment to determine the utility of US EPA Method 1642 for application to routine recreational water monitoring. Ten sampling events were conducted at three sampling sites over the duration of a year. Average concentrations of somatic (SC) (log10 1.48 PFU/100 mL) and male-specific (MSC) coliphages (log10 1.00 PFU/100 mL) at all sites were low with SC found across a broader range (0.3-3.1 log10 PFU/100 mL) of concentrations compared to MSC (non-detect-1.7 log10 PFU/100 mL). A feasibility assessment was conducted across US EPA Method 1642 for coliphage enumeration, culture-based FIB, defined substrate technology (DST) approaches Enterolert™ and Colilert®, and quantitative microbial source tracking (qMST) US EPA Method 1696. US EPA Method 1642 had the longest processing times, but also was moderate in cost, compared to the DST and qMST molecular methods. Given the poor correlations between MSC and SC with FIB and qMST markers in this study and the cumbersome nature of US EPA Method 1642, the method may not be the most applicable method for use in systems impacted predominantly by stormwater and other non-point source pollution. Findings from this study, however, provide guidance on the application of fecal indicator virus in ambient coastal surface waters.


Asunto(s)
Monitoreo del Ambiente , Escherichia coli , Masculino , Humanos , Monitoreo del Ambiente/métodos , Microbiología del Agua , Bacterias , Contaminación del Agua , Colifagos , Heces/microbiología
13.
Heliyon ; 9(6): e16538, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37287612

RESUMEN

The objective of this work was to evaluate the antimicrobial resistant (AR) E. coli prevalence in recreational waters in Belgium and to assess the exposure risk for bathers. Nine stations were sampled during the 2021 bathing season. A total of 912 E. coli strains were isolated and tested by the disk diffusion method in accordance with EUCAST recommendations, including Extended-Spectrum Beta-Lactamase (ESBL) production. AR E. coli were counted at each bathing sites, 24% of strains were resistant to at least one antibiotic and 6% were Multi-Drug Resistant (MDR). A Multiple Antibiotic Resistance (MAR) index was calculated to compare the bathing sites. The Lesse river had the highest MAR index as well as the highest E. coli absolute abundance and the largest number of ESBL-producing E. coli. Conversely, the 3 lakes showed lower E. coli contamination levels and AR rates. A human health risk assessment of exposure to AR E. coli, based on the calculation of measured prevalence, was performed considering four different dose-response model scenarios. The human health risk (Pd) ranged from 10-9 to 0.183 (children). The exposure probabilities were low, except for scenario 3 (E. coli O157:H7), which is the most severe.

14.
ACS ES T Water ; 3(4): 1126-1133, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37213412

RESUMEN

Naegleria fowleri is a thermophilic ameba found in freshwater that causes primary amebic meningoencephalitis (PAM) when it enters the nose and migrates to the brain. In September 2018, a 29-year-old man died of PAM after traveling to Texas. We conducted an epidemiologic and environmental investigation to identify the water exposure associated with this PAM case. The patient's most probable water exposure occurred while surfing in an artificial surf venue. The surf venue water was not filtered or recirculated; water disinfection and water quality testing were not documented. N. fowleri and thermophilic amebae were detected in recreational water and sediment samples throughout the facility. Codes and standards for treated recreational water venues open to the public could be developed to address these novel venues. Clinicians and public health officials should also consider novel recreational water venues as a potential exposure for this rare amebic infection.

