Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virol Sin ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39349279

RESUMEN

Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics (RG) system in the past. Since 2017, multiple plasmid-based RG systems for simian, human, and murine-Like rotaviruses have been established. However, none of the described methods have supported the recovery of bovine rotaviruses (BRVs). Here, we established an optimized plasmid-based RG system for BRV culture-adapted strain (BRV G10P [15] BLR) and clinical isolates (BRV G6P[1] C73, G10P[11] HM26) based on a BHK-T7 cell clone stably expressing T7 polymerase. Furthermore, using this optimized RG system, we successfully rescued the reporter virus BRV rC73/Zs, rHM26/Zs and rBLR/Zs, harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3 (NSP3) fused to ZsGreen, a 232-amino acid green fluorescent protein. Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging, while rHM26/Zs can be stabilized only up to the third generation, indicating that the BRV segment composition may influence the viral fitness. In addition, we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus. In summary, this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.

2.
J Virol Methods ; 330: 115031, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255871

RESUMEN

Feline caliciviruses can cause oral and upper respiratory tract infections in cats. However, a virulent and systemic feline calicivirus (VS-FCV) variant implicated in multisystem lesions and death in cats has emerged recently. To date, the mechanism underlying virulence variations in VS-FCV remains unclear. The aim of the present study was to provide a tool for exploring genetic variation in VS-FCV, by constructing an infectious clone of VS-FCV SH/2014. First, a full-length cDNA molecular clone of VS-FCV SH/2014 strain, which contains an Xba I recognition site generated by mutating one base (A→T) as a genetic marker, was constructed using the circular polymerase extension reaction (CPER) method. Second, the full-length cDNA clone was introduced into Crandell-Rees feline kidney cells using liposomes to rescue recombinant VS-FCV SH/2014 (rVS-FCV SH/2014). Third, the rescued viruses were identified by real-time PCR, immunofluorescence assay, western blotting, and electron microscopy. The full-length cDNA molecular clone of the VS-FCV SH/2014 strain was successfully constructed and that rVS-FCV SH/2014 could be rescued efficiently. rVS-FCV SH/2014 had the expected genetic markers and morphology and growth characteristics similar to those of the parental virus. The reverse genetics system provides a research platform for future studies on VS-FCV genetic variation and pathogenesis.

3.
Vet J ; 305: 106122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641200

RESUMEN

The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.


Asunto(s)
Coronavirus , Genética Inversa , Torovirus , Animales , Genética Inversa/métodos , Porcinos , Bovinos , Torovirus/genética , Coronavirus/genética , Infecciones por Torovirus/veterinaria , Infecciones por Torovirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Enfermedades de los Porcinos/virología , Enfermedades de los Bovinos/virología , Animales Domésticos/virología
4.
Viruses ; 16(4)2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38675907

RESUMEN

Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.


Asunto(s)
Proteínas de la Cápside , Virus Reordenados , Rotavirus , Replicación Viral , Rotavirus/genética , Proteínas de la Cápside/genética , Humanos , Virus Reordenados/genética , Animales , Mutación , Línea Celular , Genética Inversa/métodos , Genotipo , Mutación Puntual , Infecciones por Rotavirus/virología , Genoma Viral , Antígenos Virales/genética , Antígenos Virales/inmunología
5.
Front Vet Sci ; 11: 1336663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545559

RESUMEN

Bovine parainfluenza virus type 3 (BPIV3) is a key pathogen associated with bovine respiratory disease complex (BRDC). However, its specific pathogenesis mechanisms have not been fully elucidated. Reverse genetics provides a useful method for understanding the pathogenic mechanism of BPIV3. To ensure the functionality of the rescue platforms, we first constructed a minigenome (MG) system of BPIV3 utilizing a 5-plasmid system in this investigation. Then, a full-length infection clone of BPIV3 was obtained from the SX-2021 strain, and different methods were employed to identify the rescued virus. Additionally, we recovered a recombinant BPIV3 using the reverse genetics system that could express enhanced green fluorescence protein (eGFP). Through the growth curve assays, the replicate capability of rBPIV3-SX-EGFP was found to be similar to that of the parental virus. Subsequently, the rBPIV3-SX-EGFP was used to determine the antiviral activity of ribavirin. The results showed that ribavirin had an anti-BPIV3 effect in MDBK cells. In conclusion, the successful development of a reverse genetic system for the SX-2021 strain establishes a foundation for future studies on BPIV3, including investigations into its pathogenic mechanism, gene function, and antiviral screening properties.

