Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
1.
Sci Rep ; 14(1): 21184, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261532

RESUMEN

Bruton tyrosine kinase inhibitor (BTKi) combined with rituximab-based chemotherapy benefits diffuse large B-cell lymphoma (DLBCL) patients. However, drug resistance is the major cause of relapse and death of DLBCL. In this study, we conducted a comprehensive analysis BTKi-resistance related genes (BRRGs) and established a 10-gene (CARD16, TRIP13, PSRC1, CASP1, PLBD1, CARD6, CAPG, CACNA1A, CDH15, and NDUFA4) signature for early identifying high-risk DLBCL patients. The resistance scores based on the BRRGs signature were associated with prognosis. Furthermore, we developed a nomogram incorporating the BRRGs signature, which demonstrated excellent performance in predicting the prognosis of DLBCL patients. Notably, tumor immune microenvironment, biological pathways, and chemotherapy sensitivity were different between high- and low-resistance score groups. Additionally, we identified TRIP13 as a key gene in our model. TRIP13 was found to be overexpressed in DLBCL and BTKi-resistant DLBCL cell lines, knocking down TRIP13 suppresses cell proliferation, promotes cell apoptosis, and enhances the apoptosis effect of BTKi on DLBCL cells by regulating the Wnt/ß-catenin pathway. In conclusion, our study presents a novel BRRGs signature that could serve as a promising prognostic marker in DLBCL, and TRIP13 might be a potential therapeutic target for resistant DLBCL.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Resistencia a Antineoplásicos , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Pronóstico , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/efectos de los fármacos , Femenino , Masculino , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas
2.
Discov Oncol ; 15(1): 433, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264524

RESUMEN

The occurrence and progression of tumors are linked to the process of pyroptosis. However, the precise involvement of pyroptosis-associated genes (PRGs) in endometrial cancer (EC) remains uncertain. 29 PRGs were identified as being either up-regulated or down-regulated in EC. PRGs subgroup analysis demonstrated distinct survival outcomes and diverse responses to chemotherapy and immune checkpoint blockade therapy. A higher expression of GPX4 and NOD2, coupled with lower levels of CASP6, PRKACA, and NLRP2, were found to be significantly associated with higher overall survival (OS) rates (p < 0.05). Conversely, lower expression of NOD2 was linked to lower progression-free survival (p = 0.021) and advanced tumor stage(p = 0.0024). NOD2, NLRP2, and TNM stages were identified as independent prognostic factors (p < 0.001). The LASSO prognostic model exhibited a notable decrease in OS among EC patients in the high-risk score group (ROC-AUC10-years: 0.799, p = 0.00644). Furthermore, NOD2 displayed a positive correlation with the infiltration of immune cells and the expression of immune checkpoints (p < 0.001). GPX4 and CASP6 are significantly associated with TMB and MSI (RTMB = 0.39; RMSI = 0.23). Additionally, a substantial upregulation of NOD2 was confirmed in both EC cells and tissue, indicating a positive relationship between advanced TNM stage (p < 0.0001) and infiltration of M1 phenotype macrophages. Nonetheless, its impact on patient OS did not reach statistical significance (p = 0.141). Our findings have contributed to the advancement of a prognostic model for EC patients. NOD2 receptor-mediated pyroptosis mechanism potentially regulates tumor immunity and promotes the transformation of macrophages from the M2 phenotype to the M1 phenotype, which significantly impacts the progression of EC.

