RESUMEN
Background: The Rho-kinase (ROCK) inhibitor Fasudil has shown symptomatic and disease-modifying effects in Parkinson's disease (PD) models in vitro and in vivo. In Japan, Fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995 and shows a favourable safety profile. Objectives/design: To investigate the safety, tolerability, and symptomatic efficacy of ROCK-inhibitor Fasudil in comparison to placebo in a randomized, national, multicenter, double-blind phase IIa study in patients with PD. Methods/analysis: We plan to include 75 patients with at least 'probable' PD (MDS criteria), Hoehn and Yahr stages 1-3, and age 30-80 years in 13 German study sites. Patients must be non-fluctuating and their response to PD medication must have been stable for 6 weeks. Patients will be randomly allocated to treatment with the oral investigational medicinal product (IMP) containing either Fasudil in two dosages, or placebo, for a total of 22 days. As primary analysis, non-inferiority of low/high dose of Fasudil on the combined endpoint consisting of occurrence of intolerance and/or treatment-related serious adverse events (SAEs) over 22 days will be assessed in a sequential order, starting with the lower dose. Secondary endpoints will include tolerability alone over 22 days and occurrence of treatment-related SAEs (SARs) over 22 and 50 days and will be compared on group level. Additional secondary endpoints include efficacy on motor and non-motor symptoms, measured on established scales, and will be assessed at several timepoints. Biomaterial will be collected to determine pharmacokinetics of Fasudil and its active metabolite, and to evaluate biomarkers of neurodegeneration. Ethics/registration/discussion: After positive evaluation by the competent authority and the ethics committee, patient recruitment started in the 3rd quarter of 2023. ROCK-PD is registered with Eudra-CT (2021-003879-34) and clinicaltrials.gov (NCT05931575). Results of this trial can pave way for conducting extended-duration studies assessing both symptomatic efficacy and disease-modifying properties of Fasudil.
RESUMEN
Resistance to radio and chemotherapy in Glioblastoma (GBM) is correlated with its malignancy, invasiveness, and aggressiveness. The Rho GTPase pathway plays important roles in these processes, but its involvement in the GBM response to genotoxic treatments remains unsolved. Inhibition of this signaling pathway has emerged as a promising approach for the treatment of CNS injuries and diseases, proving to be a strong candidate for therapeutic approaches. To this end, Rho-associated kinases (ROCK), classic downstream effectors of small Rho GTPases, were targeted for pharmacological inhibition using Y-27632 in GBM cells, expressing the wild-type or mutated p53 gene, and exposed to genotoxic stress by gamma ionizing radiation (IR) or cisplatin (PT). The use of the ROCK inhibitor (ROCKi) had opposite effects in these cells: in cells expressing wild-type p53, ROCKi reduced survival and DNA repair capacity (reduction of γH2AX foci and accumulation of strand breaks) after stress promoted by IR or PT; in cells expressing the mutant p53 protein, both treatments promoted longer survival and more efficient DNA repair, responses further enhanced by ROCKi. The target DNA repair mechanisms of ROCK inhibition were, respectively, an attenuation of NHEJ and NER pathways in wild-type p53 cells, and a stimulation of HR and NER pathways in mutant p53 cells. These effects were accompanied by the formation of reactive oxygen species (ROS) induced by genotoxic stress only in mutant p53 cells but potentiated by ROCKi and reversed by p53 knockdown. N-acetyl-L-cysteine (NAC) treatment or Rac1 knockdown completely eliminated ROCKi's p53-dependent actions, since ROCK inhibition specifically elevated Rac-GTP levels only in mutant p53 cells. Combining IR or PT and ROCKi treatments broadens our understanding of the sensitivity and resistance of, respectively, GBM expressing wild-type or mutant p53 to genotoxic agents. Our proposal may be a determining factor in improving the efficiency and assertiveness of CNS antitumor therapies based on ROCK inhibitors. SIGNIFICANCE: The use of ROCK inhibitors in association with radio or chemotherapy modulates GBM resistance and sensitivity depending on the p53 activity, suggesting the potential value of this protein as therapeutic target for tumor pre-sensitization strategies.
Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Daño del ADN , Línea Celular TumoralRESUMEN
Direct-transfer slow-cooling cryopreservation is a widely used method for bovine embryo cryopreservation. However, the transfer of cryopreserved embryos is associated with reduced pregnancy rates. Rho-associated coiled-coil containing kinase inhibitor (ROCKi) has shown promise in improving the viability of post-warmed vitrified bovine embryos. Our objective was to investigate the effects of ROCKi treatment prior to slow-cooling or after cryopreservation on embryo viability. In vitro produced bovine embryos (n = 571) were randomly assigned to one of five groups: No-cryopreservation control group (NC-C), C-C group were cryopreserved by slow-rate cooling without ROCKi at any point, R-C group were incubated with ROCKi for 2 h before cryopreservation, C-R group were not exposed to ROCKi prior to cryopreservation but were cultured with ROCKi after cryopreservation, and R-R group were exposed to ROCKi before and after cryopreservation. Treatment group was significantly associated with blastocoel re-expansion, hatching, and degeneration (P < 0.0001). Blastocoel re-expansion rates were lower (P < 0.05) in the C-C (75.2 ± 4.2%) and R-C (85.2 ± 4.7%) groups compared with the NC-C (99.0 ± 0.7%), C-R (94.7 ± 2.6%) and the R-R (94.5 ± 2.9%) groups. The median time to re-expansion was significantly slowest in the C-C group (650, 560-915 min), followed by the R-C group (538, 421-611 min), then the C-R and R-R groups were similar (291, 261-361 and 321, 271-371 min) and the NC-C group was the fastest (196, 161-230 min) (P < 0.05). Similarly, the post-thaw hatching rate was lower, and the median time to hatching slower in the C-C (58.1 ± 7.0%, 2,033, 1634-2820 min) and R-C (65.7 ± 6.9%, 1,853, 1494-2356 min) groups compared with the NC-C (81.7 ± 6.0%, 1,309, 1084-1514 min), C-R (77.2 ± 6.5%, 1,384, 1013-1754 min) and R-R (82.0 ± 5.3%, 1,209, 943-1424 min) groups. ROCKi supplementation after cryopreservation resulted in fewer degenerated embryos (C-R = 8.9 ± 2.8%, and R-R 7.1 ± 2.8%) compared to the C-C (26.8 ± 4.3%) and R-C (17.9 ± 5.7%) groups. Exposure to ROCKi both before cryopreservation and after-cryopreservation yielded the best outcomes, similar to NC-C control group without cryopreservation, and significantly better than the C-C control group without supplements. Exposure to ROCKi after cryopreservation demonstrated greater benefits compared to exposure before cryopreservation alone. These findings suggest that ROCKi can potentially enhance cryosurvival of bovine embryos.
Asunto(s)
Fertilización In Vitro , Quinasas Asociadas a rho , Embarazo , Femenino , Animales , Bovinos , Fertilización In Vitro/veterinaria , Criopreservación/veterinaria , Criopreservación/métodos , Blastocisto , VitrificaciónRESUMEN
Conjunctival disorders are multivariate degenerative ocular surface diseases that can jeopardize ocular function and impair visual capacity in severe cases. The recent development of stem cell technologies has shed a new light on the treatment of conjunctival disorders as the regenerative medicine using endogenous stem cells becomes a potential therapeutic strategy. However, the efficient in vitro expansion of the endogenous stem cells dominating the conjunctival regeneration, the conjunctival stem cells (CjSCs), remains challenging. Existing protocols largely adopted primary culture using feeder layers, which has limited efficiency and risk of contamination. Here, we report a protocol for the isolation and expansion of primary CjSCs derived from human or animal tissues. This protocol adopts collagenase-based enzymatic digestion to release the primary cells from conjunctival tissues and utilizes a feeder-free culture strategy based on a small molecule inhibitor cocktail that stimulates the expansion of CjSCs. The CjSCs generated with this method were rapidly dividing and highly homogeneous. They also expressed characteristic stem cell markers and exhibited differentiation potency. These findings marked an important step forward in building stable CjSCs in vitro expansion, which will help researchers better understand the biology of ocular surface stem cells and develop innovative regenerative medicine approaches for ocular surface diseases. This protocol was validated in: Biomaterials (2021), DOI: 10.1016/j.biomaterials.2020.120462 Graphical abstract.
