Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Heliyon ; 10(12): e33076, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38948034

RESUMEN

Oresitrophe is monotypic, with the only species, Oresitrophe rupifraga Bunge, which is exclusive to China, having special growth and developmental traits due to its habitat. Furthermore, it has bright flowers and medicinal benefits. This study investigated the metabolites present in various tissues of Oresitrophe rupifraga Bunge. Using a widely targeted metabolomics approach, 1965 different metabolites were identified in Oresitrophe rupifraga Bunge. Based on principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), the aboveground and underground metabolites of Oresitrophe rupifraga differed significantly. The comparison between bulblets and leaves revealed the differential expression of 461 metabolites, whereas the comparison between rhizomes and leaves showed the differential expression of 423 metabolites, and the comparison between bulblets and rhizomes showed the differential expression of 249 metabolites. The bulblets exhibited 49 metabolites that were higher and 412 metabolites that were lower than those of the leaves, whereas the rhizomes showed 123 upregulated and 300 downregulated metabolites. Bulblets showed an increase in 18 metabolites and a decrease in 231 metabolites compared to the rhizomes. Leaves contain more phenolic acids than the rhizomes and bulblets, whereas the rhizomes and bulblets contain more terpenoids than the leaves. KEGG pathway analysis showed an association between metabolites and metabolic pathways, as well as their effect on the progression and maturation of Oresitrophe rupifraga Bunge. The research findings can provide some insight into the growth and developmental traits of Oresitrophe rupifraga Bunge, thus providing a theoretical foundation for cultivating and utilising this plant.

2.
Int J Biol Macromol ; : 134117, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39084989

RESUMEN

The degradation of Belamcanda chinensis (L.) DC. polysaccharides was carried out by five concentrations of trifluoroacetic acid (TFA) (1-5 mol/L), and their physicochemical properties, degradation kinetics and anticomplementary activity were investigated. The findings revealed a notable reduction in the molecular weight of BCP, from an initial value of 2.622 × 105 g/mol to a final value of 6.255 × 104 g/mol, and the water solubility index increased from 90.66 ± 0.42 % to 97.78 ± 0.43 %. The degraded polysaccharides of B. chinensis exhibited a comparable monosaccharide composition comprising Man, GalA, Glc, Gal, and Ara. As the concentration of TFA increased, the degradation rate constant increased from 1.468 × 10-3 to 5.943 × 10-3, and the process followed the first-order degradation kinetic model (R2 > 0.97) and the random fracture model (R2 > 0.96). Furthermore, the five degraded polysaccharides still exhibit good thermal stability. In vitro experiments showed that DBCP-3 exhibited more potent anticomplementary activity than the original polysaccharides and positive drugs, which was strongly correlated with its Mw (r = 0.6-0.8), inhibiting complement activation by blocking C2 and C4. These results indicated that TFA degradation has a positive effect on polysaccharides, of which DBCP-3 is expected to treat diseases involving hyperactivation of the complement system.

3.
BMC Genomics ; 25(1): 706, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030489

RESUMEN

BACKGROUND: According to Chinese ancient books, both fruits and rhizomes of Polygonatum cyrtonema Hua have medicinal and edible values. Up to now, there is no report about the metabolite profiles and regulatory network in fruits and different year-old rhizomes of P. cyrtonema. RESULTS: In this study, we performed integrative analyses of metabolome and transcriptome to reveal the dynamic accumulation and regulatory network of fruits and different year-old rhizomes in P. cyrtonema. The relative content of phenolic acids, lignans and coumarins, flavonoids and alkaloids increased with growth years, while steroids and lipids decreased with it. In addition, the relative content of nucleotides and derivatives, flavonoids, organic acids, steroids and lipids in fruits were higher than rhizomes. Genes that might relate to the biosynthesis of polysaccharides, flavonoids, triterpene saponins and alkaloids biosynthesis were further analyzed by transcriptome analysis, including sacA, GMPP, PMM, CCoAOMT, CHI, ANR, CHS, DXS, GGPS, ZEP, CYP72A219 and so on, for their expressions were positively correlated with the relative content of the metabolites. Additionally, the correlation network in sugar and aromatic amino acids metabolites were constructed to further illustrate the biosynthesis of polysaccharides, flavonoids and alkaloids in P. cyrtonema, and some transcription factors (TFs) were screened, such as C2C2, MYB, bZIP, GRAS and NAC. CONCLUSIONS: This study can deepen our understanding of the accumulation patterns and molecular mechanism of the main compounds in P. cyrtonema, and provide reference for the standardize production of P. cyrtonema.


