Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.603
Filtrar
1.
Sci Rep ; 14(1): 15109, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956388

RESUMEN

Clematis nannophylla is a perennial shrub of Clematis with ecological, ornamental, and medicinal value, distributed in the arid and semi-arid areas of northwest China. This study successfully determined the chloroplast (cp) genome of C. nannophylla, reconstructing a phylogenetic tree of Clematis. This cp genome is 159,801 bp in length and has a typical tetrad structure, including a large single-copy, a small single-copy, and a pair of reverse repeats (IRa and IRb). It contains 133 unique genes, including 89 protein-coding, 36 tRNA, and 8 rRNA genes. Additionally, 66 simple repeat sequences, 50 dispersed repeats, and 24 tandem repeats were found; many of the dispersed and tandem repeats were between 20-30 bp and 10-20 bp, respectively, and the abundant repeats were located in the large single copy region. The cp genome was relatively conserved, especially in the IR region, where no inversion or rearrangement was observed, further revealing that the coding regions were more conserved than the noncoding regions. Phylogenetic analysis showed that C. nannophylla is more closely related to C. fruticosa and C. songorica. Our analysis provides reference data for molecular marker development, phylogenetic analysis, population studies, and cp genome processes to better utilise C. nannophylla.


Asunto(s)
Clematis , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Genoma del Cloroplasto/genética , Clematis/genética , Clematis/clasificación , Cloroplastos/genética
2.
Heliyon ; 10(12): e33138, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38984305

RESUMEN

The optimal conditions of applied factors to reuse Aluminium AA6061 scraps are (450, 500, and 550) °C preheating temperature, (1-15) % Boron Carbide (B4C), and Zirconium (ZrO2) hybrid reinforced particles at 120 min forging time via Hot Forging (HF) process. The response surface methodology (RSM) and machine learning (ML) were established for the optimisations and comparisons towards materials strength structure. The Ultimate Tensile Strength (UTS) strength and Microhardness (MH) were significantly increased by increasing the processed temperature and reinforced particles because of the material dispersion strengthening. The high melting point of particles caused impedance movements of aluminium ceramics dislocations which need higher plastic deformation force and hence increased the material's mechanical and physical properties. But, beyond Al/10 % B4C + 10 % ZrO2 the strength and hardness were decreased due to more particle agglomeration distribution. The optimisation tools of both RSM and ML show high agreement between the reported results of applied parameters towards the materials' strength characterisation. The microstructure analysis of Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM) provides insights mapping behavioural characterisation supports related to strength and hardness properties. The distribution of different volumes of ceramic particle proportion was highlighted. The environmental impacts were also analysed by employing a life cycle assessment (LCA) to identify energy savings because of its fewer processing steps and produce excellent hybrid materials properties.

3.
BioTech (Basel) ; 13(2)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38921050

RESUMEN

Phaseolus coccineus L. is a highly valuable crop for human consumption with a high protein content and other associated health benefits. Herein, 14 P. coccineus L. landraces were selected for genetic characterization: two Protected Geographical Indication (PGI) landraces from the Prespon area, namely "Gigantes" ("G") and "Elephantes" ("E"), and 12 additional landraces from the Greek Gene Bank collection of beans (PC1-PC12). The genetic diversity among these landraces was assessed using capillary electrophoresis utilizing fluorescence-labeled Simple Sequence Repeat (SSR) and Expressed Sequence Tag (EST); Simple Sequence Repeat (SSR) is a molecular marker technology. The "G" and "E" Prespon landraces were clearly distinguished among them, as well as from the PC1 to PC12 landraces, indicating the unique genetic identity of the Prespon beans. Overall, the genetic characterization of the abundant Greek bean germplasm using molecular markers can aid in the genetic identification of "G" and "E" Prespon beans, thus preventing any form of fraudulent practices as well as supporting traceability management strategies for the identification of authenticity, and protection of the origin of local certified products.

