Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(9): e11143, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234161

RESUMEN

Intracellular plant defense against pathogens is mediated by a class of disease resistance genes known as NB-LRRs or NLRs (R genes). Many of the diseases these genes protect against are more prevalent in regions of higher rainfall, which provide better growth conditions for the pathogens. As such, we expect a higher selective pressure for the maintenance and proliferation of R genes in plants adapted to wetter conditions. In this study, we enriched libraries for R genes using RenSeq from baits primarily developed from the common sunflower (Helianthus annuus) reference genome. We sequenced the R gene libraries of Silphium integrifolium Michx, a perennial relative of sunflower, from 12 prairie remnants across a rainfall gradient in the Central Plains of the United States, with both Illumina short-read (n = 99) and PacBio long-read (n = 10) approaches. We found a positive relationship between the mean effective annual precipitation of a plant's source prairie remnant and the number of R genes in its genome, consistent with intensity of plant pathogen coevolution increasing with precipitation. We show that RenSeq can be applied to the study of ecological hypotheses in non-model relatives of model organisms.

2.
Cells ; 11(8)2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455953

RESUMEN

The majority of released rye cultivars are susceptible to leaf rust because of a low level of resistance in the predominant hybrid rye-breeding gene pools Petkus and Carsten. To discover new sources of leaf rust resistance, we phenotyped a diverse panel of inbred lines from the less prevalent Gülzow germplasm using six distinct isolates of Puccinia recondita f. sp. secalis and found that 55 out of 92 lines were resistant to all isolates. By performing a genome-wide association study using 261,406 informative SNP markers, we identified five resistance-associated QTLs on chromosome arms 1RS, 1RL, 2RL, 5RL and 7RS. To identify candidate Puccinia recondita (Pr) resistance genes in these QTLs, we sequenced the rye nucleotide-binding leucine-rich repeat (NLR) intracellular immune receptor complement using a Triticeae NLR bait-library and PacBio® long-read single-molecule high-fidelity (HiFi) sequencing. Trait-genotype correlations across 10 resistant and 10 susceptible lines identified four candidate NLR-encoding Pr genes. One of these physically co-localized with molecular markers delimiting Pr3 on chromosome arm 1RS and the top-most resistance-associated QTL in the panel.


Asunto(s)
Basidiomycota , Secale , Basidiomycota/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/genética , Puccinia , Secale/genética
3.
BMC Genomics ; 23(1): 118, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35144544

RESUMEN

BACKGROUND: Nucleotide-binding and leucine-rich repeat (NLR) genes have attracted wide attention due to their crucial role in protecting plants from pathogens. SMRT-RenSeq, combining PacBio sequencing after resistance gene enrichment sequencing (RenSeq), is a powerful method for selectively capturing and sequencing full-length NLRs. Haynaldia villosa, a wild grass species with a proven potential for wheat improvement, confers resistance to multiple diseases. So, genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq can facilitate disease resistance genes exploration. RESULTS: In this study, SMRT-RenSeq was performed to identify the genome-wide NLR complement of H. villosa. In total, 1320 NLRs were annotated in 1169 contigs, including 772 complete NLRs. All the complete NLRs were phylogenetically analyzed and 11 main clades with special characteristics were derived. NLRs could be captured with high efficiency when aligned with cloned R genes, and cluster expansion in some specific gene loci was observed. The physical location of NLRs to individual chromosomes in H. villosa showed a perfect homoeologous relationship with group 1, 2, 3, 5 and 6 of other Triticeae species, however, NLRs physically located on 4VL were largely in silico predicted to be located on the homoeologous group 7. Fifteen types of integrated domains (IDs) were integrated in 52 NLRs, and Kelch and B3 NLR-IDs were found to have expanded in H. villosa, while DUF948, NAM-associated and PRT_C were detected as unique integrated domains implying the new emergence of NLR-IDs after H. villosa diverged from other species. CONCLUSION: SMRT-RenSeq is a powerful tool to identify NLR genes from wild species using the baits of the evolutionary related species with reference sequences. The availability of the NLRs from H. villosa provide a valuable library for R gene mining and transfer of disease resistance into wheat.