Asunto(s)
Frutas , Redes Reguladoras de Genes , Metaboloma , Polygonatum , Rizoma , Transcriptoma , Rizoma/metabolismo , Rizoma/genética , Polygonatum/genética , Polygonatum/metabolismo , Frutas/metabolismo , Frutas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Flavonoides/metabolismo
4.
Sci Rep ; 14(1): 16372, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013977

RESUMEN

The aim of the experiment was to determine the yield of Miscanthus × giganteus M 19 in the first three years of cultivation and its bioaccumulation of Zn and Ni in aboveground and underground parts in response to different doses of sewage sludge and substrate left after the production of white mushrooms. Miscanthus × giganteus is a grass species that adapts to different environmental conditions and can be grown in various climatic zones of Europe and North America. In April 2018 the experiment was established in a randomized block design and with four replications in central-eastern Poland. Waste organic materials (municipal sewage sludge and mushroom substrate) were applied to the soil in 2018 in the spring before the rhizomes of giant miscanthus were planted. Each year (from 2018 to 2020) biomass was harvested in December. The yield of fresh and dry matter and the total content of Zn and Ni, after wet mineralization of plant samples, were determined by optical emission spectrometry (ICP-OES). After the third year of cultivation, the content of Zn and Ni in rhizomes and in the soil was determined again. In relation to control, an increase in the yield of miscanthus biomass in response to organic waste materials was noted. Plants responded to mushroom substrate (SMS) with the highest average yield (16.89 Mgha-1DM), while on the control plot it was 13.86 Mg  ha-1DM. After the third year of cultivation, rhizomes of Miscanthus x giganteus contained higher amounts of Zn (63.3 mg kg-1) and Ni (7.54 mg kg-1) than aboveground parts (40.52 and 2.07 mg kg-1), which indicated that heavy metals were retained in underground parts.


Asunto(s)
Biomasa , Níquel , Poaceae , Aguas del Alcantarillado , Suelo , Zinc , Poaceae/metabolismo , Níquel/análisis , Zinc/análisis , Zinc/metabolismo , Suelo/química , Agaricales/metabolismo , Agaricales/química , Rizoma/metabolismo , Rizoma/química , Polonia
5.
Fitoterapia ; 177: 106078, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897248

RESUMEN

A group of previously undescribed diarylheptanoids with mono/di-glucose substitution, diodiarylheptosides A-F (1-6), together with six known diarylheptanoids (7-12) were isolated from the rhizomes of Dioscorea nipponica. Their structures were established by comprehensive UV, IR, HR-ESI-MS and NMR analyses, and their absolute configurations were determined by a comparison of calculated and experimental ECD, some with optical rotations, after acid-hydrolysis. Moreover, bioassay results showed that compounds 3 and 11 exhibited stronger NO inhibitions on lipopolysaccharides-induced RAW 264.7 cells, with the IC50 values of 14.91 ± 0.62 and 12.78 ± 1.12 µM.