4.
BMC Plant Biol ; 24(1): 603, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926681

RESUMEN

BACKGROUND: Chayote is a high economic crop in the Cucurbitaceae family, playing an important role in food production, disease treatment and the production of degradable materials in industries. Due to the harsh environment, such as high temperature, drought and frost, some chayote resources are gradually disappearing. It is crucial to collect, characterize, and conserve chayote resources. However, the genetic diversity of chayote resources in China has not been studied so far. RESULTS: In this study, we collected 35 individuals of chayote from 14 provinces in China. Subsequently, we found 363,156 SSR motifs from the chayote genome and designed 57 pairs of SSR primers for validation. Out of these, 48 primer pairs successfully amplified bands, with 42 of them showing polymorphism. These 42 primer pairs detected a total of 153 alleles, averaging 3.64 alleles per locus. The polymorphic information content ranged from 0.03 to 0.78, with an average value of 0.41, indicating a high level of polymorphism. Based on the analysis using STRUCTURE, PCoA, and UPGMA methods, the 35 chayote individuals were divided into two major clusters. Through further association analysis, 7 significantly associated SSR markers were identified, including four related to peel color and three related to spine. CONCLUSIONS: These molecular markers will contribute to the analysis of genetic diversity and genetic breeding improvement of chayote in the future.


Asunto(s)
Variación Genética , Genoma de Planta , Repeticiones de Microsatélite , Repeticiones de Microsatélite/genética , China , Marcadores Genéticos , Polimorfismo Genético
5.
Heliyon ; 10(11): e31650, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845887

RESUMEN

The genus Allium is the most diverse, with cultivated crops such as onion, garlic, bunching onion, chives, leeks, and shallots, and several wild and semi-domesticated Allium species utilized as minor vegetables. These minor species are the genetic resources for various abiotic and biotic stresses. To employ underutilized species in breeding programmes, the magnitude of the genetic background of cultivated and semi-domesticated alliums, the phylogeny and diversity of the population must be known. In this study, nineteen SSR markers were employed to study the divergence and population structure of 95 Allium accessions which includes species, varieties, and interspecific hybrids, yielded 92 polymorphic loci, averaging 4.84 loci per SSR. PIC values range between 0.24 (ACM 018) and 0.98 (ACM 099). The cross transferability of ACM markers among Allium species ranges from 1.33 to 10.53 per cent, which is relatively low. The genotypes investigated were clustered into four primary clusters A, B, C, and D with 13 sub clusters I-XIII, conferring to the clustering results. The population structure investigations also found that K is a peak at value 4, implying that the population is predominantly segregated into four distinct groups, which associates the clustering pattern. The employed SSR markers adeptly unravel the complexities of diversity within alliums, holding promise for refining future breeding programs targeting elite progenies.

6.
Front Plant Sci ; 15: 1412953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841284

RESUMEN

Microsatellites, known as simple sequence repeats (SSRs), are short tandem repeats of 1 to 6 nucleotide motifs found in all genomes, particularly eukaryotes. They are widely used as co-dominant markers in genetic analyses and molecular breeding. Triticeae, a tribe of grasses, includes major cereal crops such as bread wheat, barley, and rye, as well as abundant forage and lawn grasses, playing a crucial role in global food production and agriculture. To enhance genetic work and expedite the improvement of Triticeae crops, we have developed TriticeaeSSRdb, an integrated and user-friendly database. It contains 3,891,705 SSRs from 21 species and offers browsing options based on genomic regions, chromosomes, motif types, and repeat motif sequences. Advanced search functions allow personalized searches based on chromosome location and length of SSR. Users can also explore the genes associated with SSRs, design customized primer pairs for PCR validation, and utilize practical tools for whole-genome browsing, sequence alignment, and in silico SSR prediction from local sequences. We continually update TriticeaeSSRdb with additional species and practical utilities. We anticipate that this database will greatly facilitate trait genetic analyses and enhance molecular breeding strategies for Triticeae crops. Researchers can freely access the database at http://triticeaessrdb.com/.