3.
J Inflamm Res ; 17: 6415-6437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310902

RESUMEN

Purpose: Psoriasis is not yet completely curable, and its etiology and pathogenesis are unclear. Necroptosis, also known as programmed necrosis, is a regulated mode of necrotic cell death. The interaction between inflammatory diseases and necrotic apoptosis has recently attracted significant attention. We explored the molecular mechanisms of necrotic apoptosis-related genes in psoriasis using bioinformatics methods to identify potential biomarkers for psoriasis. Patients and Methods: In this study, we screened psoriasis differentially expressed genes from the datasets GSE13355 and GSE14905 and took intersections with necrotic apoptosis-related genes for the next analysis. We used multiple machine learning algorithms to screen key genes and perform enrichment analysis. In addition, we performed an immune infiltration analysis. Transcription factors were predicted by the R package "RcisTarget". We also observed the cellular clustering of key genes in different cell types at the single-cell sequencing level. We used real-time fluorescence-based quantitative-polymerase chain reaction, Western blot, and immunohistochemistry to analyze gene expression in clinical samples. We constructed an imiquimod-induced psoriasis-like dermatitis model in mice for further validation. Results: Seven key genes were screened as follows: AIM2, CARD6, HPSE, MYD88, PYCARD, RAI14, and TNFSF10. Enrichment analysis showed that the key genes were mainly involved in inflammatory pathways. Immune infiltration analysis showed significantly higher levels of CD8 T cells, CD4 initial T cells, and CD4 memory-activated T cells in the disease group's samples than in the normal patients' samples. The key gene expression in single cells analyzed showed that PYCARD was significantly expressed in keratinocytes. PYCARD was selected for gene expression analysis; the results showed that its expression was significantly elevated in the skin lesion tissues of patients with psoriasis. We also verified that PYCARD might play a vital role in the development of psoriasis skin lesions using animal experiments. Conclusion: PYCARD plays a vital role in psoriasis development and is a potential biomarker for psoriasis.

4.
Curr Gene Ther ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39289931

RESUMEN

BACKGROUND: Ovarian cancer is associated with a high mortality rate. Oxidative Phosphorylation (OXPHOS) is an active metabolic pathway in cancer; nevertheless, its role in ovarian cancer continues to be ambiguous. Therefore, the objective of this study was to identify the prognostic value of OXPHOS-related genes and the immune landscape in ovarian cancer. METHODS: We obtained public ovarian cancer-related datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and recognized OXPHOS-related genes from the GeneCards database and literature. Cox regression analyses were conducted to identify prognostic OXPHOS-related genes and develop a prognostic nomogram based on the OXPHOS score and clinicopathological features of patients. Functional enrichment analyses were employed to identify related processes. RESULTS: A 12-gene signature was identified to classify the ovarian cancer patients into high- and low-risk groups. The Immunophenoscore (IPS) was higher in the OXPHOS score-high group than in the OXPHOS score-low group, suggesting a better response to immune checkpoint inhibitors. Functional enrichment analyses unveiled that OXPHOS-related genes were considerably abundant in a series of immune processes. The calibration curves of the constructed prognostic nomograms at 1, 2, and 3 years exhibited strong concordance between the anticipated and observed survival probabilities of ovarian cancer patients. CONCLUSION: We have constructed a prognostic model containing 12 OXPHOS-related genes and demonstrated its strong predictive value in ovarian cancer patients. OXPHOS has been found to be closely linked to immune infiltration and the reaction to immunotherapy, which may contribute to improving individualized treatment and prognostic evaluation in ovarian cancer.

5.
Ann Surg Oncol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292401

RESUMEN

BACKGROUND: This study evaluated a new mainstream genetic testing pathway for hereditary cancer, with expanded eligibility for early-stage breast cancer patients. METHODS: The study compared multigene panel (62 genes) germline testing uptake and results for breast cancer patients at 4 pilot sites (n = 502 patients) and 10 non-pilot sites (n = 1792 patients) within Kaiser Permanente Northern California from December 2020, to June 2021. At the pilot sites, breast care coordinators (BCCs) offered and consented patients for testing, with eligibility expanded to include all patients age 65 years or younger. At the non-pilot sites, eligible patients were referred to genetics for pre-test counseling, ordering, and follow-up evaluation with the standard guideline that included all patients age 45 years or younger. RESULTS: Demographic and disease characteristics were similar at the pilot and non-pilot sites. At the pilot verses non-pilot sites, a higher percentage of patients was tested overall (61.6% vs 31.7%) and across all age groups. The median time from breast biopsy to test result also was reduced (22 vs 33 days, respectively). A higher percentage of patients at the pilot sites was identified as having a pathogenic/likely pathogenic variant (PV/LPV) in a breast cancer-related gene (3.6% vs 1.6%). Although the percentage of total patients tested was nearly twofold higher at the pilot sites than at the non-pilot sites, the percentage of total patients seen by genetics was estimated to be similar (33.7% vs 31.7%). CONCLUSION: Mainstream genetic testing of breast cancer patients facilitated by BCCs makes it feasible for a large health care system to expand germline genetic testing to early breast cancer patients age 65 years or younger.