Asunto(s)
Diarilheptanoides , Dioscorea , Glicósidos , Fitoquímicos , Rizoma , Dioscorea/química , Rizoma/química , Diarilheptanoides/aislamiento & purificación , Diarilheptanoides/química , Diarilheptanoides/farmacología , Ratones , Células RAW 264.7 , Estructura Molecular , Animales , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Fitoquímicos/química , Glicósidos/aislamiento & purificación , Glicósidos/química , Glicósidos/farmacología , Óxido Nítrico/metabolismo , China
6.
Fitoterapia ; 175: 105980, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685510

RESUMEN

Forty-three diarylheptanoids were isolated from Alpinia officinarum rhizomes among them eight ones (1-6) were undescribed compounds whose structures were identified by UV, IR, HRESIMS, and NMR. The neuroprotective effects of these diarylheptanoids were evaluated on H2O2-damaged SH-SY5Y cells. Compounds 7, 10, 12, 20, 22, 25, 28, 33, 35, 37, and 42 presented significant neuroprotective effects than that of the positive control (EGCG) at the concentrations of 5, 10 or 20 µM. Compounds 10, 22, 25, and 33 significantly reduced the ROS levels and inhibited the generations of MDA and NO in oxidative injured cells to display neuroprotective effects. This study lay the foundation for the application of Alpinia officinarum rhizomes.


Asunto(s)
Alpinia , Diarilheptanoides , Fármacos Neuroprotectores , Rizoma , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Diarilheptanoides/farmacología , Diarilheptanoides/aislamiento & purificación , Diarilheptanoides/química , Rizoma/química , Alpinia/química , Estructura Molecular , Humanos , Línea Celular Tumoral , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , China , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo
7.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543015

RESUMEN

The rhizomes of the genus Atractylodes DC. consist of various bioactive components, including sesquiterpenes, which have attracted a great deal of research interest in recent years. In the present study, we reviewed the previously published literatures prior to November 2023 on the chemical structures, biosynthetic pathways, and pharmacological activities of the sesquiterpenoids from this genus via online databases such as Web of Science, Google Scholar, and ScienceDirect. Phytochemical studies have led to the identification of more than 160 sesquiterpenes, notably eudesmane-type sesquiterpenes. Many pharmacological activities have been demonstrated, particularly anticancer, anti-inflammatory, and antibacterial and antiviral activities. This review presents updated, comprehensive and categorized information on the phytochemistry and pharmacology of sesquiterpenes in Atractylodes DC., with the aim of offering guidance for the future exploitation and utilization of active ingredients in this genus.


Asunto(s)
Atractylodes , Sesquiterpenos de Eudesmano , Sesquiterpenos , Atractylodes/química , Rizoma/química , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Etnofarmacología , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Fitoterapia
8.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474659

RESUMEN

Currently, in the ongoing development of the tobacco industry, a large amount of tobacco rhizomes is discarded as waste. These wastes are usually disposed of through incineration or burial. However, these tobacco wastes still have some economic value. High-purity nicotine has a promising market outlook as the primary raw material for electronic cigarette liquid. Nicotine is not only found in tobacco leaves but also in the rhizomes of tobacco plants. This study presents a method for treating tobacco waste and extracting high-purity nicotine from it. After mixing the raw material powder and entrainer in specific ratios, as much of the nicotine in tobacco roots can be extracted as possible using supercritical carbon dioxide extraction. The effects of temperature, the ratio of the entrainer, and the volume fraction of ethanol in the entrainer on the nicotine yield in supercritical fluid extraction (SFE) at 25 MPa for 120 min were discussed. By using 90% ethanol (a raw material mass-to-volume ratio of 1:5) as the entrainer, we obtained the highest nicotine yield of 0.49% at 65 °C. Meanwhile, the purity of the crude extract was 61.71%, and after purification, it increased to 97.57%. In this way, we can not only obtain nicotine with market value but also further reduce the harm to the environment caused by tobacco waste disposal.