7.
Ecol Evol ; 14(6): e11593, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38903146

RESUMEN

The genus Abies is widely distributed across the world and is of high importance for forestry. Since chloroplasts are usually uniparentally inherited, they are an important tool for specific scientific issues like gene flow, parentage, migration and, in general, evolutionary analysis. Established genetic markers for organelles in conifers are rather limited to RFLP markers, which are more labour and time intensive, compared with SSR markers. Using QUIAGEN CLC Workbench 23.03, we aligned two chloroplast genomes from different Abies species (NCBI accessions: NC_039581, NC_042778, NC_039582, NC_042410, NC_035067, NC_062889, NC_042775, NC_057314, NC_041464, MH706706, MH047653 and MH510244) to identify potential SSR candidates. Further selection and development of forward and reverse primers was performed using the NCBI Primer Blast Server application. In this article, we introduce a remarkably polymorphic SSR marker set for various Abies species, which can be useful for other conifer genera, such as Cedrus, Pinus, Pseudotsuga or Picea. In total, 17 cpSSRs showed reliable amplification and polymorphisms in A. grandis with a total of 68 haplotypes detected. All 17 cpSSRs amplified in the tested Abies spp. In the other tested species, except for Taxus baccata, at least one primer was polymorphic.

8.
BMC Genomics ; 25(1): 550, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824516

RESUMEN

BACKGROUND: Salinity is a significant abiotic stress that affects plants from germination through all growth stages. This study was aimed to determine the morpho-physiological and genetic variations in BC1F2, BC2F1 and F3 generations resulting from the cross combination WH1105 × Kharchia 65. RESULTS: A significant reduction in germination percentage was observed under salt stress in BC1F2 and F3 seeds. Correlation, heritability in the broad sense, phenotypic coefficient of variability (PCV) and genotypic coefficient of variability (GCV) were measured for all traits. The presence of both Nax1 and Nax2 loci was confirmed in twenty-nine plants using the marker-assisted selection technique. Genetic relationships among the populations were assessed using twenty-four polymorphic SSR markers. CONCLUSION: Cluster analysis along with two and three-dimensional PCA scaling (Principal Component Analysis) revealed the distinct nature of WH 1105 and Kharchia 65. Six plants closer to the recurrent parent (WH1105) selected through this study can serve as valuable genetic material for salt-tolerant wheat improvement programs.


Asunto(s)
Repeticiones de Microsatélite , Tolerancia a la Sal , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Repeticiones de Microsatélite/genética , Tolerancia a la Sal/genética , Fitomejoramiento/métodos , Fenotipo , Germinación/genética , Genotipo , Cruzamientos Genéticos
9.
Biodivers Data J ; 12: e123405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919771

RESUMEN

Cinnamomumparthenoxylon is an endemic and endangered species with significant economic and ecological value in Vietnam. A better understanding of the genetic architecture of the species will be useful when planning management and conservation. We aimed to characterize the transcriptome of C.parthenoxylon, develop novel molecular markers, and assess the genetic variability of the species. First, transcriptome sequencing of five trees (C.parthenoxylon) based on root, leaf, and stem tissues was performed for functional annotation analysis and development of novel molecular markers. The transcriptomes of C.parthenoxylon were analyzed via an Illumina HiSeqTM 4000 sequencing system. A total of 27,363,199 bases were generated for C.parthenoxylon. De novo assembly indicated that a total of 160,435 unigenes were generated (average length = 548.954 bp). The 51,691 unigenes were compared against different databases, i.e. COG, GO, KEGG, KOG, Pfam, Swiss-Prot, and NR for functional annotation. Furthermore, a total of 12,849 EST-SSRs were identified. Of the 134 primer pairs, 54 were randomly selected for testing, with 15 successfully amplified across nine populations of C.parthenoxylon. We uncovered medium levels of genetic diversity (PIC = 0.52, Na = 3.29, Ne = 2.18, P = 94.07%, Ho = 0.56 and He = 0.47) within the studied populations. The molecular variance was 10% among populations and low genetic differentiation (Fst = 0.06) indicated low gene flow (Nm = 2.16). A reduction in the population size of C.parthenoxylon was detected using BOTTLENECK (VP population). The structure analysis suggested two optimal genetic clusters related to gene flow among the populations. Analysis of molecular variance (AMOVA) revealed higher genetic variation within populations (90%) than among populations (10%). The UPGMA approach and DAPC divided the nine populations into three main clusters. Our findings revealed a significant fraction of the transcriptome sequences and these newlydeveloped novel EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity and molecular marker-assisted selection in C.parthenoxylon. This study provides comprehensive genetic resources for the breeding and conservation of different varieties of C.parthenoxylon.