6.
J Gastrointest Oncol ; 15(4): 1647-1656, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39279954

RESUMEN

Background: Disulfidptosis regulate various biological processes in cancer. However, there is limited research on the genes related to disulfidptosis in predicting the prognosis of hepatocellular carcinoma (HCC). We aimed to develop a reliable disulfidptosis-related gene signature, which will characterize different HCC subtypes and predict their prognosis. Methods: The Cancer Genome Atlas (TCGA)-HCC dataset, comprising RNA sequencing data and clinical information, was obtained from the TCGA database. The crucial disulfidptosis-related genes were selected for bioinformatic analysis in HCC. HCC tumor classification was established through a consistent cluster analysis. The prognosis and immune-cell infiltration were investigated in association with a disulfidptosis-related HCC model. Results: In TCGA-HCC patients, a total of 3,621 prognostic genes and 30 key prognostic disulfidptosis-related genes were identified. Using key prognostic disulfidptosis-related genes, TCGA-HCC patients were categorized into low- and high-risk clusters. The upregulated differentially expressed genes (DEGs) in high-risk cluster 1 (C1) could significantly impact cell cycle, DNA replication, and the p53 signaling pathway, whereas the pathways associated with the downregulated DEGs in high-risk C1 could significantly impact metabolism of xenobiotics by cytochrome P450, the PPAR signaling pathway, and tyrosine metabolism. Furthermore, the immune activity of the high-risk C1 group was different to that of the low-risk cluster 2 (C2) group. The 13 disulfidptosis-related genes were finally screened using least absolute shrinkage and selection operator (LASSO) regression analysis, including ANP32E, BOP1, RPN1, SLC7A11, PPIH, PCBP2, ME1, PRDX1, FLNC, INF2, MYH11, LRPPRC, and HNRNPM. Conclusions: The genes related to disulfidptosis are closely associated with tumor classification and immunity in patients with HCC. This is the first gene signature related to disulfidptosis demonstrated a strong predictive performance for the prognosis of HCC, which provide new perspectives for the diagnosis and treatment of HCC.

7.
J Gastrointest Oncol ; 15(4): 1636-1646, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39279958

RESUMEN

Background: Prior studies indicate that lactylation regulates various biological mechanisms within cancer. However, lactylation-related genes (LRGs) have been found to have limited value in predicting the prognosis of hepatocellular carcinoma (HCC). The aim of this study was to review HCC LRGs using data from The Cancer Genome Atlas (TCGA). Methods: The RNA sequencing data and related clinical information of patients with HCC patients were collected from the TCGA database. A total of 20 LRGs were selected and bioinformatics analysis was performed. A consistency cluster analysis was conducted to classify the HCC tumors. Using a lactylation-related model of HCC, prognosis, immune cell infiltration, and immunotherapy was evaluated. Results: A total of 4,378 genes were associated with prognosis. Twenty LRGs (i.e., ACIN1, RAN, PPP1CB, ALDOB, SUMO2, THOC2, HDAC1, SF3A1, SF3B1, HNRNPM, PPP1CC, SRRM1, PRPF6, HDAC2, H2AFV, ALYREF, H2AFZ, H2AFX, HNRNPK, and MAGOH) were identified. The 20 LRGs were used to divide TCGA-HCC patients into low-risk (G1) and high-risk (G2) categories. The upregulated genes in the G1 group primarily participate in the p53 signaling pathway, focal adhesion, extracellular matrix (ECM)-receptor interaction, and cell cycle, while the downregulated genes primarily participate in the glycolysis/gluconeogenesis, carbon metabolism, and biosynthesis of amino acids. The box plots showed a significant difference in the immune cell populations, with a higher abundance of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and myeloid dendritic cells in the G1 than the G2 HCC samples. Further, the box plots showed higher expression levels of seven of the eight immune checkpoint inhibitor (ICI)-related genes in the G1 HCC samples than the G2 samples. There was a significant disparity in the cancer stem cell (CSC) scores between the G1 and G2 TCGA-HCC patients. Additionally, the G1 TCGA-HCC patients had higher tumor immune dysfunction and exclusion (TIDE) scores than the G2 TCGA-HCC patients. The prognosis of the HCC patients was also predicted using a six-LRG model, comprising HDAC2, SRRM1, SF3B1, HDAC1, THOC2, and PPP1CB. Conclusions: Strong correlation between LRGs and tumor classification as well as immunity in patients with HCC was identified. LRG signatures serve as reliable prognostic markers for HCC.

