Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 794
Filtrar
1.
Inflammation ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110363

RESUMEN

Diabetic kidney disease (DKD) is the most significant complication in diabetic patients, ultimately leading to renal fibrosis. The most important manifestation of DKD is the epithelial-mesenchymal transition (EMT) of renal tubular cells, which can lead to renal fibrosis and inflammatory injury in special situations. Sphingosine 1-phosphate (S1P) is involved in various signal transduction pathways and plays a role through G protein-coupled receptors. Research has demonstrated that blocking the S1P / S1PR2 pathway inhibits inflammation and fibrosis. However, the interaction between S1P/S1PR1 and the pathophysiology of EMT remains ambiguous. The purpose of this study was to investigate the mechanism of S1P/S1PR1 on high glucose (HG)-induced renal EMT. We found that HG markedly increased the S1P and EMT marker levels in renal tubular epithelial cells. At the same time, HG could stimulate NF-κB/ROS/NLRP3 expression, but these phenomena were reversed after blocking S1PR1. In mice models of DKD, FTY720 (S1P antagonist) could significantly improve renal function and reduce the infiltration of inflammatory cells. ROS, as well as NLPR3 inflammasome, were markedly decreased in the treatment group. FTY720 inhibits extracellular matrix synthesis and improves renal fibrosis. In brief, the HG stimulates S1P/S1PR1 synthesis and activates the S1P/S1PR1 pathway. Through the S1P/S1PR1 pathway, activates NF-κB, promotes ROS generation and NLRP3 inflammasome activation, and ultimately causes EMT.

2.
Am J Ophthalmol Case Rep ; 36: 102124, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39156909

RESUMEN

Purpose: This case report highlights the importance of monitoring ocular health for patients starting on siponimod treatment, a sphingosine-1-phosphate receptor modulator, for relapsing-remitting multiple sclerosis. By showing how medication adverse events present in patients, we can revisit the current guidelines on ophthalmic evaluation recommendations. Observations: We report a 60-year-old patient who presented with unilateral blurry vision upon initiating siponimod therapy for the treatment of relapsing-remitting multiple sclerosis. Her exam findings did not show visual field defects but were significant for cystoid macular edema distorting the foveal contour. Upon stopping siponimod therapy, the patient's macular edema and symptoms resolved significantly within 7 days and completely resolved 1 month later. Conclusions and importance: This case showcases siponimod-associated cystoid macular edema in a patient without known risk factors, such as diabetes mellitus and uveitis. The patient also had the earliest reported symptom onset to date following the initiation of siponimod therapy. Current recommendations from the American Academy of Ophthalmology and FDA stress the importance of ophthalmic evaluation three to four months after treatment initiation for patients with a history of risk factors. Given our current case and its comparison with four previously reported cases, we recommend that physicians inform patients of possible ocular adverse events with siponimod therapy regardless of their past medical history and duration of treatment.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39031837

RESUMEN

AIM: Clinical studies following a first episode of psychosis (FEP) have increasingly exposed the complexity of identifying predictive outcome variables. We aimed to explore the utility of NEET status (not in education, employment or training) at FEP onset in predicting high threshold clinical remission (absence of positive symptoms and off antipsychotic medication for 6 months) at 3 years following treatment with an early intervention for psychosis service. METHODS: We studied an established retrospective naturalistic cohort of 354 patients with FEP (the S1P cohort). RESULTS: Baseline NEET status was identified in 172 patients (49%) and was significantly associated with mean duration of untreated psychosis (p = .035). Only 64 (21%) achieved defined remission criteria by 3 years. Multivariate logistic regression analysis revealed baseline NEET status as the only variable significantly associated with remission status (p < .001). CONCLUSION: NEET may represent an important predictive variable of symptomatic outcomes which requires prospective evaluation.

4.
Gen Comp Endocrinol ; 357: 114593, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047797

RESUMEN

Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.