10.
Front Plant Sci ; 15: 1369409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721339

RESUMEN

Background: This study aimed at exploring unique population genetic characteristics of Albizia odoratissima (Linn. f) Benth on Hainan Island to provide a scientific basis for its rational utilization and protection. Methods: It analyzed the genetic diversity and structure of 280 individuals from 10 subpopulations of A. odoratissima from Hainan Island and Baise City using 16 expression sequence markers - simple sequence repeat markers. Results: The genetic diversity of Hainan population (I = 0.7290, He = 0.4483) was lower than that of the Baise population (I = 0.8722, He = 0.5121). Compared with the Baise population (Nm = 2.0709, FST = 0.1077), the Hainan Island population (Nm = 1.7519, FST = 0.1249) exhibited lower gene flow and higher degree of genetic differentiation. Molecular variance and genetic differentiation analyses showed that the main variation originated from individuals within the subpopulation. There were significant differences in the genetic structure between Hainan and Baise populations. It grouped according to geographical distance, consistent with the Mantel test results (R2 = 0.77, p = 0.001). In conclusion, the genetic diversity of the island A. odoratissima population was lower than that distributed on land, the two populations exhibited obvious genetic structure differences. Both the degrees of inbreeding and genetic differentiation were higher in the island population than in the land population.

11.
Food Chem ; 454: 139732, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815327

RESUMEN

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of flavonoids highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and flavonols (33.90 to 83.16 mg/kg FW). The volatile compounds with higher odor active value were selected to describe the aroma of spine grapes. Hexanal, (E)-2-hexenal and (E, Z)-2,6-nonadienal contributed to the higher herbaceous flavor to Baiputao and Ziqiu. ß-Damascenone and (E)-2-nonenal gave Baiputao a flavor with more floral, fruity and earthy. Their characteristic flavor compounds were subsequently revealed using multivariate statistical analysis. The results helped producers to further develop and utilize the spine grapes.


Asunto(s)
Flavonoides , Aromatizantes , Frutas , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Vitis , Compuestos Orgánicos Volátiles , Vitis/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , China , Aromatizantes/química , Aromatizantes/análisis , Aromatizantes/metabolismo , Frutas/química , Flavonoides/análisis , Flavonoides/química , Gusto , Odorantes/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Humanos
12.
Mol Breed ; 44(6): 42, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38817819

RESUMEN

The marker-assisted backcrossing (MAB) can help to transfer an interested allele at a target locus from a donor to a recipient line. Gynoecious is a pivotal trait of cucumber since commercial F1 hybrid seeds produced with gynoecious line as one of the parents are high-yield and affordable. This study aims to transfer the F locus encoded for gynoecious trait to Vietnamese domesticated cucumbers by marker-assisted backcrossing. Two monoecious cucumber lines, A1 (Ha Giang, Vietnam) A2 (Yen Bai, Vietnam), and two gynoecious cucumber lines, B1 (Plantgene, India) and B2 (Hue, Vietnam) were utilized as the starting materials. BCAT marker (located on the F locus) and 52 SSRs (spread across seven chromosomes and tightly linked with some crucial horticultural traits) were used as the foreground and background markers, respectively. With this, phenotype selection for fruit and leaf sizes was also applied. First, using phenotypic screening and foreground marker, A1 (Ha Giang, Vietnam) and B1 (Plantgene, India) were selected as donor and recurrent parents for backcrossing. Then, after two backcrosses followed by two self-pollinations, four gynoecious C cucumber lines were created. These C lines have leaf sizes slightly bigger than the recurrent parent. Importantly, their fruit length is the same or longer than A1 (Ha Giang, Vietnam). These new gynoecious lines could be used as material lines for producing commercial F1 hybrid seeds. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01481-w.