RESUMEN
Interactions between trabecular meshwork (TM) cells and their extracellular matrix (ECM) are critical for normal outflow function in the healthy eye. Multifactorial dysregulation of the TM is the principal cause of elevated intraocular pressure that is strongly associated with glaucomatous vision loss. Key characteristics of the diseased TM are pathologic contraction and actin stress fiber assembly, contributing to overall tissue stiffening. Among first-line glaucoma medications, the Rho-associated kinase inhibitor (ROCKi) netarsudil is known to directly target the stiffened TM to improve outflow function via tissue relaxation involving focal adhesion and actin stress fiber disassembly. Yet, no in vitro studies have explored the effect of netarsudil on human TM (HTM) cell contractility and actin remodeling in a 3D ECM environment. Here, we use our bioengineered HTM cell-encapsulated ECM hydrogel to investigate the efficacy of different netarsudil-family ROCKi compounds on reversing pathologic contraction and actin stress fibers. Netarsudil and all related experimental ROCKi compounds exhibited significant ROCK1/2 inhibitory and focal adhesion disruption activities. Furthermore, all ROCKi compounds displayed potent contraction-reversing effects on HTM hydrogels upon glaucomatous induction in a dose-dependent manner, relatively consistent with their biochemical/cellular inhibitory activities. At their tailored EC50 levels, netarsudil-family ROCKi compounds exhibited distinct effect signatures of reversing pathologic HTM hydrogel contraction and actin stress fibers, independent of the cell strain used. Netarsudil outperformed the experimental ROCKi compounds in support of its clinical status. In contrast, at uniform EC50-levels using netarsudil as reference, all ROCKi compounds performed similarly. Collectively, our data suggest that netarsudil exhibits high potency to rescue HTM cell pathobiology in a tissue-mimetic 3D ECM microenvironment, solidifying the utility of our bioengineered hydrogel model as a viable screening platform to further our understanding of TM pathophysiology in glaucoma.
RESUMEN
Tumor radiofrequency ablation (RFA) is a local and minimally invasive application using high temperature to induce coagulative necrosis of tumor, which has been commonly used in clinic. Although the tumor fragments generated by RFA can activate the host's immune system, it may be insufficient to inhibit cancer recurrence due to many factors such as the inefficient antigen presentation by dendritic cells (DCs). In this research, a convenient local administration strategy by blocking rho-associated kinases (ROCK) is applied to amplify the immune responses triggered by RFA via promoting the phagocytosis capacity of DCs. Briefly, ROCK inhibitor, Y27632, is successfully dispersed in the amphiphilic copolymer poly(D,L-lactide-co-glycolide)-b-poly(ethyleneglycol)-b-poly(D,L-lactideco-glycolide) (PLGA-PEG-PLGA) solution, which is sol at room temperature and forms hydrogel quickly at body temperature, obviously prolonging the retention of Y27632 after injection. Interestingly, in the melanoma tumor model, the generated tumor fragments after RFA treatment are swallowed by DCs and undergo reinforced antigen presentation process with the help of gradual released Y27632, further effectively activating T cell mediated anti-tumor immune responses and significantly improving the therapeutic efficiency of RFA. Overall, such strategy remarkably prolongs the survival of mice after RFA treatment, showing great potential for clinical translation as an improvement strategy for RFA.