Asunto(s)
Cromatografía con Fluido Supercrítico , Sistemas Electrónicos de Liberación de Nicotina , Rizoma , Nicotina , Dióxido de Carbono , Nicotiana , Etanol , Cromatografía con Fluido Supercrítico/métodos
9.
Plants (Basel) ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475535

RESUMEN

Oral diseases are one of the biggest public health problems worldwide, caused by opportunistic pathogens such as Streptococcus mutans and Enterococcus faecalis. Cyperus articulatus (priprioca) is a plant conventionally used in traditional medicine in the Amazon region. However, little is known about the possible dentistry-related uses of extracts from the rhizomes and solid waste generated by the extraction of essential oils from this vegetable. This study aimed to investigate the chemical composition of volatile compounds and antimicrobial activity through the Minimum Inhibitory Concentration test (MIC and assessment of the toxicity by Hens Egg Test-Chorion Allantoic Membrane (HET-CAM) of the ethanolic extracts from Cyperus articulatus intact rhizomes and solid waste. We identified sesquiterpenes as the main constituents, strong antimicrobial activity of the ethanolic extract of intact rhizomes against S. mutans (MIC = 0.29 mg/mL), moderate antimicrobial activity against E. faecalis of the extract obtained from the solid waste (MIC = 1.17 mg/mL), and absence of toxicity for both tested extracts. The absence of irritation and the antibacterial activity of the ethanolic extract from C. articulatus rhizomes and solid waste reveal its potential for use in the alternative control of bacteria that cause oral infections and may present economic viability as a raw material for dental products.

10.
Plants (Basel) ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38498419

RESUMEN

Effects of rising atmospheric CO2 concentration [CO2] on pastures and grazing lands are beginning to be researched, but these important systems remain understudied compared to other agronomic and forest ecosystems. Therefore, we conducted a long-term (2005-2015) study of bahiagrass (Paspalum notatum Flüggé) response to elevated [CO2] and fertility management. The study was conducted at the USDA-ARS, National Soil Dynamics Laboratory open-top field chamber facility, Auburn, AL. A newly established bahiagrass pasture was exposed to either ambient or elevated (ambient + 200 µmol mol-1) [CO2]. Following one year of pasture establishment, half the plots received a fertilizer treatment [N at 90 kg ha-1 three times yearly plus P, K, and lime as recommended by soil testing]; the remaining plots received no fertilization. These treatments were implemented to represent managed (M) and unmanaged (U) pastures; both are common in the southeastern US. Root cores (0-60 cm depth) were collected annually in October and processed using standard procedures. Fertility additions consistently increased both root length density (53.8%) and root dry weight density (68.2%) compared to unmanaged plots, but these root variables were generally unaffected by either [CO2] or its interaction with management. The results suggest that southern bahiagrass pastures could benefit greatly from fertilizer additions. However, bahiagrass pasture root growth is unlikely to be greatly affected by rising atmospheric [CO2], at least by those levels expected during this century.

11.
Pest Manag Sci ; 80(7): 3436-3444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38407460

RESUMEN

BACKGROUND: Ambrosia grayi is a perennial weed native to northern Mexico, which can also be found in the Great Plains of the US. Outside the Americas, A. grayi has only been documented in Israel, where it is currently categorized as a casual species at advanced eradication stages. Here, we studied the plant biology and chemical weed management options of A. grayi. RESULTS: Only large achenes of A. grayi (~5% of all achenes) contain seeds; moreover, the viability of seeds extracted from large achenes was ~25%. Examination of plant anatomy revealed that underground vegetative segments show an anatomical structure of stems (rhizomes) with anomalous secondary growth. The optimal (night/day) temperature for the emergence of A. grayi rhizomes was 20/30 °C, and the emergence rate increased under elevated temperatures. Emergence may occur at different soil moisture content (25-60%); rhizomes were able to emerge even after 1 month of drought conditions (20%, 25% and 30%). Herbicide combinations, such as fluroxypyr + glufosinate, fluroxypyr + glyphosate, and glyphosate + saflufenacil + surfactant, were tested under quarantine conditions and showed high efficacy for the control of A. grayi. However, the efficiency of these treatments was highly correlated with plant growth stage. CONCLUSION: In Israel, the spread of A. grayi occurs mainly via rhizomes that can emerge under a wide range of temperatures and soil moisture conditions. Data regarding herbicide efficacy will aid in improving the eradication efforts taken by Israel's Plant Protection and Inspection Services. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ambrosia , Herbicidas , Control de Malezas , Israel , Herbicidas/farmacología , Ambrosia/crecimiento & desarrollo , Ambrosia/fisiología , Malezas/crecimiento & desarrollo , Malezas/efectos de los fármacos , Malezas/fisiología , Especies Introducidas , Semillas/crecimiento & desarrollo
12.
Plant Biotechnol J ; 22(6): 1652-1668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38345936