13.
Mol Genet Metab ; 142(3): 108477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805916

RESUMEN

Congenital disorders of glycosylation (CDG) are a group of rare, often multi-systemic genetic disorders that result from disturbed protein and lipid glycosylation. SSR4-CDG is an ultra-rare, comparably mild subtype of CDG, presenting mostly in males. It is caused by pathogenic variants in the SSR4 gene, which is located on the X chromosome. SSR4 (signal sequence receptor protein 4) is a subunit of the translocon-associated protein (TRAP) complex, a structure that is needed for the translocation of proteins across the ER membrane. A deficiency of SSR4 leads to disturbed N-linked glycosylation of proteins in the endoplasmic reticulum. Here, we review the most common clinical, biochemical and genetic features of 18 previously published individuals and report four new cases diagnosed with SSR4-CDG, including the first adult affected by this disorder. Based on our review, developmental delay, speech delay, intellectual disability, muscular hypotonia, microcephaly and distinct facial features are key symptoms of SSR4-CDG that are present in all affected individuals. Although these symptoms overlap with many other neurodevelopmental disorders, their combination with additional clinical features, and a quite distinguishable facial appearance of affected individuals make this disorder a potentially recognizable type of CDG. Additional signs and symptoms include failure to thrive, feeding difficulties, connective tissue involvement, gastrointestinal problems, skeletal abnormalities, seizures and, in some cases, significant behavioral abnormalities. Due to lack of awareness of this rare disorder, and since biochemical testing can be normal in affected individuals, most are diagnosed through genetic studies, such as whole exome sequencing. With this article, we expand the phenotype of SSR4-CDG to include cardiac symptoms, laryngeal abnormalities, and teleangiectasia. We also provide insights into the prognosis into early adulthood and offer recommendations for adequate management and care. We emphasize the great need for causal therapies, as well as effective symptomatic therapies addressing the multitude of symptoms in this disease. In particular, behavioral problems can severely affect quality of life in individuals diagnosed with SSR4-CDG and need special attention. Finally, we aim to improve guidance and education for affected families and treating physicians and create a basis for future research in this disorder.


Asunto(s)
Trastornos Congénitos de Glicosilación , Adulto , Humanos , Proteínas de Unión al Calcio , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/diagnóstico , Glicosilación , Glicoproteínas de Membrana , Mutación , Receptores Citoplasmáticos y Nucleares , Receptores de Péptidos/genética
14.
Genes (Basel) ; 15(5)2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38790261

RESUMEN

Pistacia lentiscus var. chia is a valuable crop for its high-added-value mastic, a resin with proven pharmaceutical and cosmeceutical properties harvested from the male tree trunk. To achieve the maximum economic benefits from the cultivation of male mastic trees, it is important to develop early sex diagnosis molecular tools for distinguishing the sex type. Thus far, the work on sex identification has focused on Pistacia vera with promising results; however, the low transferability rates of these markers in P. lentiscus necessitates the development of species-specific sex-linked markers for P. lentiscus var. chia. To our knowledge, this is the first report regarding: (i) the development of species-specific novel transcriptome-based markers for P. lentiscus var. chia and their assessment on male, female and monoecious individuals using PCR-HRM analysis, thus, introducing a cost-effective method for sex identification with high accuracy that can be applied with minimum infrastructure, (ii) the effective sex identification in mastic tree using a combination of different sex-linked ISSR and SCAR markers with 100% accuracy, and (iii) the impact evaluation of sex type on the genetic diversity of different P. lentiscus var. chia cultivars. The results of this study are expected to provide species-specific markers for accurate sex identification that could contribute to the selection process of male mastic trees at an early stage for mass propagation systems and to facilitate future breeding efforts related to sex-linked productivity and quality of mastic resin.