Asunto(s)
Neoplasias , Ablación por Radiofrecuencia , Animales , Hidrogeles , Inmunidad , Inmunoterapia , RatonesRESUMEN
Macrophages, the primary effector cells in the immune response, respond rapidly to the physical or chemical properties of biomaterial implants. Balanced macrophage polarization, phagocytosis, and migration would be beneficial for implant success and tissue regeneration. Here, we investigated macrophage phenotypic changes, phagocytosis, and migration in response to RGD functionalized surfaces and changes in stiffness of gellan gum hydrogels. We also inhibited the RhoA pathway. The compressive moduli ranged from ~5 to 30 kPa. Cell population and cell spreading area of classically activated macrophages (M(LPS)) and alternatively activated macrophages (M(IL-4)) are promoted on RGD modified hydrogel. ROCK inhibitor induced the opposite effect on the cell spreading of both M(LPS) and M(IL-4) macrophages on RGD modified hydrogels. Macrophage polarization was found to be stiffness-driven and regulated by the RGD motif and blocked by the RhoA pathway. RGD functionalized hydrogel shifted M(IL-4) cells toward a more pro-inflammatory phenotype, while ROCK inhibition shifted M(LPS) cells to a more anti-inflammatory phenotype. Both M(LPS) and M(IL-4) cells on untreated hydrogels shifted to a more pro-inflammatory phenotype in the presence of aminated-PS particles. The RGD motif had a significant impact on cellular uptake, whereas cellular uptake was stiffness driven on untreated hydrogels. Cell migration of M(LPS) and M(IL-4) cells had ROCK-dependent migration. The stiffness of gellan gum hydrogels had no influence on macrophage migration rate. Collectively, our results showed that gellan gum hydrogels can be used to direct immune response, macrophage infiltration, and phagocytosis.
Asunto(s)
Hidrogeles , Activación de Macrófagos , Hidrogeles/farmacología , Macrófagos , Oligopéptidos , Polisacáridos BacterianosRESUMEN
The Rho kinase (ROCK) inhibitor Fasudil is a promising drug for a disease-modifying therapy of amyotrophic lateral sclerosis (ALS). In preclinical models, Fasudil was shown to increase motor neuron survival, inhibit axonal degeneration, enhance axonal regeneration and modulate microglial function in vitro and in vivo. It prolonged survival and improved motor function of SOD1-G93A-mice. Recently, a phase IIa clinical trial has been commenced to investigate the safety, tolerability, and efficacy of Fasudil in ALS patients at an early stage of disease (ROCK-ALS trial, NCT03792490, Eudra-CT-Nr.: 2017-003676-31). Although Fasudil has been approved in Japan for many years for the treatment of vasospasms following subarachnoid hemorrhage and is known to have a favorable side effect profile in these patients, there is no data on its use in human patients with ALS or any other neurodegenerative conditions. Here, we report the first three cases of compassionate use of Fasudil in patients with ALS. Between May 2017 and February 2019, one male (66 years old) and two female (62 and 68 years old) subjects with probable or definite ALS according to the El Escorial criteria (one of the females having a pathogenic SOD1 mutation) were administered Fasudil 30 mg intravenously twice daily over 45 min on 20 consecutive working days. Blood pressure, heart rate and routine laboratory tests were constantly controlled. All three subjects tolerated the Fasudil infusions well without any obvious side effects. Interestingly, the slow vital capacity showed a significant increase in one of the patients. Taken together, we report here the first compassionate use of the ROCK inhibitor Fasudil in three ALS patients, which was well-tolerated.
