Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Front Genet ; 15: 1410145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957810

RESUMEN

Background: Osteosarcoma (OS) is highly malignant and prone to local infiltration and distant metastasis. Due to the poor outcomes of OS patients, the study aimed to identify differentially expressed genes (DEGs) in OS and explore their role in the carcinogenesis and progression of OS. Methods: RNA sequencing was performed to identify DEGs in OS. The functions of the DEGs in OS were investigated using bioinformatics analysis, and DEG expression was verified using RT-qPCR and Western blotting. The role of SLC25A4 was evaluated using gene set enrichment analysis (GSEA) and then investigated using functional assays in OS cells. Results: In all, 8353 DEGs were screened. GO and KEGG enrichment analyses indicated these DEGs showed strong enrichment in the calcium signaling pathway and pathways in cancer. Moreover, the Kaplan-Meier survival analysis showed ten hub genes were related to the outcomes of OS patients. Both SLC25A4 transcript and protein expression were significantly reduced in OS, and GSEA suggested that SLC25A4 was associated with cell cycle, apoptosis and inflammation. SLC25A4-overexpressing OS cells exhibited suppressed proliferation, migration, invasion and enhanced apoptosis. Conclusion: SLC25A4 was found to be significantly downregulated in OS patients, which was associated with poor prognosis. Modulation of SLC25A4 expression levels may be beneficial in OS treatment.

2.
Birth Defects Res ; 116(7): e2380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980211

RESUMEN

BACKGROUND: Fontaine progeroid syndrome (FPS, OMIM 612289) is a recently identified genetic disorder stemming from pathogenic variants in the SLC25A24 gene, encoding a mitochondrial carrier protein. It encompasses Gorlin-Chaudry-Moss syndrome and Fontaine-Farriaux syndrome, primarily manifesting as craniosynostosis with brachycephaly, distinctive dysmorphic facial features, hypertrichosis, severe prenatal and postnatal growth restriction, limb shortening, and early aging with characteristic skin changes, phalangeal anomalies, and genital malformations. CASES: All known occurrences of FPS have been postnatally observed until now. Here, we present the first two prenatal cases identified during the second trimester of pregnancy. While affirming the presence of most postnatal abnormalities in prenatal cases, we note the absence of a progeroid appearance in young fetuses. Notably, our reports introduce new phenotypic features like encephalocele and nephromegaly, which were previously unseen postnatally. Moreover, paternal SLC25A24 mosaicism was detected in one case. CONCLUSIONS: We present the initial two fetal instances of FPS, complemented by thorough phenotypic and genetic assessments. Our findings expand the phenotypical spectrum of FPS, unveiling new fetal phenotypic characteristics. Furthermore, one case underscores a potential novel inheritance pattern in this disorder. Lastly, our observations emphasize the efficacy of exome/genome sequencing in both prenatal and postmortem diagnosis of rare polymalformative syndromes with a normal karyotype and array-based comparative genomic hybridization (CGH).


Asunto(s)
Genotipo , Mosaicismo , Fenotipo , Diagnóstico Prenatal , Humanos , Mosaicismo/embriología , Femenino , Embarazo , Diagnóstico Prenatal/métodos , Masculino , Feto , Adulto , Proteínas Mitocondriales/genética , Mutación/genética , Progeria/genética , Proteínas de Unión al Calcio , Antiportadores
3.
J Inherit Metab Dis ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021261

RESUMEN

Citrin deficiency (CD) is a recessive, liver disease caused by sequence variants in the SLC25A13 gene encoding a mitochondrial aspartate-glutamate transporter. CD manifests as different age-dependent phenotypes and affects crucial hepatic metabolic pathways including malate-aspartate-shuttle, glycolysis, gluconeogenesis, de novo lipogenesis and the tricarboxylic acid and urea cycles. Although the exact pathophysiology of CD remains unclear, impaired use of glucose and fatty acids as energy sources due to NADH shuttle defects and PPARα downregulation, respectively, indicates evident energy deficit in CD hepatocytes. The present review summarizes current trends on available and potential treatments for CD. Baseline recommendation for CD patients is dietary management, often already present as a self-selected food preference, that includes protein and fat-rich food, and avoidance of excess carbohydrates. At present, liver transplantation remains the sole curative option for severe CD cases. Our extensive literature review indicated medium-chain triglycerides (MCT) as the most widely used CD treatment in all age groups. MCT can effectively improve symptoms across disease phenotypes by rapidly supplying energy to the liver, restoring redox balance and inducing lipogenesis. In contrast, sodium pyruvate restored glycolysis and displayed initial preclinical promise, with however limited efficacy in adult CD patients. Ursodeoxycholic acid, nitrogen scavengers and L-arginine treatments effectively address specific pathophysiological aspects such as cholestasis and hyperammonemia and are commonly administered in combination with other drugs. Finally, future possibilities including restoring redox balance, amino acid supplementation, enhancing bioenergetics, improving ureagenesis and mRNA/DNA-based gene therapy are also discussed.