Asunto(s)
Pistacia , Pistacia/genética , Marcadores Genéticos/genética , Transcriptoma/genética , Repeticiones de Microsatélite/genética , Resina Mástique
15.
Genes Genomics ; 46(7): 851-870, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38809491

RESUMEN

BACKGROUND: The Bradybaenidae snail Karaftohelix adamsi is endemic to Korea, with the species tracked from Island Ulleung in North Gyeongsang Province of South Korea. K. adamsi has been classified under the Endangered Wildlife Class II species of Korea and poses a severe risk of extinction following habitat disturbances. With no available information at the DNA (genome) or mRNA (transcriptome) level for the species, conservation by utilizing informed molecular resources seems difficult. OBJECTIVE: In this study, we used the Illumina short-read sequencing and Trinity de novo assembly to draft the reference transcriptome of K. adamsi. RESULTS: After assembly, 13,753 unigenes were obtained of which 10,511 were annotated to public databases (a maximum of 10,165 unigenes found homologs in PANM DB). A total of 6,351, 3,535, 358, and 3,407 unigenes were ascribed to the functional categories under KOG, GO, KEGG, and IPS, respectively. The transcripts such as the HSP 70, aquaporin, TLR, and MAPK, among others, were screened as putative functional resources for adaptation. DNA transposons were found to be thickly populated in comparison to retrotransposons in the assembled unigenes. Further, 2,164 SSRs were screened with the promiscuous presence of dinucleotide repeats such as AC/GT and AG/CT. CONCLUSION: The transcriptome-guided discovery of molecular resources in K. adamsi will not only serve as a basis for functional genomics studies but also provide sustainable tools to be utilized for the protection of the species in the wild. Moreover, the development of polymorphic SSRs is valuable for the identification of species from newer habitats and cross-species genotyping.


Asunto(s)
Especies en Peligro de Extinción , Repeticiones de Microsatélite , Caracoles , Transcriptoma , Animales , Repeticiones de Microsatélite/genética , Caracoles/genética , Transcriptoma/genética , República de Corea , Anotación de Secuencia Molecular , Aptitud Genética
16.
BMC Plant Biol ; 24(1): 403, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750434

RESUMEN

Cotton (Gossypium barbadense L.) is a leading fiber and oilseed crop globally, but genetic diversity among breeding materials is often limited. This study analyzed genetic variability in 14 cotton genotypes from Egypt and other countries, including both cultivated varieties and wild types, using agro-morphological traits and genomic SSR markers. Field experiments were conducted over two seasons to evaluate 12 key traits related to plant growth, yield components, and fiber quality. Molecular diversity analysis utilized 10 SSR primers to generate DNA profiles. The Molecular diversity analysis utilized 10 SSR primers to generate DNA profiles. Data showed wide variation for the morphological traits, with Egyptian genotypes generally exhibiting higher means for vegetative growth and yield parameters. The top-performing genotypes for yield were Giza 96, Giza 94, and Big Black Boll genotypes, while Giza 96, Giza 92, and Giza 70 ranked highest for fiber length, strength, and fineness. In contrast, molecular profiles were highly polymorphic across all genotypes, including 82.5% polymorphic bands out of 212. Polymorphism information content was high for the SSR markers, ranging from 0.76 to 0.86. Genetic similarity coefficients based on the SSR data varied extensively from 0.58 to 0.91, and cluster analysis separated genotypes into two major groups according to geographical origin. The cotton genotypes displayed high diversity in morphology and genetics, indicating sufficient variability in the germplasm. The combined use of physical traits and molecular markers gave a thorough understanding of the genetic diversity and relationships between Egyptian and global cotton varieties. The SSR markers effectively profiled the genotypes and can help select ideal parents for enhancing cotton through hybridization and marker-assisted breeding.


Asunto(s)
Fibra de Algodón , Variación Genética , Genotipo , Gossypium , Gossypium/genética , Gossypium/anatomía & histología , Gossypium/crecimiento & desarrollo , Repeticiones de Microsatélite , Egipto , Fenotipo
17.
J Evol Biol ; 37(6): 704-716, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761114