RESUMEN
During bone marrow stromal cell (BMSC) differentiation, both Wnt signaling and the development of a rigid cytoskeleton promote commitment to the osteoblastic over adipogenic lineage. ß-catenin plays a critical role in the Wnt signaling pathway to facilitate downstream effects on gene expression. We show that ß-catenin was additive with cytoskeletal signals to prevent adipogenesis, and ß-catenin knockdown promoted adipogenesis even when the actin cytoskeleton was depolymerized. ß-catenin also prevented osteoblast commitment in a cytoskeletal-independent manner, with ß-catenin knockdown enhancing lineage commitment. Chromatin immunoprecipitation (ChIP)-sequencing demonstrated binding of ß-catenin to the promoter of enhancer of zeste homolog 2 (EZH2), a key component of the polycomb repressive complex 2 (PRC2) complex that catalyzes histone methylation. Knockdown of ß-catenin reduced EZH2 protein levels and decreased methylated histone 3 (H3K27me3) at osteogenic loci. Further, when EZH2 was inhibited, ß-catenin's anti-differentiation effects were lost. These results indicate that regulating EZH2 activity is key to ß-catenin's effects on BMSCs to preserve multipotentiality. © 2020 American Society for Bone and Mineral Research.
Asunto(s)
Células de la Médula Ósea , Proteína Potenciadora del Homólogo Zeste 2 , Células Madre Mesenquimatosas , beta Catenina/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Cateninas , Diferenciación Celular , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis , Complejo Represivo Polycomb 2/metabolismo , Vía de Señalización WntRESUMEN
Rho-associated protein kinase (ROCK) signaling correlates with cell shape, with decreased cell spreading accompanied by decreased ROCK activity. However, how cell shape and ROCK activity impact the chondrogenesis of mesenchymal stem cells (MSCs) remains inconclusive. Here we examine the effects of ROCK inhibition on human MSC chondrogenesis in four different culture models, including three-dimensional (3D) microribbon (µRB) scaffolds, two-dimensional hydrogel (2D-HG) substrates, 3D hydrogels (3D-HGs), and pellet. For each culture model involving biomaterials, four polymers were compared, including gelatin, chondroitin sulfate, hyaluronic acid, and polyethylene glycol. ROCK inhibition decreased MSC chondrogenesis in µRB model, enhanced chondrogenesis in pellet, and had minimal effect in 2D-HG or 3D-HG models. Furthermore, we demonstrate that MSC chondrogenesis cannot be predicted using ROCK signaling alone. While varying biomaterial compositions can impact the amount or phenotype of resulting cartilage, varying biomaterials did not change the chondrogenic response to ROCK inhibition within each culture model. Regardless of culture model or ROCK expression, increased cartilage formation was always accompanied by enhanced N-cadherin expression and production, suggesting that N-cadherin is a robust marker to select culture conditions that promote chondrogenesis. Together, the results from this study may be used to enhance MSC-based cartilage regeneration in different culture models. Impact Statement Here we assessed the effects of Rho-associated protein kinase (ROCK) inhibition on mesenchymal stem cell (MSC) chondrogenesis in different culture models, including three-dimensional (3D) microribbon scaffolds, two-dimensional hydrogel substrates, 3D hydrogels, and pellet culture. Our results demonstrate that effects of ROCK inhibition on MSC chondrogenesis differ substantially depending on culture models. Furthermore, MSC chondrogenesis cannot be predicted using ROCK signaling alone. The results from this study fill in a gap of knowledge in the correlation between ROCK signaling and MSC chondrogenesis, which may be used to enhance MSC-based cartilage regeneration in different culture models.
Asunto(s)
Condrogénesis/fisiología , Células Madre Mesenquimatosas/citología , Polímeros/química , Cadherinas/química , Células Cultivadas , Condrogénesis/genética , Humanos , Hidrogeles , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido/químicaRESUMEN
Transforming growth factor (TGF)-ß-induced myofibroblast transformation and alterations in mesenchymal-epithelial interactions contribute to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Rho-associated coiled-coil-forming protein kinase (ROCK) consists as two isoforms, ROCK1 and ROCK2, and both are playing critical roles in many cellular responses to injury. In this study, we aimed to elucidate the differential role of ROCK isoforms on TGF-ß signaling in lung fibrosis and repair. For this purpose, we tested the effect of a non-selective ROCK 1 and 2 inhibitor (compound 31) and a selective ROCK2 inhibitor (compound A11) in inhibiting TGF-ß-induced remodeling in lung fibroblasts and slices; and dysfunctional epithelial-progenitor interactions in lung organoids. Here, we demonstrated that the inhibition of ROCK1/2 with compound 31 represses TGF-ß-driven actin remodeling as well as extracellular matrix deposition in lung fibroblasts and PCLS, whereas selective ROCK2 inhibition with compound A11 did not. Furthermore, the TGF-ß induced inhibition of organoid formation was functionally restored in a concentration-dependent manner by both dual ROCK 1 and 2 inhibition and selective ROCK2 inhibition. We conclude that dual pharmacological inhibition of ROCK 1 and 2 counteracts TGF-ß induced effects on remodeling and alveolar epithelial progenitor function, suggesting this to be a promising therapeutic approach for respiratory diseases associated with fibrosis and defective lung repair.