4.
Free Radic Biol Med ; 222: 317-330, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944213

RESUMEN

Mitochondrial transporters facilitate the translocation of metabolites between the cytoplasm and mitochondria and are critical for mitochondrial functional integrity. Although many mitochondrial transporters are associated with metabolic diseases, how they regulate mitochondrial function and their metabolic contributions at the cellular level are largely unknown. Here, we show that mitochondrial thiamine pyrophosphate (TPP) transporter SLC25A19 is required for mitochondrial respiration. SLC25A19 deficiency leads to reduced cell viability, increased integrated stress response (ISR), enhanced glycolysis and elevated cell sensitivity to 2-deoxyglucose (2-DG) treatment. Through a series of biochemical assays, we found that the depletion of mitochondrial NADH is the primary cause of the impaired mitochondrial respiration in SLC25A19 deficient cells. We also showed involvement of SLC25A19 in regulating the enzymatic activities of complexes I and III, the tricarboxylic acid (TCA) cycle, malate-aspartate shuttle and amino acid metabolism. Consistently, addition of idebenone, an analog of coenzyme Q10, restores mitochondrial respiration and cell viability in SLC25A19 deficient cells. Together, our findings provide new insight into the functions of SLC25A19 in mitochondrial and cellular physiology, and suggest that restoring mitochondrial respiration could be a novel strategy for treating SLC25A19-associated disorders.

5.
EMBO J ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937634

RESUMEN

Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.

6.
J Nutr Biochem ; 131: 109678, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38844080

RESUMEN

The solute carrier family 25 member 1 (Slc25a1)-dependent mitochondrial citrate shuttle is responsible for exporting citrate from the mitochondria to the cytoplasm for supporting lipid biosynthesis and protein acetylation. Previous studies on Slc25a1 concentrated on pathological models. However, the importance of Slc25a1 in maintaining metabolic homeostasis under normal nutritional conditions remains poorly understood. Here, we investigated the mechanism of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis in male Nile tilapia (Oreochromis niloticus). To achieve the objective, we blocked the mitochondrial citrate shuttle by inhibiting Slc25a1 under normal nutritional conditions. Slc25a1 inhibition was established by feeding Nile tilapia with 250 mg/kg 1,2,3-benzenetricarboxylic acid hydrate for 6 weeks or intraperitoneal injecting them with dsRNA to knockdown slc25a1b for 7 days. The Nile tilapia with Slc25a1 inhibition exhibited an obesity-like phenotype accompanied by fat deposition, liver damage and hyperglycemia. Moreover, Slc25a1 inhibition decreased hepatic citrate-derived acetyl-CoA, but increased hepatic triglyceride levels. Furthermore, Slc25a1 inhibition replenished cytoplasmic acetyl-CoA through enhanced acetate pathway, which led to hepatic triglycerides accumulation. However, acetate-derived acetyl-CoA caused by hepatic Slc25a1 inhibition did not activate de novo lipogenesis, but rather modified protein acetylation. In addition, hepatic Slc25a1 inhibition enhanced fatty acids esterification through acetate-derived acetyl-CoA, which increased Lipin1 acetylation and its protein stability. Collectively, our results illustrate that inhibiting mitochondrial citrate shuttle triggers lipid anabolic remodeling and results in lipid accumulation, indicating the importance of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis.

