RESUMEN
Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.
RESUMEN
This study investigates the impact of climate change on the distribution of Corylus species in China using the MaxEnt model. Key environmental variables, such as Bio6 (mean temperature of the coldest month) and human footprint, emerged as significant determinants of habitat suitability. The study reveals substantial shifts in suitable habitats due to global warming and increased precipitation, with notable expansion towards higher latitudes. Species like Corylus heterophylla Fisch. ex Bess. and Corylus mandshurica Maxim. demonstrate resilience in extreme conditions, highlighting the importance of specific ecological traits for conservation. Future projections under various SSP scenarios predict continued habitat expansion, emphasizing the need for targeted conservation strategies to address the critical role of human activities. This research highlights the complex interplay between climatic, topographic, and anthropogenic factors in shaping Corylus habitats, advocating for integrated adaptive management approaches to ensure their sustainability amid ongoing climate change.
RESUMEN
The calmodulin-binding transcription activator (CAMTA) family contributes to stress responses in many plant species. The Oryza sativa ssp. japonica genome harbors seven CAMTA genes; however, intraspecific variation and functional roles of this gene family have not been determined. Here, we comprehensively evaluated the structure and characteristics of the CAMTA genes in japonica rice using bioinformatics approaches and RT-qPCR. Within the CAMTA gene and promoter sequences, 527 single nucleotide polymorphisms were retrieved from 3,024 rice accessions. The CAMTA genes could be subdivided into 5-14 haplotypes. Association analyses between haplotypes and phenotypic traits, such as grain weight and salt stress parameters, identified phenotypic differences between rice subpopulations harboring different CAMTA haplotypes. Co-expression analyses and the identification of CAMTA-specific binding motifs revealed candidate genes regulated by CAMTA. A Gene Ontology functional enrichment analysis of 690 co-expressed genes revealed that CAMTA genes have key roles in defense responses. An interaction analysis identified 30 putative CAMTA interactors. Three genes were identified in co-expression and interaction network analyses, suggesting that they are potentially regulated by CAMTAs. Based on all information obtained together with the phenotypes of the CRISPR-Cas9 knockout mutant lines of three OskCAMTA genes generated, CAMTA1 likely plays important roles in the response to salt stress in rice. Overall, our findings suggest that the CAMTA gene family is involved in development and the salt stress response and reveal candidate target genes, providing a basis for further functional characterization.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Haplotipos , Oryza , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Oryza/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Fenotipo , Familia de Multigenes , Redes Reguladoras de GenesRESUMEN
Pectobacterium is a major bacterial causal agent leading to soft rot disease in host plants. With the Arabidopsis-Pectobacterium pathosystem, we investigated the function of an Arabidopsis thaliana WRKY55 during defense responses to Pectobacterium carotovorum ssp. carotovorum (Pcc). Pcc-infection specifically induced WRKY55 gene expression. The overexpression of WRKY55 was resistant to the Pcc infection, while wrky55 knockout plants compromised the defense responses against Pcc. WRKY55 expression was mediated via Arabidopsis COI1-dependent signaling pathway showing that WRKY55 can contribute to the gene expression of jasmonic acid-mediated defense marker genes such as PDF1.2 and LOX2. WRKY55 physically interacts with Arabidopsis ORA59 facilitating the expression of PDF1.2</i. Our results suggest that WRKY55 can function as a positive regulator for resistance against Pcc in Arabidopsis.