5.
Neurobiol Dis ; 199: 106585, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955289

RESUMEN

Sphingosine-1 phosphate (S1P) is a lipid metabolite regulating diverse biological processes, including proliferation, differentiation, migration, and apoptosis, highlighting its physiological and therapeutic significance. Current S1P-based therapeutic approaches primarily focus on modulating the downstream signalling via targeting S1P receptors, however, this is challenged by incomplete receptor internalisation. Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that "gatekeeps" the final step of S1P degradation. Cognisant of the complex ligand and receptor interaction and dynamic metabolic networks, the selective modulation of SPL activity presents a new opportunity to regulate S1P biosynthesis and reveal its role in various systems. Over the past decade, an evolving effort has been made to identify new molecules that could block SPL activity in vitro or in vivo. This review focuses on summarising the current understanding of the reported SPL inhibitors identified through various screening approaches, discussing their efficacy in diverse model systems and the possible mechanism of action. Whilst effective modulation of S1P levels via inhibiting SPL is feasible, the specificity of those inhibitors remains inconclusive, presenting a clear challenge for future implications. Yet, none of the currently available SPL inhibitors is proven effective in elevating S1P levels within the central nervous system. This review article embraces future research focusing on investigating selective SPL inhibitors with high potency and possibly blood-brain-barrier permeability, which would aid the development of new S1P-based therapeutics for neurological disorders.


Asunto(s)
Aldehído-Liasas , Lisofosfolípidos , Esfingosina , Aldehído-Liasas/metabolismo , Aldehído-Liasas/antagonistas & inhibidores , Humanos , Animales , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
6.
J Gastroenterol ; 59(9): 761-787, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980426

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), continues to challenge treatment paradigms. Advancements in therapeutic options have been have been driven by Phase 2 and 3 clinical trials of new drug classes, particularly sphingosine-1-phosphate (S1P) modulators and interleukin-23 (IL-23) inhibitors. METHODS: This review synthesizes findings from Phase 2 and 3 clinical trials conducted up to early 2024, focusing on the impact of S1P modulators and IL-23 inhibitors on IBD management. Drugs such as ozanimod, etrasimod, risankizumab, mirikizumab, guselkumab, and brasikumab were evaluated for their efficacy and safety profiles. RESULTS: S1P modulators, such as ozanimod and etrasimod, effectively regulate immune cell trafficking to reduce inflammation and several trials highlight their clinical effectiveness in both inducing and maintaining remission in IBD, highlighting its long-term safety and sustained therapeutic effects. Additionally, IL-23 inhibitors including risankizumab, mirikizumab, and guselkumab, which disrupt key inflammatory cytokine pathways, have already shown significant effectiveness in inducing and maintaining remission in both CD and UC, with favorable safety profiles across multiple studies, suggesting their potential as critical components in managing IBD. CONCLUSIONS: The clinical trials indicate that both S1P modulators and IL-23 inhibitors offer promising therapeutic benefits and maintain strong safety profiles, positioning them as potential cornerstone treatments for IBD. Despite these advancements, further exploration into long-term safety and the development of personalized treatment strategies is essential for maximizing clinical outcomes.


Asunto(s)
Ensayos Clínicos Fase II como Asunto , Interleucina-23 , Humanos , Interleucina-23/antagonistas & inhibidores , Ensayos Clínicos Fase III como Asunto , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Enfermedad de Crohn/tratamiento farmacológico , Fármacos Gastrointestinales/uso terapéutico , Fármacos Gastrointestinales/farmacología
7.
Front Pharmacol ; 15: 1407347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045057