7.
Int Immunopharmacol ; 136: 112367, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823177

RESUMEN

SLC25A19 is a mitochondrial thiamine pyrophosphate (TPP) carrier that mediates TPP entry into the mitochondria. SLC25A19 has been recognized to play a crucial role in many metabolic diseases, but its role in cancer has not been clearly reported. Based on clinical data from The Cancer Genome Atlas (TCGA), the following parameters were analyzed among HCC patients: SLC25A19 expression, enrichment analyses, immune infiltration, ferroptosis and prognosis analyses. In vitro, the SLC25A19 high expression was validated by qRT-PCR and Immunohistochemistry. Subsequently, a series of cell function experiments, including CCK8, EdU, clone formation, trans-well and scratch assays, were conducted to illustrate the effect of SLC25A19 on the growth and metastasis of cancer cells. Meanwhile, indicators related to ferroptosis were also detected. SCL25A19 is highly expressed in HCC and predicts a poor prognosis. Elevated SLC25A19 expression in HCC patients was markedly associated with T stage, pathological status (PS), tumor status (TS), histologic grade (HG), and AFP. Our results indicate that SLC25A19 has a generally good prognosis predictive and diagnostic ability. The results of gene enrichment analyses showed that SLC25A19 is significantly correlated with immune infiltration, fatty acid metabolism, and ferroptosis marker genes. In vitro experiments have confirmed that silencing SLC25A19 can significantly inhibit the proliferation and migration ability of cancer cells and induce ferroptosis in HCC. In conclusion, these findings indicate that SLC25A19 is novel prognostic biomarker related to immune invasion and ferroptosis in HCC, and it is an excellent candidate for therapeutic target against HCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Ferroptosis/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino , Persona de Mediana Edad , Movimiento Celular , Proliferación Celular
8.
Metab Brain Dis ; 39(5): 909-913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833093

RESUMEN

Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is an extremely rare disorder of urea cycle, with few patients reported worldwide. Despite hyperammonemia control, the long-term outcome remains poor with progressive neurological deterioration. We report the clinical, biochemical, and molecular features of two Lebanese siblings diagnosed with this disorder and followed for 8 and 15 years, respectively. Variable clinical manifestations and neurological outcome were observed. The patient with earlier onset of symptoms had a severe neurological deterioration while the other developed a milder form of the disease at an older age. Diagnosis was challenging in the absence of the complete biochemical triad and the non-specific clinical presentations. Whole exome sequencing revealed a homozygous variant, p.Phe188del, in the SLC25A15 gene, a French- Canadian founder mutation previously unreported in Arab patients. Hyperammonemia was controlled in both patients but hyperonithinemia persisted. Frequent hyperalaninemia spikes and lactic acidosis occured concomitantly with the onset of seizures in one of the siblings. Variable neurological deterioration and outcome were observed within the same family. This is the first report from the Arab population of the long-term outcome of this devastating neurometabolic disorder.


Asunto(s)
Hiperamonemia , Hermanos , Trastornos Innatos del Ciclo de la Urea , Humanos , Hiperamonemia/genética , Trastornos Innatos del Ciclo de la Urea/genética , Trastornos Innatos del Ciclo de la Urea/complicaciones , Masculino , Femenino , Ornitina/sangre , Ornitina/deficiencia , Citrulina/análogos & derivados , Adolescente , Niño , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación
9.
Exp Gerontol ; 194: 112496, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38897394

RESUMEN

PURPOSE: Osteoporosis is linked to impaired function of osteoblasts, and decreased expression of METTL14 may result in abnormal differentiation of these bone-forming cells. However, the specific impact of METTL14 on osteoblast differentiation and its underlying mechanisms are not yet fully understood. METHODS AND RESULTS: This study discovered a positive correlation between METTL14 expression and bone formation in specimens from osteoporosis patients and ovariectomized (OVX) mice. Additionally, METTL14 targeting of SLC25A3 contributed to the restoration of mitochondrial ROS levels and mitochondrial membrane potential in osteoblasts and promoted osteoblast differentiation. Moreover, in vivo experiments showed that METTL14 enhanced bone formation, and therapeutic introduction of METTL14 countered the decrease in bone formation in OVX mice. CONCLUSIONS: Overall, these findings emphasize the crucial role of the METTL14/SLC25A3 signaling axis in osteoblast activity, suggesting that this axis could be a potential target for improving osteoporosis.