RESUMEN
Sugar beet hybrids are essential in modern agriculture due to their superior yields, disease resistance, and adaptability. This study investigates the role of the Rz2 gene in conferring resistance to beet necrotic yellow vein virus (BNYVV) in 14 sugar beet hybrids cultivated in Kazakhstan, including local and European varieties. The Rz2 gene, encoding a CC-NB-LRR protein, is a known resistance factor against BNYVV. Using RT-qPCR, we assessed Rz2 expression and detected BNYVV in bait plants inoculated with virus-infested soil. Our findings identified two highly resistant varieties: the Kazakh cultivar 'Abulhair' and the French line 22b5006. Additionally, the Kazakh cultivar 'Pamyati Abugalieva' and the French hybrid 'Bunker' exhibited increased resistance, suggesting involvement of other resistance loci. Notably, the Danish hybrid 'Alando', despite resistance to rhizomania, did not effectively resist BNYVV, highlighting possible evasion of its genetic factors by local virus strains. Our results emphasize the importance of Rz2 in resistance breeding programs and advocate for further research on additional resistance genes and the genetic variability of BNYVV in Kazakhstan. This work pioneers the molecular evaluation of BNYVV resistance in sugar beet in Kazakhstan, contributing to sustainable disease management and improved sugar beet production.
RESUMEN
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of Spanish sage oil from the leaves of Salvia officinalis ssp. lavandulifolia (Vahl) Gams (Spanish sage oil) when used as a sensory additive in feed and in water for drinking for all animal species. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the additive under assessment is considered safe up to the maximum use level of 14 mg/kg complete feed for all animal species. The FEEDAP Panel considered that the use of Spanish sage oil in water for drinking is safe provided that the total daily intake of the additive does not exceed the daily amount that is considered safe when consumed via feed. The use of Spanish sage oil in animal feed under the proposed conditions of use is safe for the consumer and the environment. Regarding user safety, the essential oil under assessment should be considered as an irritant to skin and eyes and as a dermal and respiratory sensitiser. Since the oil of the leaves of S. officinalis ssp. lavandulifolia (Vahl) Gams is recognised to flavour food and its function in feed would be essentially the same as that in food, no further demonstration of efficacy was considered necessary.
RESUMEN
Using plant extracts to replace traditional chemical herbicides plays an essential role in sustainable agriculture. The present work evaluated the quality of durum wheat cv Valbelice in two years (2014 and 2016) using plant aqueous extracts of sumac (Rhus coriaria L.) and mugwort (Artemisia arborescens L.) as bio-herbicides on the main quality characteristics of durum wheat. The untreated, water-treated, and chemically treated durum wheat products were also analyzed as controls. Following the official methodologies, grain commercial analyses and defects of the kernels were determined. The main chemical and technological features were determined on the wholemeal flour: proteins, dry matter, dry gluten, gluten index, colorimetric parameters, mixograph, falling number, and sedimentation test in SDS. An experimental bread-making test was performed, and the main parameters were detected on the breads: bread volume, weight, moisture, porosity, hardness, and colorimetric parameters on crumb and crust. Within the two years, grain commercial analyses of the total five treatments showed no statistically significant differences concerning test weight (range 75.47-84.33 kg/hL) and thousand kernel weight (range 26.58-35.36 kg/hL). Differently, significant differences were observed in terms of kernel defects, particularly starchy kernels, black pointed kernels, and shrunken kernels, mainly due to the year factor. Analyses on the whole-grain flours showed significant differences. This affected dry gluten content (7.35% to 16.40%) and gluten quality (gluten index from 6.44 to 45.81). Mixograph results for mixing time ranged from 1.90 min to 3.15 min, whilst a peak dough ranged from 6.83 mm to 9.85 mm, showing, in both cases, statistically significant differences between treatments. The falling number showed lower values during the first year (on average 305 s) and then increased in the second year (on average 407 s). The sedimentation test showed no statistically significant differences, ranging from 27.75 mm to 34.00 mm. Regarding the bread produced, statistically significant year-related differences were observed for the parameters loaf volume during the first year (on average 298.75 cm3) and then increased in the second year (on average 417.33 cm3). Weight range 136.85 g to 145.18 g and moisture range 32.50 g/100 g to 39.51 g/100 g. Hardness range 8.65 N to 12.75 N and porosity (range 5.00 to 8.00) were closely related to the type of treatment. Finally, the color of flour and bread appeared to be not statistically significantly affected by treatment type. From a perspective of environmental and economic sustainability, the use of plant extracts with a bio-herbicidal function could replace traditional chemical herbicides.