8.
Heliyon ; 10(16): e36156, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247280

RESUMEN

Immune cell infiltration and tumor-related immune molecules play key roles in tumorigenesis and tumor progression. The influence of immune interactions on the molecular characteristics and prognosis of clear cell renal cell carcinoma (ccRCC) remains unclear. A machine learning algorithm was applied to the transcriptome data from The Cancer Genome Atlas database to determine the immunophenotypic and immunological characteristics of ccRCC patients. These algorithms included single-sample gene set enrichment analyses and cell type identification. Using bioinformatics techniques, we examined the prognostic potential and regulatory networks of immune-related genes (IRGs) involved in ccRCC immune interactions. Fifteen IRGs (CCL7, CHGA, CMA1, CRABP2, IFNE, ISG15, NPR3, PDIA2, PGLYRP2, PLA2G2A, SAA1, TEK, TGFA, TNFSF14, and UCN2) were identified as prognostic IRGs associated with overall survival and were used to construct a prognostic model. The area under the receiver operating characteristic curve at 1 year was 0.927; 3 years, 0.822; and 5 years, 0.717, indicating good predictive accuracy. Molecular regulatory networks were found to govern immune interactions in ccRCC. Additionally, we developed a nomogram containing the model and clinical characteristics with high prognostic potential. By systematically examining the sophisticated regulatory mechanisms, molecular characteristics, and prognostic potential of ccRCC immune interactions, we provided an important framework for understanding the molecular mechanisms of ccRCC and identifying new prognostic markers and therapeutic targets for future research.

9.
Fish Shellfish Immunol ; 153: 109827, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134232

RESUMEN

MicroRNAs (miRNAs) are a category of small non-coding RNAs regarded as vital regulatory factors in various biological processes, especially immune regulation. The differently expressed miRNAs in Macrobrachium rosenbergii after the challenge of Vibrio parahaemolyticus were identified using high-throughput sequencing. A total of 18 known as well as 12 novel miRNAs were markedly differently expressed during the bacterial infection. The results of the target gene prediction and enrichment analysis indicated that a total of 230 target genes involved in a large variety of signaling pathways and biological processes were mediated by the miRNAs identified in the current research. Additionally, the effects of novel-miR-56, a representative differentially expressed miRNA identified in the previous infection experiment, on the immune-related gene expression in M. rosenbergii were explored. The expression of the immune-related genes including Spätzle1(Spz1), Spz4, Toll-like receptor 1 (TLR1), TLR2, TLR3, immune deficiency (IMD), myeloid differentiation factor 88 (MyD88), anti-lipopolysaccharide factor 1 (ALF1), crustin1, as well as prophenoloxidase (proPO) was significantly repressed in the novel-miR-56-overexpressed prawns. The expression of these genes tested in the novel-miR-56-overexpressed M. rosenbergii was still signally lower than the control in the subsequent V. parahaemolyticus challenge, despite the gene expression in each treatment increased significantly after the infection. Additionally, the cumulative mortality of the agomiR-56-treated prawns was significantly higher than the other treatments post the bacterial challenge. These results suggested that novel-miR-56 might function as a negative regulator of the immune-related gene expression of M. rosenbergii in the innate immune defense against V. parahaemolyticus.


Asunto(s)
Inmunidad Innata , MicroARNs , Palaemonidae , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Palaemonidae/inmunología , Palaemonidae/genética , MicroARNs/genética , MicroARNs/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria
10.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125747

RESUMEN

Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.


Asunto(s)
Hidroxicloroquina , Ratones Noqueados , Prurito , Receptores del Ácido Lisofosfatídico , Animales , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Prurito/inducido químicamente , Prurito/metabolismo , Prurito/genética , Prurito/tratamiento farmacológico , Ratones , Hidroxicloroquina/farmacología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Masculino , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Lisofosfolípidos/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos
11.
New Phytol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155750