RESUMEN

Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.


Asunto(s)
Oryza , Rizoma , Transcriptoma , Rizoma/genética , Rizoma/crecimiento & desarrollo , Rizoma/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Genoma de Planta/genética
13.
Int J Biol Macromol ; 254(Pt 1): 127818, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918602

RESUMEN

Lotus rhizome residue, a cell wall material produced during the production of lotus rhizome starch, has long been underutilized. This study aims to extract pectin-rich polysaccharides from the cell wall of lotus rhizome and investigate their gelation mechanism in order to improve their industrial applicability. The results indicated that both CP and MP (pectin extracted from crisp and mealy lotus rhizome) exhibited a highly linear low methoxyl pectin structure, with the primary linkage mode being →4)-GalpA-(1→. The pectin chains in MP were found to be more flexible than those in CP. Then the impact of Na+, D-glucono-d-lactone (GDL), urea, sodium dodecyl sulfate (SDS), either individually or in combination, on the rheological characteristics of gels was evaluated. The results indicated that gels induced by GDL exhibited favorable thermoreversible properties, whereas the thermoreversibility of Na+-induced gels is poor. In addition to hydrogen bonding and ionic interactions, hydrophobic interactions also play a significant role in the formation of pectin gels. This study offers theoretical guidance and methodologies to improve the utilization rate of lotus rhizome starch processing by-products, while also provides novel insights into the correlation between LMP structure and gelation mechanism.


Asunto(s)
Lotus , Pectinas , Pectinas/química , Lactonas/química , Rizoma/química , Almidón/análisis , Geles/química
14.
PeerJ ; 11: e16136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025722

RESUMEN

With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.


Asunto(s)
Rizoma , Sesquiterpenos , Proteómica , Sesquiterpenos/química , Suelo
15.
Front Genet ; 14: 1231413, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886686

RESUMEN

The evolution of geophytes in response to different environmental stressors is poorly understood largely due to the great morphological variation in underground plant organs, which includes species with rhizomatous structures or underground storage organs (USOs). Here we compare the evolution and ecological niche patterns of different geophytic organs in Solanum L., classified based on a functional definition and using a clade-based approach with an expert-verified specimen occurrence dataset. Results from PERMANOVA and Phylogenetic ANOVAs indicate that geophytic species occupy drier areas, with rhizomatous species found in the hottest areas whereas species with USOs are restricted to cooler areas in the montane tropics. In addition, rhizomatous species appear to be adapted to fire-driven disturbance, in contrast to species with USOs that appear to be adapted to prolonged climatic disturbance such as unfavorable growing conditions due to drought and cold. We also show that the evolution of rhizome-like structures leads to changes in the relationship between range size and niche breadth. Ancestral state reconstruction shows that in Solanum rhizomatous species are evolutionarily more labile compared to species with USOs. Our results suggest that underground organs enable plants to shift their niches towards distinct extreme environmental conditions and have different evolutionary constraints.