Asunto(s)
Resistencia a la Enfermedad , Proteínas NLR , Enfermedades de las Plantas , Proteínas de Plantas/genética , Poaceae , Resistencia a la Enfermedad/genética , Familia de Multigenes , Proteínas NLR/genética , Filogenia , Enfermedades de las Plantas/genética , Poaceae/genética , Triticum
4.
New Phytol ; 227(5): 1530-1543, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32344448

RESUMEN

Nucleotide-binding and leucine-rich repeat immune receptors (NLRs) provide resistance against diverse pathogens. To create comparative NLR resources, we conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real-time sequencing of PacBio for 18 accessions in Solanaceae, including 15 accessions of five wild tomato species. We investigated the evolution of a class of NLRs, CNLs with extended N-terminal sequences previously named Solanaceae Domain. Through comparative genomic analysis, we revealed that the extended CNLs (exCNLs) anciently emerged in the most recent common ancestor between Asterids and Amaranthaceae, far predating the Solanaceae family. In tomatoes, the exCNLs display exceptional modes of evolution in a clade-specific manner. In the clade G3, exCNLs have substantially elongated their N-termini through tandem duplications of exon segments. In the clade G1, exCNLs have evolved through recent proliferation and sequence diversification. In the clade G6, an ancestral exCNL has lost its N-terminal domains in the course of evolution. Our study provides high-quality NLR gene models for close relatives of domesticated tomatoes that can serve as a useful resource for breeding and molecular engineering for disease resistance. Our findings regarding the exCNLs offer unique backgrounds and insights for future functional studies of the NLRs.


Asunto(s)
Solanum lycopersicum , Solanum , Resistencia a la Enfermedad/genética , Evolución Molecular , Solanum lycopersicum/genética , Proteínas NLR/genética , Filogenia , Fitomejoramiento , Solanum/genética
5.
New Phytol ; 227(4): 1264-1276, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32285454

RESUMEN

The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.


Asunto(s)
Phytophthora infestans , Solanum , Secuencia de Aminoácidos , Fitomejoramiento , Enfermedades de las Plantas/genética , Receptores de Reconocimiento de Patrones
6.
Plant Biotechnol J ; 18(3): 655-667, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31397954

RESUMEN

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


Asunto(s)
Resistencia a la Enfermedad , Genes de Plantas , Enfermedades de las Plantas/virología , Potyvirus/patogenicidad , Solanum tuberosum/inmunología , Animales , Áfidos/virología , Cruzamiento , Proteínas NLR/inmunología , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente/virología , Solanum tuberosum/virología
7.
G3 (Bethesda) ; 9(10): 3315-3332, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31420323

RESUMEN

Octoploid strawberry (Fragaria ×ananassa) is a valuable specialty crop, but profitable production and availability are threatened by many pathogens. Efforts to identify and introgress useful disease resistance genes (R-genes) in breeding programs are complicated by strawberry's complex octoploid genome. Recently-developed resources in strawberry, including a complete octoploid reference genome and high-resolution octoploid genotyping, enable new analyses in strawberry disease resistance genetics. This study characterizes the complete R-gene collection in the genomes of commercial octoploid strawberry and two diploid ancestral relatives, and introduces several new technological and data resources for strawberry disease resistance research. These include octoploid R-gene transcription profiling, dN/dS analysis, expression quantitative trait loci (eQTL) analysis and RenSeq analysis in cultivars. Octoploid fruit eQTL were identified for 76 putative R-genes. R-genes from the ancestral diploids Fragaria vesca and Fragaria iinumae were compared, revealing differential inheritance and retention of various octoploid R-gene subtypes. The mode and magnitude of natural selection of individual F. ×ananassa R-genes was also determined via dN/dS analysis. R-gene sequencing using enriched libraries (RenSeq) has been used recently for R-gene discovery in many crops, however this technique somewhat relies upon a priori knowledge of desired sequences. An octoploid strawberry capture-probe panel, derived from the results of this study, is validated in a RenSeq experiment and is presented for community use. These results give unprecedented insight into crop disease resistance genetics, and represent an advance toward exploiting variation for strawberry cultivar improvement.