RESUMEN
Probiotics and synbiotics can mitigate the negative health consequences of early-life antibiotic exposure. This study aimed to determine whether supplementation with Bifidobacterium longum ssp. infantis 79 (B79) or synbiotics composed of B79 and 2'-fucosyllactose (2'-FL) could mitigate the negative impact of ceftriaxone exposure in early-life. We found that antibiotic-treated mice exhibited lower body weight, crypt depth, short-chain fatty acid content, and α-diversity indices at weaning, while they increased the relative abundance of opportunistic pathogens (such as Enterococcus and Staphylococcus) and decreased the relative abundance of intestinal commensal bacteria. Supplementation with B79 and 2'-FL revived these antibiotic-induced negative effects and reduced the mRNA expression of IL-6, IL-12p40, and TNF-α in the spleen at weaning. Moreover, B79 and 2'-FL supplementation persistently improved crypt depth, propionic acid synthesis, and IgG and sIgA production and revived the gut microbiota structure and composition in adulthood. In conclusion, our study suggests that early-life supplementation with B79 alone or in combination with 2'-FL can mitigate ceftriaxone-induced negative effects on the gut microbiota and intestinal and immune development of mice, and these improvements can partially last into adulthood.
RESUMEN
Climate change is having important effects on the migration routes and seasonal-spatial distribution patterns of aquatic animals, including the cephalopods Sepiella maindroni de Rochebrune (Hoyle, 1886) and Sepia kobiensis (Hoyle, 1885) in the East China Sea region. We conducted bottom trawling surveys from 2018 to 2019 in the East China Sea region to identify the seasonal-spatial distribution patterns, including the locations of spawning and nursery grounds of both species, and to determine how they are related to environmental variables. We used random forests and boosted regression trees to identify the distribution patterns of both species from spring to winter to estimate the annual mean situations. We also predicted the habitat distribution variations in 2050 and 2100 under the SSP1-2.6 and SSP5-8.5 climate change scenarios. From our survey data, we detected increasing biomass densities of S. maindroni from 29.50° N to 28.50° N, where the largest value of 213.92 g·ind-1 occurred. In spring, juvenile groups were present in coastal areas and larger individuals were found in offshore areas. We identified potential spawning grounds at 29.50°-33.00° N 122.50°-123.00° E adjacent to the Zhejiang coastline, and larger individuals and higher biomass densities in south of the 29.50° N line in summer. In autumn, the average individual weight increased in the 28.00° N 122.00° Eâ124.00° E area. We located potential S. kobiensis spawning grounds at 27.00° N 122.00°-123.50° E in spring. Growing overwintering juveniles migrated to the area of 29.50°-30.50° N 125.00°-127.00° E in winter. The sea surface temperature of the areas inhabited by both species showed obvious seasonal variation. The SSP1-2.6 and SSP5-8.5 scenarios indicated that the habitat of S. maindroni would shift to the south first and then to the north of the study area with the intensification of CO2 emissions, and it would first expand and then greatly decrease. However, the habitat area of S. kobiensis would increase. Our results will contribute to a better understanding of the life history traits of both species and the changes in their distribution patterns under different climate scenarios to ensure sustainable exploitation and fisheries management.
RESUMEN
As climate change intensifies, endemic plants native to South Korea, especially those in specialized ecological niches, confront heightened risks of distribution shifts and habitat degradation. To provide a comprehensive understanding of these impacts, this study evaluates the climate-induced distribution dynamics and niche adaptation of these endemic species across the entire Korean Peninsula. Utilizing species distribution models (SDMs) for 179 plant species and incorporating environmental variables under projected future climate scenarios, our analysis identified unique distribution and niche adaptation patterns. Findings demonstrate that specialized endemic species are likely to migrate to higher altitudes and latitudes, highlighting their distinct vulnerability due to limited ecological niches. Our comparative approach underscores the necessity for refined conservation strategies that address the specific requirements of these endemic species, as opposed to those with wider distributions. This research offers valuable insights into biodiversity conservation amid climate change, proposing targeted actions such as the establishment of protected areas, habitat restoration, and the implementation of assisted migration strategies to safeguard these vital endemic plant species throughout the Korean Peninsula.
Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Plantas , República de Corea , Adaptación Fisiológica , Conservación de los Recursos NaturalesRESUMEN
Many ecosystems are defined and shaped by one or a few common, foundation species. Even though such species hold a key role in the restoration of these ecosystems, the demographic processes involved in their re-establishment have rarely been studied. Foundation species' population dynamics, re-establishment history, and the abiotic and biotic factors that affect individual establishment at restored sites can be studied by addressing population spatial patterns and age structure. Such an approach to studying population dynamics is particularly relevant for long-lived species with low mortality, such as shrubs in alpine areas. We studied a population of the foundation species Empetrum nigrum ssp. hermaphroditum at an alpine spoil heap site and found evidence of population re-establishment starting within a decade after construction. High Empetrum densities close to the spoil heap edges indicated that short distances to seed sources in the surroundings had a strong positive effect on establishment of individuals. Empetrum individuals were significantly clustered, which indicated intraspecific facilitation. As revealed by spatial analyses of recruits and older, established individuals, clustering developed gradually over time, which indicated a shift from no interaction to increased facilitation. We conclude that intraspecific facilitation promotes Empetrum reestablishment at the studied alpine spoil heap. Synthesis: We show that population spatial patterns and age structure can be successfully used to unveil the re-establishment history of a foundation species in a restoration context. Efficient seed dispersal and intraspecific facilitation seem to be important factors behind Empetrum's successful re-establishment at alpine spoil heaps. Identification of abiotic and biotic factors determining foundation species' establishment success at restored sites can support planning and improve success of restoration.
RESUMEN
Combining Non-Invasive Brain Stimulation (NIBS) techniques with the recording of brain electrophysiological activity is an increasingly widespread approach in neuroscience. Particularly successful has been the simultaneous combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Unfortunately, the strong magnetic pulse required to effectively interact with brain activity inevitably induces artifacts in the concurrent EEG acquisition. Therefore, a careful but aggressive pre-processing is required to efficiently remove artifacts. Unfortunately, as already reported in the literature, different preprocessing approaches can introduce variability in the results. Here we aim at characterizing the three main TMS-EEG preprocessing pipelines currently available, namely ARTIST (Wu et al., 2018), TESA (Rogasch et al., 2017) and SOUND/SSP-SIR (Mutanen et al., 2018, 2016), providing an insight to researchers who need to choose between different approaches. Differently from previous works, we tested the pipelines using a synthetic TMS-EEG signal with a known ground-truth (the artifacts-free to-be-reconstructed signal). In this way, it was possible to assess the reliability of each pipeline precisely and quantitatively, providing a more robust reference for future research. In summary, we found that all pipelines performed well, but with differences in terms of the spatio-temporal precision of the ground-truth reconstruction. Crucially, the three pipelines impacted differently on the inter-trial variability, with ARTIST introducing inter-trial variability not already intrinsic to the ground-truth signal.
Asunto(s)
Artefactos , Electroencefalografía , Procesamiento de Señales Asistido por Computador , Estimulación Magnética Transcraneal , Estimulación Magnética Transcraneal/métodos , Estimulación Magnética Transcraneal/normas , Humanos , Electroencefalografía/métodos , Electroencefalografía/normas , Encéfalo/fisiología , Reproducibilidad de los ResultadosRESUMEN
Malaria is a deadly disease of significant concern for the international community. It is an infectious disease caused by a Plasmodium spp. parasite and transmitted by the bite of an infected female Anopheles mosquito. The parasite multiplies in the liver and then destroys the person's red blood cells until it reaches the severe stage, leading to death. The most used tools for diagnosing this disease are the microscope and the rapid diagnostic test (RDT), which have limitations preventing control of the disease. Computer vision technologies present alternatives by providing the means for early detection of this disease before it reaches the severe stage, facilitating treatment and saving patients. In this article, we suggest deep learning methods for earlier and more accurate detection of malaria parasites with high generalization capabilities using microscopic images of blood smears from many heterogeneous patients. These techniques are based on an image preprocessing method that mitigates some of the challenges associated with the variety of red cell characteristics due to patient diversity and other artifacts present in the data. For the study, we collected 65,970 microscopic images from 876 different patients to form a dataset of 33,007 images with a variety that enables us to create models with a high level of generalization. Three types of convolutional neural networks were used, namely Convolutional Neural Network (CNN), DenseNet, and LeNet-5, and the highest classification accuracy on the test data was 97.50% found with the DenseNet model.
Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Malaria , Humanos , Malaria/diagnóstico , Malaria/parasitología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Plasmodium/aislamiento & purificación , Plasmodium/clasificación , Eritrocitos/parasitología , Animales , Redes Neurales de la ComputaciónRESUMEN
BACKGROUND: Syringe services programs (SSPs) provide harm reduction supplies and services to people who use drugs and are often required by funders or partners to collect data from program participants. SSPs can use these data during monitoring and evaluation (M&E) to inform programmatic decision making, however little is known about facilitators and barriers to collecting and using data at SSPs. METHODS: Using the Consolidated Framework for Implementation Research (CFIR), we conducted 12 key informant interviews with SSP staff to describe the overall landscape of data systems at SSPs, understand facilitators and barriers to data collection and use at SSPs, and generate recommendations for best practices for data collection at SSPs. We used 30 CFIR constructs to develop individual interview guides, guide data analysis, and interpret study findings. RESULTS: Four main themes emerged from our analysis: SSP M&E systems are primarily designed to be responsive to perceived SSP client needs and preferences; SSP staffing capacity influences the likelihood of modifying M&E systems; external funding frequently forces changes to M&E systems; and strong M&E systems are often a necessary precursor for accessing funding. CONCLUSIONS: Our findings highlight that SSPs are not resistant to data collection and M&E, but face substantial barriers to implementation, including lack of funding and disjointed data reporting requirements. There is a need to expand M&E-focused funding opportunities, harmonize quantitative indicators collected across funders, and minimize data collection to essential data points for SSPs.
Asunto(s)
Reducción del Daño , Programas de Intercambio de Agujas , Humanos , Abuso de Sustancias por Vía Intravenosa , Evaluación de Programas y Proyectos de Salud/métodos , Recolección de DatosRESUMEN
Johne's disease in cattle is a significant global animal health challenge. Johne's disease is chronic, affecting the gastrointestinal tract of cattle and other ruminants and is caused by the bacteria Mycobacterium avium ssp. Paratuberculosis. Many countries have introduced schemes and programmes to try and control the spread of Johne's disease, including the UK. Despite efforts to control it, however, Johne's disease remains consistently ranked by UK producers as the top ranked disease negatively affecting productivity, indicating that schemes are not perceived to have solved the problem fully. Building on a global systematic review of the literature on barriers and solutions for Johne's disease control on-farm, we conducted an empirical study with over 400 farmers and 150 veterinary professionals across the UK. The study used workshops and semi-structured interviews to understand better the challenges dairy farmers and veterinarians face in implementing on-farm Johne's disease management schemes with the aim of identifying solutions. The study found that four main challenges are faced in the on-farm control of Johne's - (1) Management of farmer expectations around Johne's disease, with eradication near impossible, (2) Issues regarding space for segregation and the related economics of control (3) A 'free-riding' problem which can be influenced by the voluntary nature of control plans and (4) Challenges in vet-farmer communication, including levels of knowledge. Our findings have relevance for the control of Johne's disease in the UK and other countries, including for regions with voluntary and compulsory control programmes.
