Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 966, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39449143

RESUMEN

BACKGROUND: Skin cutaneous melanoma (SKCM) poses a significant public health challenge due to its aggressive nature and limited treatment options. To address this, the study introduces the Tumor Mutational Burden-Derived Immune lncRNA Prognostic Index (TILPI) as a potential prognostic tool for SKCM. METHODS: TILPI was developed using a combination of gene set variation analysis, differential expression analysis, and COX regression analysis. Additionally, functional experiments were conducted to validate the findings, focusing on the effects of STARD4-AS1 knockdown on SKCM tumor cell behavior. These experiments encompassed assessments of tumor cell proliferation, gene and protein expression, migration, invasion, and in vivo tumor growth. RESULTS: The results demonstrated that knockdown of STARD4-AS1 led to a significant reduction in tumor cell proliferation and impaired migration and invasion abilities. Moreover, it resulted in the downregulation of ADCY4, PRKACA, and SOX10 gene expression, as well as decreased protein expression of ADCY4, PRKACA, and SOX10. In vivo experiments further confirmed the efficacy of STARD4-AS1 knockdown in reducing tumor growth. CONCLUSIONS: This study elucidates the mechanistic role of STARD4-AS1 and its downstream targets in SKCM progression, highlighting the importance of the ADCY4/PRKACA/SOX10 pathway. The integration of computational analysis with experimental validation enhances the understanding of TILPI and its clinical implications. Overall, the findings underscore the potential of novel computational frameworks like TILPI in predicting and managing SKCM, particularly through targeting the ADCY4/PRKACA/SOX10 pathway.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Melanoma Cutáneo Maligno , Melanoma , Mutación , Invasividad Neoplásica , ARN Largo no Codificante , Neoplasias Cutáneas , Melanoma/genética , Melanoma/patología , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Pronóstico , Línea Celular Tumoral , Mutación/genética , Proliferación Celular/genética , Movimiento Celular/genética , Animales , Técnicas de Silenciamiento del Gen , Biología Computacional , Carga Tumoral , Ratones Desnudos
2.
Heliyon ; 10(12): e33193, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39015805

RESUMEN

Background: Oral squamous cell carcinoma (OSCC) stands as the predominant form of oral cancer, marked by a poor prognosis. Ferroptosis, a type of programmed cell death, plays a critical role in the initiation and progression of various cancers. Long non-coding RNAs (lncRNAs) are prominent in modulating cancer development. Nevertheless, the prognostic significance of ferroptosis-related lncRNAs (FRLs) in OSCC remains inadequately explored. This study aims to develop a predictive signature based on FRLs to forecast the prognosis of OSCC patients. Methods: We gathered expression profiles of FRLs along with clinical data from The Cancer Genome Atlas (TCGA) and FerrDb databases. A prognostic model based on 10 FRLs were constructed using Cox regression analyses with LASSO algorithms, and their predictive power was evaluated. Then, the model was used to investigate functional enrichment, immune landscape, m6A genes, somatic variations, and drug response in different risk cohorts of patients. Finally, the expression and function of STARD4-AS1 (steroidogenic acute regulator protein-related lipid transfer domain containing 4-antisense RNA 1), a potential prognostic marker for OSCC screening based on our bioinformatics analysis, were investigated in vitro. Results: We developed a signature comprising 10 FRLs to stratify patients into two risk cohorts according to their calculated risk scores. Patients classified as high-risk exhibited significantly poorer prognoses compared to those in the low-risk cohort. Furthermore, survival analysis, patient risk heat plot, and risk curve verified the accuracy of the signature. The role of this signature in OSCC was well investigated using immune microenvironment, mutational, and gene set enrichment analysis (GSEA). Moreover, seven drugs, including cisplatin and docetaxel, were identified as potential treatments for patients with high-risk cancers. In addition, the knockdown of STARD4-AS1 in OSCC cell lines markedly inhibited cell proliferation and migration and induced ferroptosis. Conclusion: Using this signature may improve overall survival predictions in OSCC, throwing new light on immunotherapies and targeted therapies. Moreover, STARD4-AS1 might regulate the process of ferroptosis and could be used as a novel biomarker of OSCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...