6.
Antiviral Res ; 222: 105794, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38176470

RESUMEN

A hyperinflammatory response is a prominent feature of feline infectious peritonitis (FIP), but the mechanisms behind the feline infectious peritonitis virus (FIPV)-induced cytokine storm in the host have not been clarified. Studies have shown that coronaviruses encode accessory proteins that are involved in viral replication and associated with viral virulence, the inflammatory response and immune regulation. Here, we found that FIPV ORF7a gene plays a key role in viral infection and host proinflammatory responses. The recombinant FIPV strains lacking ORF7a (rQS-79Δ7a) exhibit low replication rates in macrophages and do not induce dramatic upregulation of inflammatory factors. Furthermore, through animal experiments, we found that the rQS-79Δ7a strain is nonpathogenic and do not cause symptoms of FIP in cats. Unexpectedly, after three vaccinations with rQS-79Δ7a strain, humoral and cellular immunity was increased and provided protection against virulent strains in cats, and the protection rate reaches 40%. Importantly, our results demonstrated that ORF7a is a key virulence factor that exacerbates FIPV infection and inflammatory responses. Besides, our findings will provide novel implications for future development of live attenuated FIPV vaccines.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Felino , Peritonitis Infecciosa Felina , Gatos , Animales , Coronavirus Felino/genética , Factores de Virulencia/genética , Virulencia
7.
Vaccines (Basel) ; 11(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38140231

RESUMEN

Japanese encephalitis (JE) is a very severe disease characterized by high fatality rates and the development of permanent behavioral, psychiatric, and neurological sequelae among survivors. Japanese encephalitis virus (JEV), a flavivirus, is responsible for JE. In Asia, Genotype I (GI) has emerged as the dominant strain, replacing Genotype III (GIII). However, no clinically approved drug is available to treat JEV infection, and currently available commercial vaccines derived from JEV GIII strains provide only partial protection against GI. Utilizing a reverse genetics system, this study attempted to produce a novel chimeric JEV strain with high efficacy against JEV GI. Accordingly, a GI/GIII intertypic recombinant strain, namely SA14-GI env, was generated by substituting the E region of the GIII SA14-14-2 strain with that of the GI strain, K05GS. The neurovirulence of the mutant virus was significantly reduced in mice. Analysis of the immunogenicity of the chimeric virus revealed that it induced neutralizing antibodies against JEV GI in mice, and the protective efficacy of SA14-GI env was higher than that of SA14-14-2. These findings suggest that SA14-GI env may be a safe and effective live-attenuated vaccine candidate against JEV GI.

8.
Viruses ; 15(10)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37896780

RESUMEN

Emerging and re-emerging swine coronaviruses (CoVs), including porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-CoV (SADS-CoV), cause severe diarrhea in neonatal piglets, and CoV infection is associated with significant economic losses for the swine industry worldwide. Reverse genetics systems realize the manipulation of RNA virus genome and facilitate the development of new vaccines. Thus far, five reverse genetics approaches have been successfully applied to engineer the swine CoV genome: targeted RNA recombination, in vitro ligation, bacterial artificial chromosome-based ligation, vaccinia virus -based recombination, and yeast-based method. This review summarizes the advantages and limitations of these approaches; it also discusses the latest research progress in terms of their use for virus-related pathogenesis elucidation, vaccine candidate development, antiviral drug screening, and virus replication mechanism determination.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Coronavirus/genética , Genética Inversa , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/genética , ARN , Diarrea
9.
Viruses ; 15(9)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37766223

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.

10.
J Virol ; 97(4): e0180922, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37022194

RESUMEN

Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.


Asunto(s)
Genética Inversa , Tospovirus , Replicación Viral , Animales , Genética Inversa/métodos , ARN Polimerasa Dependiente del ARN , Tospovirus/genética , Estados Unidos , Replicación Viral/genética , ARN Viral/genética , Proteínas de la Nucleocápside/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...