Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1716: 464641, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241897

RESUMEN

Separation of xylene isomers remains one of the most important and challenging applications of adsorption-based separations in petrochemical industry. Despite the sustainable success of zeolite-based separations a search for efficient adsorbents selective for xylenes, especially para-xylene, is constantly ongoing. In this work, a potentially scalable chromatographic separation of all three xylenes was achieved on graphitic carbon sorbents, including a self-packed sorbent based on an oligo-graphene. A curious feature of this separation is stronger retention of para-xylene than meta- and, in some conditions, even than ortho-xylene. Noticeably, separation selectivity between para- and meta-isomers does not depend on temperature. Apparently, lower entropy of para-xylene in solution due to its higher molecular symmetry leads to a lesser adsorption entropy loss, which makes its adsorption statistically more likely. The concept of using carbon adsorbents for entropy driven chromatography separations may be useful for the isolation of xylenes from their mixture and, possibly, for other positional isomers separation.


Asunto(s)
Grafito , Xilenos , Entropía , Carbono
2.
Entropy (Basel) ; 21(5)2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33267168

RESUMEN

A convenient practical model for accurately estimating the total entropy (ΣSi) of atmospheric gases based on physical action is proposed. This realistic approach is fully consistent with statistical mechanics, but reinterprets its partition functions as measures of translational, rotational, and vibrational action or quantum states, to estimate the entropy. With all kinds of molecular action expressed as logarithmic functions, the total heat required for warming a chemical system from 0 K (ΣSiT) to a given temperature and pressure can be computed, yielding results identical with published experimental third law values of entropy. All thermodynamic properties of gases including entropy, enthalpy, Gibbs energy, and Helmholtz energy are directly estimated using simple algorithms based on simple molecular and physical properties, without resource to tables of standard values; both free energies are measures of quantum field states and of minimal statistical degeneracy, decreasing with temperature and declining density. We propose that this more realistic approach has heuristic value for thermodynamic computation of atmospheric profiles, based on steady state heat flows equilibrating with gravity. Potentially, this application of an action principle can provide better understanding of emergent properties of many natural or evolving complex systems, including modelling of predictions for global warming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...