RESUMEN
Tumor stem cells and malignant multicellular networks have been separately implicated in the therapeutic resistance of glioblastoma multiforme (GBM), the most aggressive type of brain cancer in adults. Here, we show that small-molecule inhibition of RHO-associated serine/threonine kinase proteins (ROCKi) significantly promoted the outgrowth of neurite-like cell projections in cultures of heterogeneous patient-derived GBM stem-like cells. These projections formed de novo-induced cellular network (iNet) 'webs', which regressed after withdrawal of ROCKi. Connected cells within the iNet web exhibited long range Ca2+ signal transmission, and significant lysosomal and mitochondrial trafficking. In contrast to their less-connected vehicle control counterparts, iNet cells remained viable and proliferative after high-dose radiation. These findings demonstrate a link between ROCKi-regulated cell projection dynamics and the formation of radiation-resistant multicellular networks. Our study identifies means to reversibly induce iNet webs ex vivo, and may thereby accelerate future studies into the biology of GBM cellular networks.
Asunto(s)
Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Neuritas/metabolismo , Señalización del Calcio/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Humanos , Immunoblotting , Lisosomas/metabolismo , Mitocondrias/metabolismo , Proyección Neuronal/fisiología , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
Objectives: Disease-modifying therapies for amyotrophic lateral sclerosis (ALS) are still not satisfactory. The Rho kinase (ROCK) inhibitor fasudil has demonstrated beneficial effects in cell culture and animal models of ALS. For many years, fasudil has been approved in Japan for the treatment of vasospasm in patients with subarachnoid hemorrhage with a favorable safety profile. Here we describe a clinical trial protocol to repurpose fasudil as a disease-modifying therapy for ALS patients. Methods: ROCK-ALS is a multicenter, double-blind, randomized, placebo-controlled phase IIa trial of fasudil in ALS patients (EudraCT: 2017-003676-31, NCT: 03792490). Safety and tolerability are the primary endpoints. Efficacy is a secondary endpoint and will be assessed by the change in ALSFRS-R, ALSAQ-5, slow vital capacity (SVC), ECAS, and the motor unit number index (MUNIX), as well as survival. Efficacy measures will be assessed before (baseline) and immediately after the infusion therapy as well as on days 90 and 180. Patients will receive a daily dose of either 30 or 60 mg fasudil, or placebo in two intravenous applications for a total of 20 days. Regular assessments of safety will be performed throughout the treatment period, and in the follow-up period until day 180. Additionally, we will collect biological fluids to assess target engagement and evaluate potential biomarkers for disease progression. A total of 120 patients with probable or definite ALS (revised El Escorial criteria) and within 6-18 months of the onset of weakness shall be included in 16 centers in Germany, Switzerland and France. Results and conclusions: The ROCK-ALS trial is a phase IIa trial to evaluate the ROCK-inhibitor fasudil in early-stage ALS-patients that started patient recruitment in 2019.