RESUMEN

Background: Pain is a complex perception involving unpleasant somatosensory and emotional experiences. However, the underlying mechanisms that mediate its different components remain unclear. Sphingosine-1-phosphate (S1P), a metabolite of sphingomyelin and a potent lipid mediator, initiates signaling via G protein-coupled receptors (S1PRs) on cell surfaces. It serves as a second messenger in cellular processes such as proliferation and apoptosis. Nevertheless, the neuropharmacology of sphingolipid signaling in pain conditions within the central nervous system remains largely unexplored and controversial. Methods: Chronic nociceptive pain models were induced in vivo by intraplantar injection of 20 µL complete Freund's adjuvant (CFA) into the left hind paws. We assessed S1P and S1PR1 expression in the spinal cords of CFA model mice. Functional antagonists of S1PR1 or S1PR1-specific siRNA were administered daily following CFA model establishment. Paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL) were measured to evaluate mechanical allodynia and thermal hyperalgesia, respectively. RT-PCR assessed interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels. Western blotting and immunofluorescence were used to analyze glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), STAT3, ERK, and p38 MAPK protein expression. Results: In the chronic nociceptive pain model induced by CFA, S1P and S1PR1 expression levels were significantly elevated, leading to activation of spinal cord glial cells. S1PR1 activation also promoted MMP2-mediated cleavage of mature IL-1ß. Additionally, S1PR1 activation upregulated phosphorylation of STAT3, ERK, and p38 MAPK in glial cells, profoundly impacting downstream signaling pathways and contributing to chronic nociceptive pain. Conclusion: The S1P/S1PR1 axis plays a pivotal role in the cellular and molecular mechanisms underlying nociceptive pain. This signaling pathway modulates glial cell activation and the expression of pain-related genes (STAT3, ERK, p38 MAPK) and inflammatory factors in the spinal dorsal horn. These findings underscore the potential of targeting the S1P system for developing novel analgesic therapies.

8.
Toxicol Appl Pharmacol ; 490: 117043, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059506

RESUMEN

AIMS: Depression is a potentially fatal illness affecting millions of individuals worldwide, across all age groups. Neuroinflammation is a key factor in depression development. Paclitaxel (PXL), a well-known chemotherapeutic agent has been used as therapy for several types of cancer. This study aims to evaluate the ameliorative effect of low-dose PXL against lipopolysaccharide (LPS)-induced depression in rats. MATERIALS AND METHODS: Adult male Sprague-Dawley rats were administrated a single dose of LPS (5 mg/kg, i.p.); 2 h later, rats received PXL (0.3 mg/kg, i.p. three times/week) for one week. KEY FINDINGS: Low-dose PXL alleviated LPS-induced depressive-like behavior in rats as evidenced by significantly improving behavioral changes in both forced swim test (FST) and open field test (OFT), successfully mitigated depletion of monoamines (serotonin, norepinephrine, and dopamine), in addition to markedly decreasing lipid peroxidation with antioxidant levels elevation in brain tissues. Low-dose PXL substantially decreased inflammation triggered by LPS in brain tissue via repressing the expression of NLRP3 and its downstream markers level, caspase-1 and IL-1ß jointly with a corresponding decrease in proinflammatory cytokine levels (TNF-α). Furthermore, low-dose PXL remarkably down-regulated Sphk1/S1P signaling pathway. Concurrent with these biochemical findings, there was a noticeable improvement in the brain tissue's histological changes. SIGNIFICANCE: These findings prove the role of low-dose PXL in treatment of LPS-induced neuroinflammation and depressive-like behavior through their anti-depressant, antioxidant and anti-inflammatory actions. The suggested molecular mechanism may entail focusing the interconnection among Sphk1/S1P, and NLRP3/caspase-1/IL-1ß signaling pathways. Hence PXL could be used as a novel treatment against LPS-induced depression.


Asunto(s)
Caspasa 1 , Depresión , Interleucina-1beta , Lipopolisacáridos , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Paclitaxel , Ratas Sprague-Dawley , Transducción de Señal , Animales , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/toxicidad , Transducción de Señal/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Depresión/metabolismo , Caspasa 1/metabolismo , Interleucina-1beta/metabolismo , Ratas , FN-kappa B/metabolismo , Paclitaxel/toxicidad , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Conducta Animal/efectos de los fármacos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antiinflamatorios/farmacología
9.
Acta Pharmacol Sin ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914678