RESUMEN

Autophagy, involved in protein degradation and amino acid recycling, plays a key role in plant development and stress responses. However, the relationship between autophagy and phytohormones remains unclear. We used diverse methods, including CRISPR/Cas9, ultra-performance liquid chromatography coupled with tandem mass spectrometry, chromatin immunoprecipitation, electrophoretic mobility shift assays, and dual-luciferase assays to explore the molecular mechanism of strigolactones in regulating autophagy and the degradation of ubiquitinated proteins under cold stress in tomato (Solanum lycopersicum). We show that cold stress induced the accumulation of ubiquitinated proteins. Mutants deficient in strigolactone biosynthesis were more sensitive to cold stress with increased accumulation of ubiquitinated proteins. Conversely, treatment with the synthetic strigolactone analog GR245DS enhanced cold tolerance in tomato, with elevated levels of accumulation of autophagosomes and transcripts of autophagy-related genes (ATGs), and reduced accumulation of ubiquitinated proteins. Meanwhile, cold stress induced the accumulation of ELONGATED HYPOCOTYL 5 (HY5), which was triggered by strigolactones. HY5 further trans-activated ATG18a transcription, resulting in autophagy formation. Mutation of ATG18a compromised strigolactone-induced cold tolerance, leading to decreased formation of autophagosomes and increased accumulation of ubiquitinated proteins. These findings reveal that strigolactones positively regulate autophagy in an HY5-dependent manner and facilitate the degradation of ubiquitinated proteins under cold conditions in tomato.

12.
Oral Oncol ; 157: 106985, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126750

RESUMEN

BACKGROUND: Immune-related characteristics can serve as reliable prognostic biomarkers in various cancers. Herein, we aimed to construct an individualized immune prognostic signature in nasopharyngeal carcinoma (NPC). METHODS: This study retrospectively included 455 NPC samples and 39 normal healthy nasopharyngeal tissue specimens. Samples from Gene Expression Omnibus (GEO) were obtained as discovery cohort to screen candidate prognostic immune-related gene pairs based on relative expression ordering of the genes. Quantitative real-time reverse transcription-PCR was used to detect the selected genes to construct an immune-related gene pair signature in training cohort, which comprised 118 clinical samples, and was then validated in validation cohort 1, comprising 92 clinical samples, and validation cohort 2, comprising 88 samples from GEO. RESULTS: We identified 26 immune-related gene pairs as prognostic candidates in discovery cohort. A prognostic immune signature comprising 11 immune gene pairs was constructed in training cohort. In validation cohort 1, the immune signature could significantly distinguish patients with high or low risk in terms of progression-free survival (PFS) (hazard ratio [HR] 2.66, 95 % confidence interval (CI) 1.17-6.02, P=0.015) and could serve as an independent prognostic factor for PFS in multivariate analysis (HR 2.66, 95 % CI 1.17-6.02, P=0.019). Similar results were obtained using validation cohort 2, in which PFS was significantly worse in high risk group than in low risk group (HR 3.02, 95 % CI 1.12-8.18, P=0.022). CONCLUSIONS: The constructed immune signature showed promise for estimating prognosis in NPC. It has potential for translation into clinical practice after prospective validation.


Asunto(s)
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/mortalidad , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/patología , Estudios Retrospectivos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Adulto , Anciano , Regulación Neoplásica de la Expresión Génica
13.
Biomolecules ; 14(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39199302

RESUMEN

Carnitine palmitoyltransferase 2 (CPT2) is an inner mitochondrial membrane protein of the carnitine shuttle and is involved in the beta-oxidation of long chain fatty acids. Beta-oxidation provides an alternative pathway of energy production during early development and starvation. CPT2 deficiency is a genetic disorder that we recently showed can be associated with schizophrenia. We hypothesize that CPT2 deficiency during early brain development causes transcriptional, structural, and functional abnormalities that may contribute to a CNS environment that is susceptible to the emergence of schizophrenia. To investigate the effect of CPT2 deficiency on early vertebrate development and brain function, CPT2 was knocked down in a zebrafish model system. CPT2 knockdown resulted in abnormal lipid utilization and deposition, reduction in body size, and abnormal brain development. Axonal projections, neurotransmitter synthesis, electrical hyperactivity, and swimming behavior were disrupted in CPT2 knockdown zebrafish. RT-qPCR analyses showed significant increases in the expression of schizophrenia-associated genes in CPT2 knockdown compared to control zebrafish. Taken together, these data demonstrate that zebrafish are a useful model for studying the importance of beta-oxidation for early vertebrate development and brain function. This study also presents novel findings linking CPT2 deficiency to the regulation of schizophrenia and neurodegenerative disease-associated genes.


Asunto(s)
Encéfalo , Carnitina O-Palmitoiltransferasa , Esquizofrenia , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Conducta Animal , Regulación del Desarrollo de la Expresión Génica
14.
Molecules ; 29(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39125098

RESUMEN

2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cß1 (PLCß1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.