16.
Saudi J Biol Sci ; 30(11): 103824, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37869363

RESUMEN

Strategies to prevent the health abnormalities associated with the extensive use of MSG (monosodium glutamate) as a flavoring booster are badly needed. The current study was conducted to investigate oxidative stress, inflammation, and abnormal lipid profile as the main risk factors of neurotoxicity in MSG-exposed female albino rats. Besides, the effect of concurrent consumption of Zingiber officinale rhizomes powder was studied at low doses. Twenty rats (total) were split into 4 separate groups. The 1st group was a negative control group (without any treatment), while the others received 6 mg MSG/kg. The 2nd group was left untreated, whereas the 3rd and 4th groups were given a regular laboratory diet that included ginger rhizome powder supplements (GRP, 0.5 & 1%, respectively) for six weeks. In brain tissue homogenates, exposure to MSG caused a significant depletion of gamma-aminobutyric acid (GABA) and total protein levels, while triglycerides and cholesterol contents were significantly elevated. Moreover, a noteworthy upsurge in oxidative load and inflammation markers was also noticed associated with a marked reduction of antioxidant levels, which histopathological staining verified further. The rat diet formulated with GRP, with a dose-dependent effect, resulted in increased GABA and total protein contents and attenuated inflammation, oxidative stress, abnormal lipid profile, and marked histological changes in cerebral cortical neurons of MSG-administered animals. Therefore, this study reveals that GRP shields rats against the neurotoxicity that MSG causes. The anti-inflammatory as well as antioxidant, and lipid-normalizing properties of rhizomes of ginger may be accountable for their observed neuroprotective action.

17.
Plants (Basel) ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37687400

RESUMEN

Posidonia oceanica is a common seagrass in the Mediterranean Sea that is able to sequester large amounts of carbon. The carbon assimilated during photosynthesis can be partitioned into non-structural sugars and cell-wall polymers. In this study, we investigated the distribution of carbon in starch, soluble carbohydrates and cell-wall polymers in leaves and rhizomes of P. oceanica. Analyses were performed during summer and winter in meadows located south of the Frioul archipelago near Marseille, France. The leaves and rhizomes were isolated from plants collected in shallow (2 m) and deep water (26 m). Our results showed that P. oceanica stores more carbon as starch, sucrose and cellulose in summer and that this is more pronounced in rhizomes from deep-water plants. In winter, the reduction in photoassimilates was correlated with a lower cellulose content, compensated with a greater lignin content, except in rhizomes from deep-water plants. The syringyl-to-guaiacyl (S/G) ratio in the lignin was higher in leaves than in rhizomes and decreased in rhizomes in winter, indicating a change in the distribution or structure of the lignin. These combined data show that deep-water plants store more carbon during summer, while in winter the shallow- and deep-water plants displayed a different cell wall composition reflecting their environment.

18.
Ann Bot ; 132(2): 269-279, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37471454

RESUMEN

BACKGROUND AND AIMS: The response of subarctic grassland's below-ground to soil warming is key to understanding this ecosystem's adaptation to future climate. Functionally different below-ground plant organs can respond differently to changes in soil temperature (Ts). We aimed to understand the below-ground adaptation mechanisms by analysing the dynamics and chemistry of fine roots and rhizomes in relation to plant community composition and soil chemistry, along with the duration and magnitude of soil warming. METHODS: We investigated the effects of the duration [medium-term warming (MTW; 11 years) and long-term warming (LTW; > 60 years)] and magnitude (0-8.4 °C) of soil warming on below-ground plant biomass (BPB), fine root biomass (FRB) and rhizome biomass (RHB) in geothermally warmed subarctic grasslands. We evaluated the changes in BPB, FRB and RHB and the corresponding carbon (C) and nitrogen (N) pools in the context of ambient, Ts < +2 °C and Ts > +2 °C scenarios. KEY RESULTS: BPB decreased exponentially in response to an increase in Ts under MTW, whereas FRB declined under both MTW and LTW. The proportion of rhizomes increased and the C-N ratio in rhizomes decreased under LTW. The C and N pools in BPB in highly warmed plots under MTW were 50 % less than in the ambient plots, whereas under LTW, C and N pools in warmed plots were similar to those in non-warmed plots. Approximately 78 % of the variation in FRB, RHB, and C and N concentration and pools in fine roots and rhizomes was explained by the duration and magnitude of soil warming, soil chemistry, plant community functional composition, and above-ground biomass. Plant's below-ground biomass, chemistry and pools were related to a shift in the grassland's plant community composition - the abundance of ferns increased and BPB decreased towards higher Ts under MTW, while the recovery of below-ground C and N pools under LTW was related to a higher plant diversity. CONCLUSION: Our results indicate that plant community-level adaptation of below ground to soil warming occurs over long periods. We provide insight into the potential adaptation phases of subarctic grasslands.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Pradera , Rizoma , Biomasa , Plantas
19.
Plants (Basel) ; 12(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514251