RESUMEN

Thymic egress is a crucial process for thymocyte maturation, strictly regulated by sphingosine-1-phosphate lyase (S1PL). Recently, cystathionine γ-lyase (CSE), one of the enzymes producing hydrogen sulfide (H2S), has emerged as a vital immune process regulator. However, the molecular connection between CSE, H2S and thymic egress remains largely unexplored. In this study, we investigated the regulatory function of CSE in the thymic egress of immune cells. We showed that genetic knockout of CSE or pharmacological inhibition by CSE enzyme inhibitor NSC4056 or D,L-propargylglycine (PAG) significantly enhanced the migration of mature lymphocytes and monocytes from the thymus to the peripheral blood, and this redistribution effect could be reversed by treatment with NaHS, an exogenous donor of H2S. In addition, the CSE-generated H2S significantly increased the levels of S1P in the peripheral blood, thymus and spleen of mice, suppressed the production of proinflammatory cytokines and rescued pathogen-induced sepsis in cells and in vivo. Notably, H2S or polysulfide inhibited S1PL activity in cells and an in vitro purified enzyme assay. We found that this inhibition relied on a newly identified C203XC205 redox motif adjacent to the enzyme's active site, shedding light on the biochemical mechanism of S1PL regulation. In conclusion, this study uncovers a new function and mechanism for CSE-derived H2S in thymic egress and provides a potential drug target for treating S1P-related immune diseases.

10.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928268

RESUMEN

Human corneal fibrosis can lead to opacity and ultimately partial or complete vision loss. Currently, corneal transplantation is the only treatment for severe corneal fibrosis and comes with the risk of rejection and donor shortages. Sphingolipids (SPLs) are known to modulate fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to both, transforming growth factor beta (TGF-ß) signaling and corneal fibrogenesis. The aim of this study was to investigate the effects of sphingosine-1-phosphate (S1P) and S1P inhibition on specific TGF-ß and SPL family members in corneal fibrosis. Healthy human corneal fibroblasts (HCFs) were isolated and cultured in EMEM + FBS + VitC (construct medium) on 3D transwells for 4 weeks. The following treatments were prepared in a construct medium: 0.1 ng/mL TGF-ß1 (ß1), 1 µM sphingosine-1-phosphate (S1P), and 5 µM Sphingosine kinase inhibitor 2 (I2). Five groups were tested: (1) control (no treatment); rescue groups; (2) ß1/S1P; (3) ß1/I2; prevention groups; (4) S1P/ß1; and (5) I2/ß1. Each treatment was administered for 2 weeks with one treatment and switched to another for 2 weeks. Using Western blot analysis, the 3D constructs were examined for the expression of fibrotic markers, SPL, and TGF-ß signaling pathway members. Scratch assays from 2D cultures were also utilized to evaluate cell migration We observed reduced fibrotic expression and inactivation of latent TGF-ß binding proteins (LTBPs), TGF-ß receptors, Suppressor of Mothers Against Decapentaplegic homologs (SMADs), and SPL signaling following treatment with I2 prevention and rescue compared to S1P prevention and rescue, respectively. Furthermore, we observed increased cell migration following stimulation with I2 prevention and rescue groups, with decreased cell migration following stimulation with S1P prevention and rescue groups after 12 h and 18 h post-scratch. We have demonstrated that I2 treatment reduced fibrosis and modulated the inactivation of LTBPs, TGF-ß receptors, SPLs, and the canonical downstream SMAD pathway. Further investigations are warranted in order to fully uncover the potential of utilizing SphK I2 as a novel therapy for corneal fibrosis.


Asunto(s)
Córnea , Fibrosis , Lisofosfolípidos , Transducción de Señal , Esfingosina , Factor de Crecimiento Transformador beta , Humanos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Córnea/metabolismo , Córnea/patología , Córnea/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Células Cultivadas , Esfingolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedades de la Córnea/metabolismo , Enfermedades de la Córnea/patología , Enfermedades de la Córnea/tratamiento farmacológico
11.
Chem Biol Interact ; 398: 111085, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823539

RESUMEN

Sepsis-induced acute lung injury (SALI) is the common complication of sepsis, resulting in high incidence and mortality rates. The primary pathogenesis of SALI is the interplay between acute inflammation and endothelial barrier damage. Studies have shown that kaempferol (KPF) has anti-sepsis properties. Sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway's significance in acute lung damage and S1P receptor 1 (S1PR1) agonists potential in myosin light chain 2 (MLC2) phosphorylation are documented. Whether KPF can regulate the SphK1/S1P/S1PR1/MLC2 signaling pathway to protect the lung endothelial barrier remains unclear. This study investigates the KPF's therapeutic effects and molecular mechanisms in repairing endothelial cell barrier damage in both LPS-induced sepsis mice and human umbilical vein endothelial cells (HUVECs). KPF significantly reduced lung tissue damage and showed anti-inflammatory effects by decreasing IL-6 and TNF-α synthesis in the sepsis mice model. Further, KPF administration can reduce the high permeability of the LPS-induced endothelial cell barrier and alleviate lung endothelial cell barrier injury. Mechanistic studies showed that KPF pretreatment can suppress MLC2 hyperphosphorylation and decrease SphK1, S1P, and S1PR1 levels. The SphK1/S1P/S1PR1/MLC2 signaling pathway controls the downstream proteins linked to endothelial barrier damage, and the Western blot (WB) showed that KPF raised the protein levels. These proteins include zonula occludens (ZO)-1, vascular endothelial (VE)-cadherin and Occludin. The present work revealed that in mice exhibiting sepsis triggered by LPS, KPF strengthened the endothelial barrier and reduced the inflammatory response. The SphK1/S1P/S1PR1/MLC2 pathway's modulation is the mechanism underlying this impact.


Asunto(s)
Lesión Pulmonar Aguda , Miosinas Cardíacas , Células Endoteliales de la Vena Umbilical Humana , Quempferoles , Pulmón , Lisofosfolípidos , Ratones Endogámicos C57BL , Cadenas Ligeras de Miosina , Sepsis , Transducción de Señal , Esfingosina , Animales , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Humanos , Cadenas Ligeras de Miosina/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Lisofosfolípidos/metabolismo , Quempferoles/farmacología , Quempferoles/uso terapéutico , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Masculino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Miosinas Cardíacas/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Lipopolisacáridos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Interleucina-6/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
12.
BMC Pulm Med ; 24(1): 266, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835000

RESUMEN

BACKGROUND: sphingosine-1-phosphate (S1P), a naturally occurring sphingolipid, has been involved in pulmonary interstitial remodeling signaling. However, no study has examined its clinical merits for interstitial lung disease (ILD). This study aimed to investigate the serum level of S1P in ILD patients and its clinical correlation with the severity of disease in the two main types of ILDs: the IPF and the CTD-ILD patients. METHODS: This retrospective observational pilot study included 67 ILD patients and 26 healthy controls. These patients were stratified into the IPF group (35) and the CTD-ILD group (32). The severity of ILD was evaluated through pulmonary function indicators and the length of hospital stay. RESULTS: Serum S1P level was statistically higher in ILD patients than in health control (p = 0.002), while the Serum S1P levels in CTD-ILD and IPF patients were comparable. Serum S1P level further showed statistically negative correlation with pulmonary function indexes (TLC% pred, FVC% pred and FEV1% pred) and positive correlation with length of hospital stay (r = -0.38, p = 0.04; r = -0.41, p = 0.02, r = -0.37, p = 0.04; r = 0.42, p = 0.02, respectively) in CTD-ILD patients, although serum S1P level was not significantly correlated with inflammatory indexes. The IPF patients failed to exhibit a significant correlation of serum S1P level with pulmonary function and length of hospital stay. CONCLUSIONS: Serum S1P level might be a clinically useful biomarker in evaluating the severity of CTD-ILD patients rather than IPF patients.


Asunto(s)
Biomarcadores , Enfermedades Pulmonares Intersticiales , Lisofosfolípidos , Índice de Severidad de la Enfermedad , Esfingosina , Humanos , Masculino , Femenino , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/fisiopatología , Enfermedades Pulmonares Intersticiales/diagnóstico , Esfingosina/análogos & derivados , Esfingosina/sangre , Biomarcadores/sangre , Lisofosfolípidos/sangre , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Proyectos Piloto , Pruebas de Función Respiratoria , Pulmón/fisiopatología , Estudios de Casos y Controles , Tiempo de Internación/estadística & datos numéricos
13.
Genet Med ; 26(9): 101174, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38847193