Asunto(s)
Enfermedades de los Bovinos , Agricultores , Paratuberculosis , Veterinarios , Paratuberculosis/prevención & control , Paratuberculosis/epidemiología , Animales , Bovinos , Reino Unido , Enfermedades de los Bovinos/prevención & control , Veterinarios/psicología , Agricultores/psicología , Crianza de Animales Domésticos/métodos , Humanos , Comunicación , Mycobacterium avium subsp. paratuberculosis/fisiología , Industria Lechera/métodosRESUMEN
Climate change leading to Climate extremes in the twenty-first century is more evident in megacities across the world, especially in West Africa. The Greater Accra region is one of the most populated regions in West Africa. As a result, the region has become more susceptible to climate extremes such as floods, heatwaves, and droughts. The study employed the Coupled Model Intercomparison Project 6 models in simulating climate extreme indices under the Shared Socioeconomic Pathway scenarios (SSPs) over West Africa between 1979 and 2059 as exemplified by the Greater Accra region. The study observed a generally weak drought in the historical period and expected to intensify especially under SSP585 in Greater Accra. For instance, continuous dry days (CDD) reveal an increasing trend under the SSPs. Similarly, the overall projected trend of CDD over West Africa reveals an increase signifying a more frequent and longer drought in the future. The flood indices revealed a surge in the intensity and duration of extreme precipitation events under the SSPs in the region. For instance, R99pTOT and Rx5days are expected to significantly increase under the SSPs with intensification under the SSP245, SSP370, and SSP585. A similar trend has been projected across West Africa, especially along the Guinean coast. The study foresees a gradual and intensifying rise in heatwave indices over the Greater Accra region. The warming and cooling indices reveal an increasing and decreasing trend respectively in the historical period as well as under the SSPs particularly within urban centers like Accra and Tema. Most West African countries are projected to observe more frequent warm days and nights with cold nights and days becoming less frequent. Expected effects of future climate extreme indices pose potential threats to the water, food, and energy systems as well as trigger recurrent floods and droughts over Greater Accra. The findings of the study are expected to inform climate policies and the nationally determined contribution of the Paris Agreement as well as address the sustainable development goal 11 (Sustainable cities) and 13 (Climate action) in West Africa.
RESUMEN
BACKGROUND: Damage from insect herbivores can elicit a wide range of plant responses, including reduced or compensatory growth, altered volatile profiles, or increased production of defence compounds. Specifically, herbivory can alter floral development as plants reallocate resources towards defence and regrowth functions. For pollinator-dependent species, floral quantity and quality are critical for attracting floral visitors; thus, herbivore-induced developmental effects that alter either floral abundance or attractiveness may have critical implications for plant reproductive success. Based on past work on resource trade-offs, we hypothesize that herbivore damage-induced effects are stronger in structural floral traits that require significant resource investment (e.g., flower quantity), as plants reallocate resources towards defence and regrowth, and weaker in secondary floral traits that require less structural investment (e.g., nectar rewards). SCOPE: In this study, we simulated early-season herbivore mechanical damage in the domesticated jack-o-lantern pumpkin Cucurbita pepo ssp. pepo and measured a diverse suite of floral traits over a 60-day greenhouse experiment. KEY RESULTS: We found that mechanical damage delayed the onset of male anthesis and reduced the total quantity of flowers produced. Additionally, permutational multivariate analysis of variance (PERMANOVA) indicated that mechanical damage significantly impacts overall floral volatile profile, though not output of sesquiterpenoids, a class of compounds known to recruit specialized cucumber beetle herbivores and squash bee pollinators. CONCLUSIONS: In summary, we show that C. pepo spp. pepo reduces investment in male flower production following mechanical damage, and that floral volatiles do exhibit shifts in production, indicative of damage-induced trait plasticity. Such reductions in male flower production could reduce the relative attractiveness of damaged plants to foraging pollinators in this globally relevant cultivated species.