15.
Sci Total Environ ; 889: 164282, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209746

RESUMEN

There is no reference of microbiological water quality in the European Union's Water Framework Directive, adapted into English law, and consequently microbial water quality is not routinely monitored in English rivers, except for two recently designated bathing water sites. To address this knowledge gap, we developed an innovative monitoring approach for quantitative assessment of combined sewer overflow (CSO) impacts on the bacteriology of receiving rivers. Our approach combines conventional and environmental DNA (eDNA) based methods to generate multiple lines of evidence for assessing risks to public health. We demonstrated this approach by investigating spatiotemporal variation in the bacteriology of the Ouseburn in northeast England for different weather conditions in the summer and early autumn of the year 2021 across eight sampling locations that comprised rural, urban, and recreational land use settings. We characterized pollution source attributes by collecting sewage from treatment works and CSO discharge at the peak of a storm event. CSO discharge was characterized by log10 values per 100 mL (average ± stdev) of 5.12 ± 0.03 and 4.90 ± 0.03 for faecal coliforms and faecal streptococci, and 6.00 ± 0.11 and 7.78 ± 0.04 for rodA and HF183 genetic markers, for E. coli and human host associated Bacteroides, respectively, indicating about 5 % sewage content. SourceTracker analysis of sequencing data attributed 72-77 % of bacteria in the downstream section of the river during a storm event to CSO discharge sources, versus only 4-6 % to rural upstream sources. Data from sixteen summer sampling events in a public park exceeded various guideline values for recreational water quality. Quantitative microbial risk assessment (QMRA) predicted a median and 95th percentile risk of 0.03 and 0.39, respectively, of contracting a bacterial gastrointestinal disease when wading and splashing around in the Ouseburn. We show clearly why microbial water quality should be monitored where rivers flow through public parks, irrespective of their bathing water designation.


Asunto(s)
Bacteriología , ADN Ambiental , Humanos , Escherichia coli , Monitoreo del Ambiente/métodos , Aguas del Alcantarillado/microbiología , Salud Pública , Bacterias/genética , Microbiología del Agua
16.
Sci Total Environ ; 888: 164201, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196970

RESUMEN

Understanding the role of exposure to natural recreational waters in the acquisition and transmission of antimicrobial resistance (AMR) is an area of increasing interest. A point prevalence study was carried out in the island of Ireland to determine the prevalence of colonisation with extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and carbapenem-resistant Enterobacterales (CRE) in recreational water users (WU) and matched controls. A total of 411 adult participants (199 WU, 212 controls) submitted at least one faecal sample between September 2020 - October 2021. In total, 80 Enterobacterales were isolated from 73 participants. ESBL-PE were detected in 29 (7.1 %) participants (7 WU, 22 controls), and CRE were detected in nine (2.2 %) participants (4 WU, 5 controls). No carbapenemase-producing Enterobacterales (CPE) were detected. WU were significantly less likely to harbour ESBL-PE than controls (risk ratio = 0.34, 95 % CI 0.148 to 0.776, χ2 7.37, p = 0.007). This study demonstrates the occurrence of ESBL-PE and CRE in healthy participants in Ireland. Recreational exposure to bathing water in Ireland was associated with a decreased prevalence of colonisation with ESBL-PE and CRE.


Asunto(s)
Antiinfecciosos , Infecciones por Enterobacteriaceae , Gammaproteobacteria , Adulto , Humanos , Infecciones por Enterobacteriaceae/epidemiología , Agua , beta-Lactamasas , Carbapenémicos , Heces , Antibacterianos
17.
Artículo en Inglés | MEDLINE | ID: mdl-37174228

RESUMEN

The 2021 revised guidelines of the World Health Organization recommend monitoring the quality of sand in addition to water at recreational beaches. This review provides background information about the types of beaches, the characteristics of sand, and the microbiological parameters that should be measured. Analytical approaches are described for quantifying fungi and fecal indicator bacteria from beach sand. The review addresses strategies to assess beach sand quality, monitoring approaches, sand remediation, and the proposed way forward for beach sand monitoring programs. In the proposed way forward, recommendations are provided for acceptable levels of fungi given their distribution in the environment. Additional recommendations include evaluating FIB distributions at beaches globally to assess acceptable ranges of FIB levels, similar to those proposed for fungi.


Asunto(s)
Salud Pública , Arena , Bacterias , Agua , Hongos , Playas , Microbiología del Agua , Monitoreo del Ambiente , Heces/microbiología
18.
BMC Public Health ; 23(1): 302, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765300