RESUMEN

PURPOSE: We identified 2 individuals with de novo variants in SREBF2 that disrupt a conserved site 1 protease (S1P) cleavage motif required for processing SREBP2 into its mature transcription factor. These individuals exhibit complex phenotypic manifestations that partially overlap with sterol regulatory element binding proteins (SREBP) pathway-related disease phenotypes, but SREBF2-related disease has not been previously reported. Thus, we set out to assess the effects of SREBF2 variants on SREBP pathway activation. METHODS: We undertook ultrastructure and gene expression analyses using fibroblasts from an affected individual and utilized a fly model of lipid droplet (LD) formation to investigate the consequences of SREBF2 variants on SREBP pathway function. RESULTS: We observed reduced LD formation, endoplasmic reticulum expansion, accumulation of aberrant lysosomes, and deficits in SREBP2 target gene expression in fibroblasts from an affected individual, indicating that the SREBF2 variant inhibits SREBP pathway activation. Using our fly model, we discovered that SREBF2 variants fail to induce LD production and act in a dominant-negative manner, which can be rescued by overexpression of S1P. CONCLUSION: Taken together, these data reveal a mechanism by which SREBF2 pathogenic variants that disrupt the S1P cleavage motif cause disease via dominant-negative antagonism of S1P, limiting the cleavage of S1P targets, including SREBP1 and SREBP2.

14.
Am J Obstet Gynecol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908653

RESUMEN

BACKGROUND: It is estimated that over 2 million cases of fetal death occur worldwide every year, but, despite the high incidence, several basic and clinical characteristics of this disorder are still unclear. Placenta is suggested to play a central role in fetal death. Placenta produces hormones, cytokines and growth factors that modulate functions of the placental-maternal unit. Fetal death has been correlated with impaired secretion of some of these regulatory factors. OBJECTIVE: The aim of the present study was to evaluate, in placentas collected from fetal death, the gene expression of inflammatory, proliferative and protective factors. STUDY DESIGN: Cases of fetal death in singleton pregnancy were retrospectively selected, excluding pregnancies complicated by fetal anomalies, gestational diabetes, intrauterine growth restriction and moderate to severe maternal diseases. A group of placentas collected from healthy singleton term pregnancies were used as controls. Groups were compared regarding maternal and gestational age, fetal sex and birthweight. Placental messenger RNA expression of inflammatory (interleukin 6), proliferative (activin A, transforming growth factor ß1) and regulatory (vascular endothelial growth factor, vascular endothelial growth factor receptor 2, ATP-binding cassette transporters (ABC) ABCB1 and ABCG2, sphingosine 1-phosphate signaling pathway) markers was conducted using real-time polymerase chain reaction. Statistical analysis and graphical representation of the data were performed using the GraphPad Prism 5 software. For the statistical analysis, Student's t test was used, and P values<.05 were considered significant. RESULTS: Placental mRNA expression of interleukin 6 and vascular endothelial growth factor receptor 2 resulted significantly higher in the fetal death group compared to controls (P<.01), while activin A, ABCB1, and ABCG2 expression resulted significantly lower (P<.01). A significant alteration in the sphingosine 1-phosphate signaling pathway was found in the fetal death group, with an increased expression of the specific receptor isoforms sphingosine 1-phosphate receptor 1, 3, and 4 (sphingosine 1-phosphate1, sphingosine 1-phosphate3, sphingosine 1-phosphate4) and of sphingosine kinase 2, 1 of the enzyme isoforms responsible for sphingosine 1-phosphate synthesis (P<.01). CONCLUSION: The present study confirmed a significantly increased expression of placental interleukin 6 and vascular endothelial growth factor receptor 2 mRNA, and for the first time showed an increased expression of sphingosine 1-phosphate receptors and sphingosine kinase 2 as well as a decreased expression of activin A and of selected ATP-binding cassette transporters, suggesting that multiple inflammatory and protective factors are deranged in placenta of fetal death.