RESUMEN
Tendon stem/progenitor cells (TSPC) are potential targets for regenerative medicine and the treatment of tendon injuries. The frequency of such injuries increases in elderly patients while the proportion of functional TSPCs in tendon tissue decreases, protracting tendon repair. Using atomic force microscopy (AFM), we show that cell stiffness and size increase in TSPCs isolated from elderly patients (A-TSPC) compared to TSPCs from younger patients (Y-TSPC). Additionally, two-photon excited fluorescence (TPEF) microscopy revealed a denser, well-structured actin cytoskeleton in A-TSPC, which correlates with the augmented cell stiffness. Treating A-TSPC with ROCK-inhibitor, reverses these age-related changes, and has rejuvenating effect on cell morphology and stiffness. We assume that cellular stiffness is a suitable marker for cell aging and ROCK a potential target for therapeutic applications of cell rejuvenation.
Asunto(s)
Amidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Células Madre/citología , Tendones/citología , Quinasas Asociadas a rho/antagonistas & inhibidores , Adulto , Anciano , Fenómenos Biomecánicos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Módulo de Elasticidad/efectos de los fármacos , Humanos , Persona de Mediana Edad , Rejuvenecimiento , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Tendones/efectos de los fármacos , Tendones/metabolismo , Adulto Joven , Quinasas Asociadas a rho/metabolismoRESUMEN
Neurodegenerative disorders like Parkinson's disease, Alzheimer's disease, or amyotrophic lateral sclerosis are affecting a rapidly increasing population worldwide. While common pathomechanisms such as protein aggregation, axonal degeneration, dysfunction of protein clearing and an altered immune response have been characterized, no disease-modifying therapies have been developed so far. Interestingly, a significant involvement of the Rho kinase (ROCK) signaling pathway has been described in all of these mechanisms making it a promising target for new therapeutic approaches. In this article, we first review current knowledge of the involvement of ROCK in neurodegenerative disorders and the utility of its inhibition as a disease-modifying therapy in different neurodegenerative disorders. After a detailed description of the biochemical characteristics of ROCK and its molecular interactors, differences of ROCK-expression under physiological and pathological conditions are compared. Next, different pharmacological and molecular-genetic strategies to inhibit ROCK-function are discussed, focusing on pharmacological ROCK-inhibitors. The role of the ROCK-pathway in cellular processes that are central in neurodegenerative disorders pathology like axonal degeneration, autophagy, synaptic and glial function is explained in detail. Finally, all available data on ROCK-inhibition in different animal models of neurodegenerative disorders is reviewed and first approaches for translation into human patients are discussed. Taken together, there is now extensive evidence from preclinical studies in several neurodegenerative disorders that characterize ROCK as a promising drug target for further translational research in neurodegenerative disorders.
Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/fisiologíaRESUMEN
In our previous study, we uncovered a novel mechanism in which amelioration of Hutchinson-Gilford progeria syndrome (HGPS) phenotype is mediated by mitochondrial functional recovery upon rho-associated protein kinase (ROCK) inhibition. However, it remains elusive whether this mechanism is also applied to the amelioration of normal aging cells. In this study, we used Y-27632 and fasudil as effective ROCK inhibitors, and examined their role in senescence. We found that ROCK inhibition induced the functional recovery of the mitochondria as well as the metabolic reprogramming, which are two salient features that are altered in normal aging cells. Moreover, microarray analysis revealed that the up-regulated pathway upon ROCK inhibition is enriched for chromatin remodeling genes, which may play an important role in the alleviation of senescence-associated cell cycle arrest. Indeed, ROCK inhibition induced cellular proliferation, concomitant with the amelioration of senescent phenotype. Furthermore, the restorative effect by ROCK inhibition was observed in vivo as evidenced by the facilitated cutaneous wound healing. Taken together, our data indicate that ROCK inhibition might be utilized to ameliorate normal aging process and to treat age-related disease.
Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Amidas/farmacología , Senescencia Celular/efectos de los fármacos , Piridinas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Niño , Cromatina/genética , Fibroblastos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Progeria/patologíaRESUMEN
OBJECTIVES: Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can generate any given cell type in the human body. One challenge for cell-replacement therapy is the efficient differentiation and expansion of large quantities of progenitor cells from pluripotent stem cells produced under good manufacturing practice (GMP). FOXA2 and SOX17 double positive definitive endoderm (DE) progenitor cells can give rise to all endoderm-derived cell types in the thymus, thyroid, lung, pancreas, liver, and gastrointestinal tract. FOXA2 is a pioneer transcription factor in DE differentiation that is also expressed and functionally required during pancreas development and islet cell homeostasis. Current differentiation protocols can successfully generate endoderm; however, generation of mature glucose-sensitive and insulin-secreting ß-cells is still a challenge. As a result, it is of utmost importance to screen for small molecules that can improve DE and islet cell differentiation for cell-replacement therapy for diabetic patients. METHODS: The aim of this study was to identify and validate small molecules that can induce DE differentiation and further enhance pancreatic progenitor differentiation. Therefore, we developed a large scale, high-content screen for testing a chemical library of 23,406 small molecules to identify compounds that induce FoxA2 in mouse embryonic stem cells (mESCs). RESULTS: Based on our high-content screen algorithm, we selected 84 compounds that directed differentiation of mESCs towards the FoxA2 lineage. Strikingly, we identified ROCK inhibition (ROCKi) as a novel mechanism of endoderm induction in mESCs and hESCs. DE induced by the ROCK inhibitor Fasudil efficiently gives rise to PDX1+ pancreatic progenitors from hESCs. CONCLUSION: Taken together, DE induction by ROCKi can simplify and improve current endoderm and pancreatic differentiation protocols towards a GMP-grade cell product for ß-cell replacement.
Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Diferenciación Celular/efectos de los fármacos , Endodermo/citología , Células Madre Pluripotentes Inducidas/citología , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Células Cultivadas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Transactivadores/genética , Transactivadores/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidoresRESUMEN
PURPOSE: Retinal detachment disrupts the rod-bipolar synapse in the outer plexiform layer by retraction of rod axons. We showed that breakage is due to RhoA activation whereas inhibition of Rho kinase (ROCK), using Y27632, reduces synaptic damage. We test whether the ROCK inhibitor fasudil, used for other clinical applications, can prevent synaptic injury after detachment. METHODS: Detachments were made in pigs by subretinal injection of balanced salt solution (BSS) or fasudil (1, 10 mM). In some animals, fasudil was injected intravitreally after BSS-induced detachment. After 2 to 4 hours, retinae were fixed for immunocytochemistry and confocal microscopy. Axon retraction was quantified by imaging synaptic vesicle label in the outer nuclear layer. Apoptosis was analyzed using propidium iodide staining. For biochemical analysis by Western blotting, retinal explants, detached from retinal pigmented epithelium, were cultured for 2 hours. RESULTS: Subretinal injection of fasudil (10 mM) reduced retraction of rod spherules by 51.3% compared to control detachments (n = 3 pigs, P = 0.002). Intravitreal injection of 10 mM fasudil, a more clinically feasible route of administration, also reduced retraction (28.7%, n = 5, P < 0.05). Controls had no photoreceptor degeneration at 2 hours, but by 4 hours apoptosis was evident. Fasudil 10 mM reduced pyknotic nuclei by 55.7% (n = 4, P < 0.001). Phosphorylation of cofilin and myosin light chain, downstream effectors of ROCK, was decreased with 30 µM fasudil (n = 8-10 explants, P < 0.05). CONCLUSIONS: Inhibition of ROCK signaling with fasudil reduced photoreceptor degeneration and preserved the rod-bipolar synapse after retinal detachment. TRANSLATIONAL RELEVANCE: These results support the possibility, previously tested with Y27632, that ROCK inhibition may attenuate synaptic damage in iatrogenic detachments.
RESUMEN
Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.
RESUMEN
PURPOSE: Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell-derived RPE (hESC-RPE) attachment, proliferation, and wound closure. METHODS: H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. RESULTS: Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. CONCLUSIONS: ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. TRANSLATIONAL RELEVANCE: Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies.