Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37832548

RESUMEN

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , ARN , Humanos , ARN/genética , Microscopía por Crioelectrón , ARN Helicasas/genética , ARN Helicasas/química , Enzimas Multifuncionales/genética , ADN/genética , Homeostasis , ADN Helicasas/genética
2.
J Biol Chem ; 299(6): 104817, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178921

RESUMEN

Pif1 is a broadly conserved helicase that is essential for genome integrity and participates in numerous aspects of DNA metabolism, including telomere length regulation, Okazaki fragment maturation, replication fork progression through difficult-to-replicate sites, replication fork convergence, and break-induced replication. However, details of its translocation properties and the importance of amino acids residues implicated in DNA binding remain unclear. Here, we use total internal reflection fluorescence microscopy with single-molecule DNA curtain assays to directly observe the movement of fluorescently tagged Saccharomyces cerevisiae Pif1 on single-stranded DNA (ssDNA) substrates. We find that Pif1 binds tightly to ssDNA and translocates very rapidly (∼350 nucleotides per second) in the 5'→3' direction over relatively long distances (∼29,500 nucleotides). Surprisingly, we show the ssDNA-binding protein replication protein A inhibits Pif1 activity in both bulk biochemical and single-molecule measurements. However, we demonstrate Pif1 can strip replication protein A from ssDNA, allowing subsequent molecules of Pif1 to translocate unimpeded. We also assess the functional attributes of several Pif1 mutations predicted to impair contact with the ssDNA substrate. Taken together, our findings highlight the functional importance of these amino acid residues in coordinating the movement of Pif1 along ssDNA.


Asunto(s)
ADN de Cadena Simple , Proteínas de Saccharomyces cerevisiae , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Nucleótidos/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Genes (Basel) ; 12(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34573298

RESUMEN

Helicases are enzymes that convert the chemical energy stored in ATP into mechanical work, allowing them to move along and manipulate nucleic acids. The helicase superfamily 1 (Sf1) is one of the largest subgroups of helicases and they are required for a range of cellular activities across all domains of life. Sf1 helicases can be further subdivided into two classes called the Sf1a and Sf1b helicases, which move in opposite directions on nucleic acids. The results of this movement can range from the separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. Here, we describe the characteristics of the Sf1a helicase Srs2 and the Sf1b helicase Pif1, both from the model organism Saccharomyces cerevisiae, focusing on the roles that they play in homologous recombination, a DNA repair pathway that is necessary for maintaining genome integrity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae
4.
Mol Cell ; 81(20): 4271-4286.e4, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34403695

RESUMEN

Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.


Asunto(s)
Quirópteros/metabolismo , Elementos Transponibles de ADN , ADN de Cadena Simple/metabolismo , Transposasas/metabolismo , Animales , Dominio Catalítico , Quirópteros/genética , Microscopía por Crioelectrón , ADN de Cadena Simple/genética , ADN de Cadena Simple/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Transposasas/genética , Transposasas/ultraestructura , Tirosina
5.
Int J Biol Macromol ; 164: 902-910, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32693146

RESUMEN

RecD family helicases play an important role in prokaryotic genome stability and serve as the structural models for studying superfamily 1B (SF1B) helicases. However, RecD-catalyzed duplex DNA unwinding behavior and the underlying mechanism are still elusive. RecD family helicases share a common proto-helicase with eukaryotic Pif1 family helicases, which are well known for their outstanding G-quadruplex (G4) unwinding ability. However, there are still controversial points as to whether and how RecD helicases unfold G4 structures. Here, single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) were used to study Deinococcus radiodurans RecD2 (DrRecD2)-mediated duplex DNA unwinding and resolution of G4 structures. A symmetric, repetitive unwinding phenomenon was observed on duplex DNA, revealed from the strand switch and translocation of one monomer. Furthermore, we found that DrRecD2 was able to unwind both parallel and antiparallel G4 structures without obvious topological preferences. Surprisingly, the unwinding properties of RecD on duplex and G4 DNA are different from those of Pif1. The findings provide an example, in which the patterns of two molecules derived from a common ancestor deviate during evolution, and they are of significance for understanding the unwinding mechanism and function of SF1B helicases.


Asunto(s)
Proteínas Bacterianas/química , ADN Helicasas/química , Deinococcus/enzimología , G-Cuádruplex , Proteínas de Saccharomyces cerevisiae/química , Catálisis , Dicroismo Circular , ADN de Cadena Simple/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Inestabilidad Genómica , Magnetismo
6.
Cell Rep ; 14(8): 2030-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904952

RESUMEN

Pif1 is a conserved SF1B DNA helicase involved in maintaining genome stability through unwinding double-stranded DNAs (dsDNAs), DNA/RNA hybrids, and G quadruplex (G4) structures. Here, we report the structures of the helicase domain of human Pif1 and Bacteroides sp Pif1 (BaPif1) in complex with ADP-AlF4(-) and two different single-stranded DNAs (ssDNAs). The wedge region equivalent to the ß hairpin in other SF1B DNA helicases folds into an extended loop followed by an α helix. The Pif1 signature motif of BaPif1 interacts with the wedge region and a short helix in order to stabilize these ssDNA binding elements, therefore indirectly exerting its functional role. Domain 2B of BaPif1 undergoes a large conformational change upon concomitant binding of ATP and ssDNA, which is critical for Pif1's activities. BaPif1 cocrystallized with a tailed dsDNA and ADP-AlF4(-), resulting in a bound ssDNA bent nearly 90° at the ssDNA/dsDNA junction. The conformational snapshots of BaPif1 provide insights into the mechanism governing the helicase activity of Pif1.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Bacteroides/química , ADN Helicasas/química , ADN de Cadena Simple/química , ADN/química , Adenosina Trifosfato/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , G-Cuádruplex , Expresión Génica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
7.
Virologie (Montrouge) ; 16(4): 185-198, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065880

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human pathogen which establishes life-long persistent infection in the large majority of the human population. During viral latency, the cellular machinery takes care of the replication of the viral episome. But EBV, as well as herpesviruses in general, codes for numerous enzymes required for lytic DNA replication which allow viral replication in resting cells. Recently, several tridimensional structures of these enzymes became available for EBV as well as for other herpesviruses so that structural information now exists for most of them. The replication process and the structures of the proteins involved in replication are reviewed in the light of potential drug development and of herpesvirus evolution. The structures of the proteins involved in lytic replication show the relationship between herpesviruses and tailed bacteriophages, furthermore they show that EBV proteins tend to be more complex than their counterparts in other organisms. In this review, we could show the phylogenetic position of the herpesvirus helicase close to the Dda helicases involved in initiation of replication of the caudovirales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...