15.
Cell Signal ; 121: 111252, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852936

RESUMEN

BACKGROUND AND AIMS: S1P is an important factor regulating the function of the vascular endothelial barrier. SphK1 is an important limiting enzyme for the synthesis of S1P. However, the role of the SphK1/S1P-mediated vascular endothelial barrier function in atherosclerosis has not been fully revealed. This study explored the roles and mechanisms of SphK1 on atherosclerosis in vivo and in vitro. METHODS: In vivo, ApoE-/- and SphK1-/-ApoE-/- mice were fed a high-fat diet to induce atherosclerosis. In vitro, ox-LDL induced HUVECs to establish a cell model. Aortic histological changes were measured by H&E staining, Oil Red O staining, EVG staining, Sirius scarlet staining, immunofluorescence, and Evans Blue Assay. Western blotting was performed to explore the specific mechanism. RESULTS: We validated that deficiency of SphK1 resulted in a marked amelioration of atherosclerosis, as indicated by the decreased lipid accumulation, inflammatory factors, oxidative stress, aortic plaque area, inflammatory factor infiltration, VCAM-1 expression, and vascular endothelial permeability. Moreover, deficiency of SphK1 downregulated the expression of aortic S1PR3, Rhoa, ROCK, and F-actin. The results of administration with the SphK1 inhibitor PF-543 and the S1PR3 inhibitor VPC23019 in vitro further confirmed the conclusion that deficiency of SphK1 reduced S1P level and S1PR3 protein expression, inhibited Rhoa/ROCK signaling pathway, regulated protein expression of F-actin, improved vascular endothelial dysfunction and permeability, and exerted anti-atherosclerotic effects. CONCLUSIONS: This study revealed that deficiency of SphK1 relieved vascular endothelial barrier function in atherosclerosis mice via SphK1/S1P/S1PR signaling pathway.


Asunto(s)
Aterosclerosis , Células Endoteliales de la Vena Umbilical Humana , Fosfotransferasas (Aceptor de Grupo Alcohol) , Transducción de Señal , Receptores de Esfingosina-1-Fosfato , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Dieta Alta en Grasa , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lisofosfolípidos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de Lisoesfingolípidos/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
16.
Int Immunopharmacol ; 138: 112541, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917525

RESUMEN

BACKGROUND: Ulcerative colitis (UC) is a type of inflammatory bowel disease associated with persistent inflammation. Animal studies proved the efficacy of metformin in UC. AIM: To investigate the potential role of metformin and its protective pathways in patients with UC. METHODS: This is a randomized, controlled, and double-blinded clinical trial that included 60 participants with mild to moderate UC and was divided randomly into two groups (n = 30). For 6 months, the mesalamine group received 1 g of mesalamine three times daily (t.i.d.). For six months, the metformin group received mesalamine 1 g t.i.d. and metformin 500 mg twice daily. A gastroenterologist evaluated patients at baseline and 6 months after starting the treatment in order to measure serum levels of zonulin, sphingosine 1 phosphate (S1P), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Biopsies from the colon were used to measure gene expression of zonula occuldin-1 (ZO-1), signal transducer and activator of factor-3 (STAT-3), and intracellular adhesion molecule-1 (ICAM-1). The numeric pain rating scale (NRS) and partial Mayo score were also assessed for each patient. RESULTS: When compared to the mesalamine group, the metformin group demonstrated a statistical decrease in serum IL-6, zonulin, TNF-α, SIP, gene expression of ICAM-1 and STAT-3, and a significant increase in colonic ZO-1 when compared to the mesalamine group. The metformin group also showed a significant decrease in NRS and partial Mayo score index in comparison with the mesalamine group. CONCLUSION: Metformin may be a promising additional therapy for UC patients. Trial registration identifier: NCT05553704.


Asunto(s)
Colitis Ulcerosa , Mesalamina , Metformina , Humanos , Metformina/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Mesalamina/uso terapéutico , Método Doble Ciego , Masculino , Femenino , Adulto , Persona de Mediana Edad , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Reposicionamiento de Medicamentos , Haptoglobinas/metabolismo , Interleucina-6/sangre , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Toxina del Cólera , Molécula 1 de Adhesión Intercelular/sangre , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Factor de Necrosis Tumoral alfa/sangre , Colon/patología , Colon/efectos de los fármacos , Resultado del Tratamiento , Adulto Joven , Quimioterapia Combinada , Precursores de Proteínas
17.
Front Cell Dev Biol ; 12: 1380785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872932

RESUMEN

Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.