10.
Mitochondrion ; 78: 101918, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38871013

RESUMEN

Alzheimer's disease (AD) is currently one of the most serious public health concerns in the world. However, the best approach to treat AD has yet to be discovered, implying that we must continue to work hard to find new AD target genes. In this study, we further analysed Gene Expression Omnibus (GEO) data and discovered that the expression of the Mitochondria glutamate carrier SLC25A18 is associated with AD by screening the differentially expressed genes in different regions of the brains of Alzheimer's disease patients. To verify the expression of SLC25A18 during Alzheimer's disease development, we analysed animal models (5×FAD transgenic AD animal model, chemically induced AD animal model, natural ageing animal model), and the results showed that the expression of SLC25A18 was increased in animal models of AD. Further investigation of the different regions found that SLC25A18 expression was elevated in the EC, TeA, and CA3, and expressed in neurons. Next, We found that Aß42 treatment elevated SLC25A18 expression in Neuro 2A cells. Reducing SLC25A18 expression attenuated mitochondrial dysfunction and neuronal apoptosis caused by Aß42. Overexpression of SLC25A18 increased ATP and intracellular superoxide anions but decreased mitochondrial membrane potential. The results indicate that SLC25A18 affects mitochondrial function and neuronal apoptosis, and is related to AD, which makes it a potential target for treating brain dysfunction.

11.
J Diabetes Res ; 2024: 5511454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736904

RESUMEN

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Asunto(s)
Adipogénesis , Lipasa , Animales , Masculino , Ratones , Aciltransferasas , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/metabolismo , Lipasa/metabolismo , Lipasa/genética , Lipogénesis , Lipólisis , Ratones Endogámicos C57BL , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteína Desacopladora 1/metabolismo
12.
J Cancer Res Clin Oncol ; 150(5): 278, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801430

RESUMEN

BACKGROUND: The ramifications of necroptosis on the prognostication of clear cell renal cell carcinoma (ccRCC) remain inadequately expounded. METHODS: A prognostic model delineating the facets of necroptosis in ccRCC was constructed, employing a compendium of algorithms. External validation was effectuated using the E-MTAB-1980 dataset. The exploration of immune infiltration scores was undertaken through the exploitation of multiple algorithms. Single-cell RNA sequencing data were procured from the GSE171306 dataset. Real-time quantitative PCR (RT-qPCR) was engaged to scrutinize the differential expression of SLC25A37 across cancer and paracancer tissues, as well as diverse cell lines. Assessments of proliferative and metastatic alterations in 769-P and 786-O cells were accomplished through Cell Counting Kit-8 (CCK8) and wound healing assays. RESULTS: The necroptosis-related signature (NRS) emerges as a discerning metric, delineating patients' immune attributes, tumor mutation burden, immunotherapy response, and drug susceptibility. Single-cell RNA sequencing analysis unveils the marked enrichment of SLC25A37 in tumor cells. Concurrently, RT-qPCR discloses the overexpression of SLC25A37 in both ccRCC tissues and cell lines. SLC25A37 knockdown mitigates the proliferative and metastatic propensities of 769-P and 786-O cells, as evidenced by CCK8 and wound healing assays. CONCLUSION: The NRS assumes a pivotal role in ascertaining the prognosis, tumor mutation burden, immunotherapy response, drug susceptibility, and immune cell infiltration features of ccRCC patients. SLC25A37 emerges as a putative player in immunosuppressive microenvironments, thereby providing a prospective avenue for the design of innovative immunotherapeutic targets for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Inmunoterapia , Neoplasias Renales , Necroptosis , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Humanos , Neoplasias Renales/patología , Neoplasias Renales/inmunología , Neoplasias Renales/genética , Pronóstico , Inmunoterapia/métodos , Línea Celular Tumoral , Proliferación Celular , Biomarcadores de Tumor/genética , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica
13.
Discov Oncol ; 15(1): 200, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819760