RESUMEN
Predicting changes in future land use and farmland production potential (FPP) within the context of shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs) is crucial for devising sustainable land use strategies that balance agricultural production and ecological conservation. Therefore, the Huangshui Basin (HSB) in the northeast Qinghai-Tibet Plateau is taken as the study area, and a LUCC-Plus-FPP (LPF) coupling framework based on the SSP-RCP scenarios is proposed to evaluate future land use patterns and FPP changes. On the basis of the predictions of land use changes from 2020 to 2070, the trade-offs in grain production resulting from bivariate changes in farmland and FPP under future scenarios are analyzed. The results indicate that the model has a high simulation accuracy for land use types, with an overall accuracy of 0.98, a kappa coefficient of 0.97, and a figure of merit value of 0.21. Under the SSP245 and SSP585 scenarios, built-up land increases significantly, by approximately 45.89 %. Farmland and grassland conversions contribute the most to increased built-up land. Farmland area consistently decreases by approximately 5 % across all scenarios. The protection of farmland in the study area is difficult to undertake and thus requires much attention. Moreover, under the SSP126 scenario, the FPP of most districts is greater than that in 2020, and the average FPP of the HSB from 2030 to 2070 is greater than that in 2020. In the SSP585 scenario, by 2070, the average FPP of all districts decreases to different degrees compared with that in 2020. Furthermore, the compensated farmland quantities and average FPPs under all the scenarios are significantly lower than the amount of occupied farmland. The results provide a theoretical foundation and data support for farmland protection decision-making and layout optimization in the Qinghai-Tibet Plateau.
RESUMEN
Dapsone and co-trimoxazole are potent antibiotics for treating various infections and inflammations. However, several studies reported the strongly association between severe cutaneous adverse drug reactions (SCARs) to both drugs and the HLA-B*13:01 allele. Rapid and reliable screening for the HLA-B*13:01 allele can mitigate the risk of dapsone-induced SCARs. We developed two methods, multiplex sequence-specific primer PCR (PCR-SSP) and real-time PCR (RT-PCR), tailored for different clinical settings. These methods were optimized to minimize false positives among the Thai population. Clinical validation demonstrated excellent reproducibility, with both methods showing 100 % concordance in repeated tests. PCR-SSP achieved a limit of detection as low as 100 pg of genomic DNA, while RT-PCR reached 1 pg. Overall statistical accuracy was 100.00 % (95 % CI: 98.18 %-100.00 %). Screening for drug-related HLA alleles is crucial for reducing mortality from severe cutaneous adverse drug reactions, especially dapsone hypersensitivity syndrome (DHS) and dapsone-induced hypersensitivity reactions (DIHRs). Our screening approach for dapsone can also be extended to co-trimoxazole, representing a significant advancement in personalized medicine and preemptive pharmacogenetic testing for tailored patient care and safety, albeit further validation in diverse ethnic populations is warranted to ensure universal applicability.
RESUMEN
Lactobacillus delbrueckii ssp. bulgaricus M58 (M58) and Streptococcus thermophilus S10 (S10) are 2 dairy starter strains known for their favorable fermentation characteristics. Therefore, this research aimed to study the effects of 1-d low-temperature ripening on the physicochemical properties and metabolomics of fermented milk. Initially, the performance of single (M58 or S10) and dual (M58+S10) strain fermentation was assessed, revealing that the M58+S10 combination resulted in a shortened fermentation time, a stable gel structure, and desirable viscosity, suggesting positive strain interactions. Subsequently, non-targeted metabolomics analyses using LC-MS and GC-MS were performed to comparatively analyze M58+S10 fermented milk samples collected at the end of fermentation and after 1-d low-temperature ripening. The results showed a significant increase in almost all small peptides and dodecanedioic acid in the samples after one day of ripening, while there was a substantial decrease in indole and amino acid metabolites. Moreover, notable increases were observed in high-quality flavor compounds, such as geraniol, delta-nonalactone, 1-hexanol,2-ethyl-, methyl jasmonate, and undecanal. This study provides valuable insights into the fermentation characteristics of the dual bacterial starter consisting of M58 and S10 strains and highlights the specific contribution of the low-temperature ripening step to the overall quality of fermented milk.