RESUMEN

BACKGROUND: Swimming pools are places for practicing sports, recreation, relaxation, and socialization. However, swimming pools can expose swimmers to physicochemical and microbiological risks. Accordingly, we studied the environmental health aspects and microbial infections for such recreational water aiming to disclose the possible risks they pose on swimmers. METHODS: 26 pools in Alexandria, Egypt were checked for water quality; 13 pools were checked in winter then summer, and other 13 pools were checked in summer only. Water was collected from both the top and the bottom of each pool; a total of 78 samples were collected in sterile containers. Each sample was divided into three parts; the first part was used for assessing the bacteriological quality of water. They were tested for total colony count (TCC), total coliform (TC), fecal coliform, and E. coli. The second part was used for chemical analysis. The third part was checked for parasitological study. RESULTS: Obtained data showed that only 7.7%, 78.2%, and 100% of the examined water samples have been found to fulfill the Egyptian standards for TCC, TC, and E. coli, respectively. Moreover, parasitic infection (PI) was noticed in 73.1% of the collected water samples; mainly Cyclospra and Isospora (37.2% each), followed by Cryptosporidium spp., Giradia lamblia, Microsporidia spp., and Blastocystis spp. (34.6%, 21.8%, 15.4%, and 14.1%, respectively). Acanthameba spp. was detected but at a lower rate (5.1%). The frequency of cleaning the swimming pools, flow rate, Cl2, and total dissolved solids are significantly affected PI, independently. CONCLUSION: The tested water samples don't meet Egyptian bacteriological criteria. High parasitic contamination despite high residual chlorine level mainly intestinal coccidia, G. lamblia, microsporidia, and Blastocystis spp. Thus, monitoring pool's water quality and improving the disinfection system are mandatory. Consequently, Health education regarding hygienic behaviors before and during swimming should be included in governmental programs.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Piscinas , Humanos , Escherichia coli , Microbiología del Agua , Bacterias Gramnegativas , Salud Ambiental , Cloro/análisis , Natación
19.
Sci Total Environ ; 857(Pt 2): 159533, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270368

RESUMEN

We developed an innovative approach to estimate the occurrence and extent of fecal pollution sources for urban river catchments. The methodology consists of 1) catchment surveys complemented by literature data where needed for probabilistic estimates of daily produced fecal indicator (FIBs, E. coli, enterococci) and zoonotic reference pathogen numbers (Campylobacter, Cryptosporidium and Giardia) excreted by human and animal sources in a river catchment, 2) generating a hypothesis about the dominant sources of fecal pollution and selecting a source targeted monitoring design, and 3) verifying the results by comparing measured concentrations of the informed choice of parameters (i.e. chemical tracers, C. perfringensspores, and host-associated genetic microbial source tracking (MST) markers) in the river, and by multi-parametric correlation analysis. We tested the approach at a study area in Vienna, Austria. The daily produced microbial particle numbers according to the probabilistic estimates indicated that, for the dry weather scenario, the discharge of treated wastewater (WWTP) was the primary contributor to fecal pollution. For the wet weather scenario, 80-99 % of the daily produced FIBs and pathogens resulted from combined sewer overflows (CSOs) according to the probabilistic estimates. When testing our hypothesis in the river, the measured concentrations of the human genetic fecal marker were log10 4 higher than for selected animal genetic fecal markers. Our analyses showed for the first-time statistical relationships between C. perfringens spores (used as conservative microbial tracer for communal sewage) and a human genetic fecal marker (i.e. HF183/BacR287) with the reference pathogen Giardia in river water (Spearman rank correlation: 0.78-0.83, p < 0.05. The developed approach facilitates urban water safety management and provides a robust basis for microbial fate and transport models and microbial infection risk assessment.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Animales , Humanos , Ríos , Contaminación del Agua/análisis , Microbiología del Agua , Escherichia coli , Monitoreo del Ambiente/métodos , Heces/química , Giardia , Agua/análisis
20.
Microorganisms ; 10(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557683

RESUMEN

The bacterium Legionella pneumophila is a ubiquitous microorganism naturally present in water environments. The actual presence of this opportunistic premise plumbing pathogen in recreational swimming pools and hot tubs in the northwestern part of Croatia has not been investigated. This study aimed to analyze the presence of the opportunistic pathogen L. pneumophila in public swimming pool water in Primorje-Gorski Kotar County (N = 4587) over a four-year period (2018-2021). Additionally, the second aim was to investigate the connection between the presence of L. pneumophila and pool water physicochemical parameters using mathematical predictive models. The presence of L. pneumophila was detected in six pool samples. Five positive samples were found in the water of indoor hot tubs filled with fresh water, and one positive sample in an outdoor recreational saltwater pool. A predictive mathematical model showed the simultaneous influence of chemical parameters dominated by the temperature in saltwater and freshwater pools, as well as the significant influence of free residual chlorine and trihalomethanes. Our results pointed out that keeping all physicochemical parameters in perfect harmony is necessary to reach the best disinfection procedure and to avoid the optimum conditions for L. pneumophila occurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...