RESUMEN

The potential for rapid evolution is an important mechanism allowing species to adapt to changing climatic conditions. Although such potential has been largely studied in various short-lived organisms, to what extent we can observe similar patterns in long-lived plant species, which often dominate natural systems, is largely unexplored. We explored the potential for rapid evolution in Festuca rubra, a long-lived grass with extensive clonal growth dominating in alpine grasslands. We used a field sowing experiment simulating expected climate change in our model region. Specifically, we exposed seeds from five independent seed sources to novel climatic conditions by shifting them along a natural climatic grid and explored the genetic profiles of established seedlings after 3 years. Data on genetic profiles of plants selected under different novel conditions indicate that different climate shifts select significantly different pools of genotypes from common seed pools. Increasing soil moisture was more important than increasing temperature or the interaction of the two climatic factors in selecting pressure. This can indicate negative genetic interaction in response to the combined effects or that the effects of different climates are interactive rather than additive. The selected alleles were found in genomic regions, likely affecting the function of specific genes or their expression. Many of these were also linked to morphological traits (mainly to trait plasticity), suggesting these changes may have a consequence on plant performance. Overall, these data indicate that even long-lived plant species may experience strong selection by climate, and their populations thus have the potential to rapidly adapt to these novel conditions.


Asunto(s)
Festuca , Festuca/genética , Cambio Climático , Adaptación Fisiológica/genética
19.
Mol Biol Rep ; 51(1): 619, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709339

RESUMEN

BACKGROUND: Rice blast and bacterial leaf blight (BLB) are the most limiting factors for rice production in the world which cause yield losses typically ranging from 20 to 30% and can be as high as 50% in some areas of Asia especially India under severe infection conditions. METHODS AND RESULTS: An improved line of Tellahamsa, TH-625-491 having two BLB resistance genes (xa13 and Xa21) and two blast resistance genes (Pi54 and Pi1) with 95% Tellahamsa genome was used in the present study. TH-625-491 was validated for all four target genes and was used for backcrossing with Tellahamsa. Seventeen IBC1F1 plants heterozygous for all four target genes, 19 IBC1F2 plants homozygous for four, three and two gene combinations and 19 IBC1F2:3 plants also homozygous for four, three and two gene combinations were observed. Among seventeen IBC1F1 plants, IBC1F1-62 plant recorded highest recurrent parent genome (97.5%) covering 75 polymorphic markers. Out of the total of 920 IBC1F2 plants screened, 19 homozygous plants were homozygous for four, three and two target genes along with bacterial blight resistance. Background analysis was done in all 19 homozygous IBC1F2 plants possessing BLB resistance (possessing xa13, Xa21, Pi54 and Pi1 in different combinations) with five parental polymorphic SSR markers. IBC1F2-62-515 recovered 98.5% recurrent parent genome. The four, three and two gene pyramided lines of Tellahamsa exhibited varying resistance to blast. CONCLUSIONS: Results show that there might be presence of antagonistic effect between bacterial blight and blast resistance genes since the lines with Pi54 and Pi1 combination are showing better resistance than the combinations with both bacterial blight and blast resistance genes.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Oryza/genética , Oryza/microbiología , Genes de Plantas/genética , Xanthomonas/patogenicidad , Xanthomonas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Fitomejoramiento/métodos
20.
Plants (Basel) ; 13(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794446

RESUMEN

To cultivate excellent lily germplasms, an interspecific hybrid (LC×SQ-01) was successfully obtained by using a cut-style pollination method in which the rare wild lily Lilium callosum was used as the female parent and the cut flower L. longiflorum 'Snow Queen' was used as the male parent. The morphological features of LC×SQ-01 included height, leaf length, and width, which were observed to be between those of the parents in the tissue-cultured seedlings. The height and leaf length of LC×SQ-01 were more similar to those of the male parent, and the width was between the widths of the parents for field-generated plants. The epidermal cell length and the guard cell and stoma sizes were between those of both parents in tissue-cultured and field-generated plants. In addition, the shapes of the epidermal cells and anticlinal wall in LC×SQ-01 were more analogous to those in the male parent, while the stoma morphology was different from that of both parents. Fourteen pairs of polymorphic SSR primers were identified in both parents, and the validity of LC×SQ-01 was demonstrated by PCR amplification using five pairs of SSR primers. Flow cytometry and root tip squashing assays revealed that LC×SQ-01 was a diploid plant, similar to its parents. Furthermore, the LC×SQ-01 hybrid was more resistant to B. cinerea than its parents, and it also showed much greater peroxidase (POD) and catalase (CAT) activity than the parents. These results lay a foundation for breeding a new high-resistance and ornamental lily variety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...