RESUMEN

The orchid genus Brachystele Schltr. (Orchidoideae, Cranichideae, Spiranthinae) comprises 20 species distributed from Mexico to Argentina, with 10 species found in Brazil. Anatomical studies of Orchidoideae Lindl. have been scarce, and the anatomy and histochemistry of Brachystele are still largely unknown. In this study, we conducted a characterization of the vegetative organs of B. guayanensis (Lindl.) Schltr. using standard anatomical and histochemical microtechniques. In this study, we provide the first information about the anatomy and histochemistry of Brachystele. The studied species was observed to display anatomical characters commonly found in the vegetative organs of representatives of the Cranichideae tribe (e.g., uniseriate epidermis; homogeneous mesophyll with 6-11 layers; rhizomes with rings of fibers; vascular bundles in the form of "^" or "v"; fleshy roots with uniseriate velamen, simple trichomes, and spiranthosomes). Others can be interpreted as adaptive strategies conditioned by the environment and their terrestrial life form (e.g., cuticle thickness; amphistomatic leaves; roots with reduced velamen compared to the cortex (18-20 layers); and raphides). In this study, cataphylls, and the presence of spiranthosomes in leaves, including stomatal guard cells, as well as alkaloids in these structures, are anatomically described for the first time in Orchidaceae. The presence of hyphae and pelotons in the stem of B. guayanensis is described for the first time in Cranichideae. Histochemical tests confirmed the presence of lignin, proteins, and alkaloids, the lipidic nature of the cuticle, starch grains stored in spiranthosomes, and the composition of the raphides. Alkaloids were observed in abundance, particularly in the roots, suggesting a potential role in defense against pathogens and herbivores, as well as potential medicinal activities, as seen in phylogenetically related groups to Brachystele.

20.
Nat Prod Res ; : 1-6, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37403594

RESUMEN

From the EtOAc-soluble extract of the rhizomes of Zingiber montanum (J.Koenig) Link ex A.Dietr., a novel diphenylbutenoid, montadinin A (1) and a previously unreported phenylbutenoid compound, 1-(3,4-dimethoxyphenyl)but-3-en-2-ol (7), in natural source were isolated. Additionally, seven known phenylbutenoids were also identified. The structures of all compounds were elucidated through NMR spectroscopic interpretation. Compounds cis-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (2), cis-4-[(E)-3,4-dimethoxystyryl]-3-(2,4,5-trimethoxyphenyl)cyclohex-1-ene (3), trans-3-(3,4,-dimethoxyphenyl)-4-[(E)-2,4,5-trimethoxystyryl]cyclohex-1-ene (5), and cis-3-(3,4-dimethoxyphenyl)-4-[(Z)-2,4,5-trimethoxylstyryl]cyclohex-1-ene (6) showed weak cytotoxicity against HepG2 cells with IC50 values of 122.9, 127.3, 257.5, and 168.5 µM, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...