Asunto(s)
Resistencia a la Enfermedad/genética , Fragaria/clasificación , Fragaria/genética , Genoma de Planta , Genómica , Enfermedades de las Plantas/genética , Poliploidía , Evolución Molecular , Perfilación de la Expresión Génica , Genes de Plantas , Genómica/métodos , Sitios de Carácter Cuantitativo , Especificidad de la Especie , Transcriptoma
8.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442410

RESUMEN

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Variación Genética , Genoma de Planta , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Especificidad de la Especie
9.
BMC Genomics ; 18(1): 564, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747151

RESUMEN

BACKGROUND: The Oxford Nanopore Technologies MinION™ sequencer is a small, portable, low cost device that is accessible to labs of all sizes and attractive for in-the-field sequencing experiments. Selective breeding of crops has led to a reduction in genetic diversity, and wild relatives are a key source of new genetic resistance to pathogens, usually via NLR immune receptor-encoding genes. Recent studies have demonstrated how crop NLR repertoires can be targeted for sequencing on Illumina or PacBio (RenSeq) and the specific gene conveying pathogen resistance identified. RESULTS: Sequence yields per MinION run are lower than Illumina, making targeted resequencing an efficient approach. While MinION generates long reads similar to PacBio it doesn't generate the highly accurate multipass consensus reads, which presents downstream bioinformatics challenges. Here we demonstrate how MinION data can be used for RenSeq achieving similar results to the PacBio and how novel NLR gene fusions can be identified via a Nanopore RenSeq pipeline. CONCLUSION: The described library preparation and bioinformatics methods should be applicable to other gene families or any targeted long DNA fragment nanopore sequencing project.


Asunto(s)
Plantas/genética , Plantas/inmunología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia/métodos , Genes de Plantas/genética , Plantas/microbiología
10.
Biotechniques ; 61(6): 315-322, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27938323

RESUMEN

Targeted capture provides an efficient and sensitive means for sequencing specific genomic regions in a high-throughput manner. To date, this method has mostly been used to capture exons from the genome (the exome) using short insert libraries and short-read sequencing technology, enabling the identification of genetic variants or new members of large gene families. Sequencing larger molecules results in the capture of whole genes, including intronic and intergenic sequences that are typically more polymorphic and allow the resolution of the gene structure of homologous genes, which are often clustered together on the chromosome. Here, we describe an improved method for the capture and single-molecule sequencing of DNA molecules as large as 7 kb by means of size selection and optimized PCR conditions. Our approach can be used to capture, sequence, and distinguish between similar members of the NB-LRR gene family-key genes in plant immune systems.


Asunto(s)
ADN/genética , ADN/aislamiento & purificación , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , ADN/análisis , Exones/genética , Biblioteca de Genes , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética
11.
Front Plant Sci ; 7: 672, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303410

RESUMEN

The greatest threat to potato production world-wide is late blight, caused by the oomycete pathogen Phytophthora infestans. A screen of 126 wild diploid Solanum accessions from the Commonwealth Potato Collection (CPC) with P. infestans isolates belonging to the genotype 13-A2 identified resistances in the species S. bulbocastanum, S. capsicibaccatum, S. microdontum, S. mochiquense, S. okadae, S. pinnatisectum, S. polyadenium, S. tarijense, and S. verrucosum. Effector-omics, allele mining, and diagnostic RenSeq (dRenSeq) were utilized to investigate the nature of resistances in S. okadae accessions. dRenSeq in resistant S. okadae accessions 7129, 7625, 3762, and a bulk of 20 resistant progeny confirmed the presence of full-length Rpi-vnt1.1 under stringent mapping conditions and corroborated allele mining results in the accessions 7129 and 7625 as well as Avr-vnt1 recognition in transient expression assays. In contrast, susceptible S. okadae accession 3761 and a bulk of 20 susceptible progeny lacked sequence homology in the 5' end compared to the functional Rpi-vnt1.1 gene. Further evaluation of S. okadae accessions with P. infestans isolates that have a broad spectrum of virulence demonstrated that, although S. okadae accessions 7129, 7625, and 7629 contain functional Rpi-vnt1.1, they also carry a novel resistance gene. We provide evidence that existing germplasm collections are important sources of novel resistances and that "omic" technologies such as dRenSeq-based genomics and effector-omics are efficacious tools to rapidly explore the diversity within these collections.

12.
Genome Biol Evol ; 8(5): 1501-15, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27189991

RESUMEN

Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat.


Asunto(s)
Evolución Molecular , Proteínas NLR/genética , Selección Genética/genética , Solanum lycopersicum/genética , Resistencia a la Enfermedad/genética , Genética de Población , Filogenia , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...