Asunto(s)
Ácidos Araquidónicos , Endocannabinoides , Glicéridos , Lisofosfolípidos , Transducción de Señal , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Lisofosfolípidos/metabolismo , Humanos , Ácidos Araquidónicos/metabolismo , Animales , Hidrolasas Diéster Fosfóricas/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-39115044

RESUMEN

Cutaneous melanoma is the most lethal of all skin tumors. Recently, cuproptosis, a novel form of cell death linked to oxidative phosphorylation, has emerged as an important factor. However, the precise role of cuproptosis in melanoma remains unclear. Our research explored the potential links between cuproptosis-related genes, prognosis, immune microenvironments, and melanoma treatments. Significantly, cuproptosis regulators showed remarkable differences between melanoma and normal tissues, establishing their relevance to melanoma. The newly developed cuproptosis-related gene signature (CGS) demonstrated a robust ability to predict overall survival (OS) in melanoma. We constructed a novel nomogram that combined clinical features with CGS to improve predictive accuracy. In addition, the study revealed correlations between CGS and immune cell populations, including CD8+T cells, Tfh cells, B cells, and myeloid-derived suppressor cells. Within the CGS, Peptidylprolyl isomerase C (PPIC) emerged as the most strongly associated with poor prognosis and drug resistance in melanoma. PPIC was identified as a promoter of melanoma progression, enhancing cell invasiveness while concurrently suppressing CD8+T cell activation. This comprehensive study not only elucidated the intricate connections between CGS, melanoma prognosis, immune microenvironment, and drug resistance but also provided compelling evidence supporting PPIC as a promising biomarker for predicting OS in melanoma treatment.

16.
J Fish Dis ; : e14009, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207865

RESUMEN

Four-finger threadfin, Eleutheronema tetradactylum farming in southern Taiwan has been facing disease problems caused by Streptococcus iniae since 2018. The development of a vaccine against infectious S. iniae in the cultured threadfin industry is necessary. Thus, this study aimed to examine the efficacy of threadfin immunized formalin-killed cells (FKC) from S. iniae GSI-111 for 42 days post-vaccination (dpv) using two doses of FKC alone (a booster at 14 dpv) as group A, and FKC mixed with ISA763A adjuvant using a single dose as group B or double doses as group C. Immunoglobulin (Ig)-M was purified from threadfin, and rabbit anti-threadfin IgM polyclonal antibodies were used to detect antibody level in immunized fish; the vaccinated group A displayed higher levels at 3 dpv and all vaccinated treatments demonstrated high antibody levels between 14 and 42 dpv. All vaccine groups showed significantly higher values of lysozyme activity at 42 dpv compared with the control group; the vaccinated A group peaked at 14 dpv. The expression profiles of pro-inflammatory and immune-related genes, TNF-α, IL-12A, and C2 were upregulated at 3 dpv, while CD8A and chemokine receptor CXCR4 were upregulated at 42 dpv. Finally, the threadfins were challenged with S. iniae at 42 dpv. The average relative percent survival was 96% for vaccination A and B treatments, and 100% for vaccination C treatment. In summary, this study demonstrated that FKC vaccines whether formulated with an adjuvant could stimulate immune response and effective protect threadfins against S. iniae infection.

17.
Aging (Albany NY) ; 162024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216003

RESUMEN

Septic cardiomyopathy (SCM) is a critical sepsis complication characterized by reversible cardiac depression during early septic shock. Neutrophils, integral to innate immunity, can mediate organ damage when abnormal, but their specific role in sepsis-induced myocardial damage remains elusive. Our study focuses on elucidating the role of Neutrophil-Related Genes (NRGs) in SCM, finding early diagnosis and treatment biomarkers. We identified shared differentially expressed genes (DEGs) from datasets GSE79962 and GSE44363 and pinpointed hub DEGs using the cytoHubba plugin in Cytoscape software. The Neutrophil-Related Hub Gene (NRHG) MRC1 was identified via intersecting hub DEGs with NRGs from WGCNA. We validated MRC1's abnormal expression in SCM using our data and external datasets. Furthermore, a neutrophil-related ceRNA network (AC145207.5/ miR-23a-3p/MRC1) was constructed and validated. Our findings reveal MRC1 as a potential NRHG in SCM pathogenesis, offering insights into neutrophil-mediated mechanisms in SCM and providing a novel molecular target for early diagnosis and intervention in SCM.