18.
Mol Cell Biol ; 44(4): 123-137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747374

RESUMEN

SREBP transcription factors are central regulators of lipid metabolism. Their proteolytic activation requires ER to the Golgi translocation and subsequent cleavage by site-1-protease (S1P). Produced as a proprotein, S1P undergoes autocatalytic cleavage from its precursor S1PA to mature S1PC form. Here, we report that SPRING (previously C12ORF29) and S1P interact through their ectodomains, and that this facilitates the autocatalytic cleavage of S1PA into its mature S1PC form. Reciprocally, we identified a S1P recognition-motif in SPRING and demonstrate that S1P-mediated cleavage leads to secretion of the SPRING ectodomain in cells, and in liver-specific Spring knockout (LKO) mice transduced with AAV-mSpring. By reconstituting SPRING variants into SPRINGKO cells we show that the SPRING ectodomain supports proteolytic maturation of S1P and SREBP signaling, but that S1P-mediated SPRING cleavage is not essential for these processes. Absence of SPRING modestly diminishes proteolytic maturation of S1PA→C and trafficking of S1PC to the Golgi. However, despite reaching the Golgi in SPRINGKO cells, S1PC fails to rescue SREBP signaling. Remarkably, whereas SREBP signaling was severely attenuated in SPRINGKO cells and LKO mice, that of ATF6, another S1P substrate, was unaffected in these models. Collectively, our study positions SPRING as a dedicated licensing factor for SREBP-specific activation by S1P.


Asunto(s)
Proproteína Convertasas , Serina Endopeptidasas , Animales , Humanos , Ratones , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Hígado/metabolismo , Ratones Noqueados , Proproteína Convertasas/metabolismo , Proproteína Convertasas/genética , Proteolisis , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
19.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791156

RESUMEN

The deterioration of osteoblast-led bone formation and the upregulation of osteoclast-regulated bone resorption are the primary causes of bone diseases, including osteoporosis. Numerous circulating factors play a role in bone homeostasis by regulating osteoblast and osteoclast activity, including the sphingolipid-sphingosine-1-phosphate (S1P). However, to date no comprehensive studies have investigated the impact of S1P activity on human and murine osteoblasts and osteoclasts. We observed species-specific responses to S1P in both osteoblasts and osteoclasts, where S1P stimulated human osteoblast mineralisation and reduced human pre-osteoclast differentiation and mineral resorption, thereby favouring bone formation. The opposite was true for murine osteoblasts and osteoclasts, resulting in more mineral resorption and less mineral deposition. Species-specific differences in osteoblast responses to S1P were potentially explained by differential expression of S1P receptor 1. By contrast, human and murine osteoclasts expressed comparable levels of S1P receptors but showed differential expression patterns of the two sphingosine kinase enzymes responsible for S1P production. Ultimately, we reveal that murine models may not accurately represent how human bone cells will respond to S1P, and thus are not a suitable model for exploring S1P physiology or potential therapeutic agents.


Asunto(s)
Diferenciación Celular , Lisofosfolípidos , Osteoblastos , Osteoclastos , Especificidad de la Especie , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Humanos , Animales , Ratones , Osteoclastos/metabolismo , Osteoclastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Huesos/metabolismo , Resorción Ósea/metabolismo , Células Cultivadas
20.
Mol Cell Biol ; 44(5): 178-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38767243

RESUMEN

Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Lisofosfolípidos , Neovascularización Patológica , Osteosarcoma , Fosfotransferasas (Aceptor de Grupo Alcohol) , Factor de Transcripción STAT3 , Transducción de Señal , Esfingosina , Humanos , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Lisofosfolípidos/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Línea Celular Tumoral , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Activación Transcripcional/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Movimiento Celular/genética , Masculino , Animales , Femenino , Angiogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...