RESUMEN

Deficiency of citrin, the liver-type aspartate-glutamate carrier, arises from biallelic mutations of the gene SLC25A13. Although citrin deficiency (CD) is associated with higher risk of hepatocellular carcinoma (HCC) in adult patients, this association remains inconclusive in pediatric cases. The patient in this paper had been diagnosed to have CD by SLC25A13 analysis at the age 10 months, and then in response to dietary therapy, her prolonged jaundice and marked hepatosplenomegaly resolved gradually. However, she was referred to the hospital once again due to recurrent abdominal distention for 2 weeks at her age 4 years and 9 months, when prominently enlarged liver and spleen were palpated, along with a strikingly elevated serum alpha-fetoprotein (AFP) level of 27605 ng/mL as well as a large mass in the right liver lobe and a suspected tumor thrombus within the portal vein on enhanced computed tomography. After 4 rounds of adjuvant chemotherapy, right hepatic lobectomy and portal venous embolectomy were performed at her age 5 years and 3 months, and metastatic hepatoblastoma was confirmed by histopathological analysis. Afterwards, the patient underwent 5 additional cycles of chemotherapy and her condition remained stable for 7 months after surgery. Unfortunately, hepatoblastoma recurred in the left lobe at the age 5 years and 10 months, which progressed rapidly into liver failure, and led to death at the age 6 years and 1 month. As far as we know, this is the the first case of hepatoblastoma in a patient with CD, raising the possibility of an association between these two conditions.

14.
Elife ; 132024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780415

RESUMEN

Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.


All living organisms breakdown food molecules to generate energy for processes, such as growing, reproducing and movement. The series of chemical reactions that breakdown sugars into smaller molecules ­ known as glycolysis ­ is so important that it occurs in all life forms, from bacteria to humans. In higher organisms, such as fungi and animals, these reactions take place in the cytosol, the space surrounding the cell's various compartments. A transport protein then shuttles the end-product of glycolysis ­ pyruvate ­ into specialised compartments, known as the mitochondria, where most energy is produced. However, recently it was discovered that a group of living organisms, called the stramenopiles, have a branched glycolysis in which the enzymes involved in the second half of this process are located in both the cytosol and mitochondrial matrix. But it was not known how the intermediate molecules produced after the first half of glycolysis enter the mitochondria. To answer this question, Pyrihová et al. searched for transport protein(s) that could link the two halves of the glycolysis pathway. Computational analyses, comparing the genetic sequences of many transport proteins from several different species, revealed a new group found only in stramenopiles. Pyrihová et al. then used microscopy to visualise these new transport proteins ­ called GIC-1 and GIC-2 ­ in the parasite Blastocystis, which infects the human gut, and observed that they localise to mitochondria. Further biochemical experiments showed that GIC-1 and GIC-2 can physically bind these intermediate molecules, but only GIC-2 can transport them across membranes. Taken together, these observations suggest that GIC-2 links the two halves of glycolysis in Blastocystis. Further analyses could reveal corresponding transport proteins in other stramenopiles, many of which have devastating effects on agriculture, such as Phytophthora, which causes potato blight, or Saprolegnia, which causes skin infections in farmed salmon. Since human cells do not have equivalent transporters, they could be new drug targets not only for Blastocystis, but for these harmful pathogens as well.


Asunto(s)
Blastocystis , Citosol , Glucólisis , Mitocondrias , Blastocystis/metabolismo , Blastocystis/genética , Humanos , Mitocondrias/metabolismo , Citosol/metabolismo , Transporte Biológico , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
15.
Oncol Rev ; 18: 1379323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745827

RESUMEN

SLC25A26 is the only known human mitochondrial S-adenosylmethionine carrier encoding gene. Recent studies have shown that SLC25A26 is abnormally expressed in some cancers, such as cervical cancer, low-grade glioma, non-small cell lung cancer, and liver cancer, which suggests SLC25A26 can affect the occurrence and development of some cancers. This article in brief briefly reviewed mitochondrial S-adenosylmethionine carrier in different species and its encoding gene, focused on the association of SLC25A26 aberrant expression and some cancers as well as potential mechanisms, summarized its potential for cancer prognosis, and characteristics of mitochondrial diseases caused by SLC25A26 mutation. Finally, we provide a brief expectation that needs to be further investigated. We speculate that SLC25A26 will be a potential new therapeutic target for some cancers.