18.
Microbes Infect ; : 105407, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178982

RESUMEN

Tuberculosis (TB) is a high mortality infectious disease caused by Mycobacterium tuberculosis (Mtb), and often develops into latent infection. About 5~10% of latent infections turn into active tuberculosis when the host immune system becomes deficient. Therefore, exploring the latent infection mechanism of Mtb is pivotal for the prevention and treatment of tuberculosis. We first established the zebrafish latent infection model and the chronic infection model utilizing Mycobacterium marinum, which has the highly similar gene background to Mtb. Using the latent infection model, we characterized the gene expression profiles and found 462 genes expressed differentially in the latent period and chronic tuberculosis infection. These differentially expressed genes are involved in various biological processes including transcription, transcriptional regulation, organism development, and immune responses. Among them, nineteen immune-related genes were found to express differentially in the latent period. By analyzing immune related protein network, the genes in the center of the network, including Nos2b, TNFα, IL1, TNFß, TLR1, TLR2, and TLR4b, displayed significant deferential expression in latent infection and chronic infection period of zebrafish, suggesting that these genes might play an important role in controlling latent infection of Mtb. Identifying immune biomarker related to the status of tuberculosis latent infection might lead to novel strategy for diagnosis and treatment.

19.
Heliyon ; 10(15): e34348, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145004

RESUMEN

Introduction: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic disease that can involve pyroptosis. The primary objective of this study was to conduct a thorough and comprehensive analysis the pyroptosis-related genes in MAFLD. Methods: We identified pyroptosis-related differentially expressed genes (PRDEGs) in both healthy individuals and MAFLD patients. Using various bioinformatic approaches, we conducted an immune infiltration analysis from multiple perspectives. Results: A total of 20 pyroptosis-related LASSO genes were obtained, and 10 hub genes were used to do immune infiltration analysis. The hub genes were utilized in the construction of interaction networks between mRNA-miRNA and mRNA-TF. Immune characteristics analysis revealed multiple immune cell types significantly related to PRDEG expression, particularly genes HSP90AA1, TSLP, CDK9, and BRD4. Conclusion: Pyroptosis-related immune infiltration might be a mechanism of MAFLD progression and offers a research direction for potential treatment techniques.

20.
Transl Cancer Res ; 13(7): 3678-3694, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39145053

RESUMEN

Background: Ferroptosis-related genes are correlated with the prognosis of patients with neuroblastoma (NB) remains unknown. This study aims to establish a prognostic ferroptosis-related gene model for predicting prognostic value in pediatric NB patients. Methods: The gene expression array and clinical characteristics of NB were downloaded from a public database. Correlations between ferroptosis-related genes and drug responses were analyzed by Childhood Cancer Therapeutics. The prognostic model was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression and was validated in NB patients from the ICGC cohort. The survival analysis was performed by Cox regression analysis. single-sample gene set enrichment analysis (ssGSEA) was used to quantify the immune cell infiltration correlation. Results: Overall, 70 genes were identified as ferroptosis-related differentially expressed genes (DEGs) from 247 samples. Then, 13 ferroptosis-related genes were correlated with OS in the univariate Cox regression analysis. Five prognostic ferroptosis-related DEGs (pFR-DEGs) (STEAP3, MAP1LC3A, ULK2, MTOR and TUBE1), which were defined as the intersection of DEGs and prognostic ferroptosis-related genes, were identified and utilized to construct the prognostic signature. The correlation between five pFR-DEGs and drug responses was analyzed, and the box plots indicated that MTOR gene expression was highest, suggesting that MTOR expression is related to progressive NB disease. The receiver operating characteristic (ROC) curve showed that the model had moderate predictive power. The survival analysis indicated that the high-risk group had poor overall survival (OS) (P=2.087×10-06). Univariate and multivariate analyses identified the risk score as a significant prognostic risk factor [P=0.003, hazard ratio (HR) =1.933]. Immune cell infiltration correlation analysis showed that the high-risk group was related to more immune cells. Conclusions: The present study indicated a difference in ferroptosis-related gene expression between low- and high-risk NB patients. The ferroptosis-related signature could serve as a prognostic prediction tool. Additionally, immune infiltration might play an important role in different risk groups for NB patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...