16.
Mitochondrion ; 78: 101889, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692382

RESUMEN

Iron is a trace element that is critical for most living organisms and plays a key role in a wide variety of metabolic processes. In the mitochondrion, iron is involved in producing iron-sulfur clusters and synthesis of heme and kept within physiological ranges by concerted activity of multiple molecules. Mitochondrial iron uptake is mediated by the solute carrier transporters Mitoferrin-1 (SLC25A37) and Mitoferrin-2 (SLC25A28). While Mitoferrin-1 is mainly involved in erythropoiesis, the cellular function of the ubiquitously expressed Mitoferrin-2 remains less well defined. Furthermore, Mitoferrin-2 is associated with several human diseases, including cancer, cardiovascular and metabolic diseases, hence representing a potential therapeutic target. Here, we developed a robust approach to quantify mitochondrial iron uptake mediated by Mitoferrin-2 in living cells. We utilize HEK293 cells with inducible expression of Mitoferrin-2 and measure iron-induced quenching of rhodamine B[(1,10-phenanthroline-5-yl)-aminocarbonyl]benzyl ester (RPA) fluorescence and validate this assay for medium-throughput screening. This assay may allow identification and characterization of Mitoferrin-2 modulators and could enable drug discovery for this target.

17.
Trends Biochem Sci ; 49(6): 506-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565497

RESUMEN

In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.


Asunto(s)
Termogénesis , Proteína Desacopladora 1 , Humanos , Proteína Desacopladora 1/metabolismo , Animales , Mitocondrias/metabolismo , Tejido Adiposo Pardo/metabolismo
18.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38577966

RESUMEN

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Asunto(s)
2,4-Dinitrofenol , Ácidos Grasos , Animales , 2,4-Dinitrofenol/farmacología , Ratones , Ácidos Grasos/metabolismo , Humanos , Malatos/metabolismo , Mitocondrias/metabolismo , Transporte Iónico/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Protones , Ácidos Cetoglutáricos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Proteínas de Transporte de Membrana
19.
Artículo en Inglés | MEDLINE | ID: mdl-38568407

RESUMEN

Myocardial ischemia/reperfusion injury (MI/RI) is identified as a severe vascular emergency, and the treatment strategy of MI/RI still needs further improvement. The present study aimed to investigate the potential effects of mild therapeutic hypothermia (MTH) on MI/RI and underlying mechanisms. In ischemia/reperfusion (I/R) rats, MTH treatment significantly improved myocardial injury, attenuated myocardial infarction, and inhibited the mitochondrial apoptosis pathway. The results of proteomics identified SLC25A10 as the main target of MTH treatment. Consistently, SLC25A10 expressions in I/R rat myocardium and hypoxia and reoxygenation (H/R) cardiomyocytes were significantly suppressed, which was effectively reversed by MTH treatment. In H/R cardiomyocytes, MTH treatment significantly improved cell injury, mitochondrial dysfunction, and inhibited the mitochondrial apoptosis pathway, which were partially reversed by SLC25A10 deletion. These findings suggested that MTH treatment could protect against MI/RI by modulating SLC25A10 expression to suppress mitochondrial apoptosis pathway, providing new theoretical basis for clinical application of MTH treatment for MI/RI.

20.
J Biol Chem ; 300(5): 107233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552738

RESUMEN

The NACHT, leucine-rich repeat, and pyrin domains-containing protein 3 (collectively known as NLRP3) inflammasome activation plays a critical role in innate immune and pathogenic microorganism infections. However, excessive activation of NLRP3 inflammasome will lead to cellular inflammation and tissue damage, and naturally it must be precisely controlled in the host. Here, we discovered that solute carrier family 25 member 3 (SLC25A3), a mitochondrial phosphate carrier protein, plays an important role in negatively regulating NLRP3 inflammasome activation. We found that SLC25A3 could interact with NLRP3, overexpression of SLC25A3 and knockdown of SLC25A3 could regulate NLRP3 inflammasome activation, and the interaction of NLRP3 and SLC25A3 is significantly boosted in the mitochondria when the NLRP3 inflammasome is activated. Our detailed investigation demonstrated that the interaction between NLRP3 and SLC25A3 disrupted the interaction of NLRP3-NEK7, promoted ubiquitination of NLRP3, and negatively regulated NLRP3 inflammasome activation. Thus, these findings uncovered a new regulatory mechanism of NLRP3 inflammasome activation, which provides a new perspective for the therapy of NLRP3 inflammasome-associated inflammatory diseases.


Asunto(s)
Inflamasomas , Proteínas Mitocondriales , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Transporte de Fosfato , Animales , Humanos , Ratones , Células HEK293 , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Ubiquitinación , Línea Celular , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Técnicas de Silenciamiento del Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...