Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
PeerJ Comput Sci ; 10: e2083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983190

RESUMEN

Aiming to automatically monitor and improve stereoscopic image and video processing systems, stereoscopic image quality assessment approaches are becoming more and more important as 3D technology gains popularity. We propose a full-reference stereoscopic image quality assessment method that incorporate monocular and binocular features based on binocular competition and binocular integration. To start, we create a three-channel RGB fused view by fusing Gabor filter bank responses and disparity maps. Then, using the monocular view and the RGB fusion view, respectively, we extract monocular and binocular features. To alter the local features in the binocular features, we simultaneously estimate the saliency of the RGB fusion image. Finally, the monocular and binocular quality scores are calculated based on the monocular and binocular features, and the quality scores of the stereo image prediction are obtained by fusion. Performance testing in the LIVE 3D IQA database Phase I and Phase II. The results of the proposed method are compared with newer methods. The experimental results show good consistency and robustness.

2.
Artif Organs ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023279

RESUMEN

BACKGROUND: Retinal prostheses offer hope for individuals with degenerative retinal diseases by stimulating the remaining retinal cells to partially restore their vision. This review delves into the current advancements in retinal prosthesis technology, with a special emphasis on the pivotal role that image processing and machine learning techniques play in this evolution. METHODS: We provide a comprehensive analysis of the existing implantable devices and optogenetic strategies, delineating their advantages, limitations, and challenges in addressing complex visual tasks. The review extends to various image processing algorithms and deep learning architectures that have been implemented to enhance the functionality of retinal prosthetic devices. We also illustrate the testing results by demonstrating the clinical trials or using Simulated Prosthetic Vision (SPV) through phosphene simulations, which is a critical aspect of simulating visual perception for retinal prosthesis users. RESULTS: Our review highlights the significant progress in retinal prosthesis technology, particularly its capacity to augment visual perception among the visually impaired. It discusses the integration between image processing and deep learning, illustrating their impact on individual interactions and navigations within the environment through applying clinical trials and also illustrating the limitations of some techniques to be used with current devices, as some approaches only use simulation even on sighted-normal individuals or rely on qualitative analysis, where some consider realistic perception models and others do not. CONCLUSION: This interdisciplinary field holds promise for the future of retinal prostheses, with the potential to significantly enhance the quality of life for individuals with retinal prostheses. Future research directions should pivot towards optimizing phosphene simulations for SPV approaches, considering the distorted and confusing nature of phosphene perception, thereby enriching the visual perception provided by these prosthetic devices. This endeavor will not only improve navigational independence but also facilitate a more immersive interaction with the environment.

3.
J Biomed Inform ; 156: 104673, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38862083

RESUMEN

OBJECTIVE: Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. METHOD: We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det). RESULTS: The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach. CONCLUSIONS: In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.

4.
J Biomed Inform ; : 104679, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925280

RESUMEN

Parkinson's Disease (PD), a neurodegenerative disorder, significantly impacts the quality of life for millions of people worldwide. PD primarily impacts dopaminergic neurons in the brain's substantia nigra, resulting in dopamine deficiency and gait impairments such as bradykinesia and rigidity. Currently, several well-established tools, such as the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and Hoehn and Yahr (H&Y) Scale, are used for evaluating gait dysfunction in PD. While insightful, these methods are subjective, time-consuming, and often ineffective in early-stage diagnosis. Other methods using specialized sensors and equipment to measure movement disorders are cumbersome and expensive, limiting their accessibility. This study introduces a hierarchical approach to evaluating gait dysfunction in PD through videos. The novel 2-Stream Spatial-Temporal Neural Network (2S-STNN) leverages the spatial-temporal features from the skeleton and silhouette streams for PD classification. This approach achieves an accuracy rate of 89% and outperforms other state-of-the-art models. The study also employs saliency values to highlight critical body regions that significantly influence model decisions and are severely affected by the disease. For a more detailed analysis, the study investigates 21 specific gait attributes for a more nuanced quantification of gait disorders. Parameters such as walking pace, step length, and neck forward angle are found to be strongly correlated with PD gait severity categories. This approach offers a comprehensive and convenient solution for PD management in clinical settings, enabling patients to receive a more precise evaluation and monitoring of their gait impairments.

5.
Neural Netw ; 177: 106392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38788290

RESUMEN

Explainable artificial intelligence (XAI) has been increasingly investigated to enhance the transparency of black-box artificial intelligence models, promoting better user understanding and trust. Developing an XAI that is faithful to models and plausible to users is both a necessity and a challenge. This work examines whether embedding human attention knowledge into saliency-based XAI methods for computer vision models could enhance their plausibility and faithfulness. Two novel XAI methods for object detection models, namely FullGrad-CAM and FullGrad-CAM++, were first developed to generate object-specific explanations by extending the current gradient-based XAI methods for image classification models. Using human attention as the objective plausibility measure, these methods achieve higher explanation plausibility. Interestingly, all current XAI methods when applied to object detection models generally produce saliency maps that are less faithful to the model than human attention maps from the same object detection task. Accordingly, human attention-guided XAI (HAG-XAI) was proposed to learn from human attention how to best combine explanatory information from the models to enhance explanation plausibility by using trainable activation functions and smoothing kernels to maximize the similarity between XAI saliency map and human attention map. The proposed XAI methods were evaluated on widely used BDD-100K, MS-COCO, and ImageNet datasets and compared with typical gradient-based and perturbation-based XAI methods. Results suggest that HAG-XAI enhanced explanation plausibility and user trust at the expense of faithfulness for image classification models, and it enhanced plausibility, faithfulness, and user trust simultaneously and outperformed existing state-of-the-art XAI methods for object detection models.


Asunto(s)
Inteligencia Artificial , Atención , Humanos , Atención/fisiología , Redes Neurales de la Computación
6.
Cereb Cortex ; 34(13): 172-186, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696606

RESUMEN

Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.


Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Reconocimiento Facial , Imagen por Resonancia Magnética , Percepción Social , Humanos , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/psicología , Masculino , Femenino , Adulto , Adulto Joven , Reconocimiento Facial/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Juicio/fisiología , Mapeo Encefálico , Adolescente
7.
Sci Rep ; 14(1): 11893, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789575

RESUMEN

Although the value of adding AI as a surrogate second reader in various scenarios has been investigated, it is unknown whether implementing an AI tool within double reading practice would capture additional subtle cancers missed by both radiologists who independently assessed the mammograms. This paper assesses the effectiveness of two state-of-the-art Artificial Intelligence (AI) models in detecting retrospectively-identified missed cancers within a screening program employing double reading practices. The study also explores the agreement between AI and radiologists in locating the lesions, considering various levels of concordance among the radiologists in locating the lesions. The Globally-aware Multiple Instance Classifier (GMIC) and Global-Local Activation Maps (GLAM) models were fine-tuned for our dataset. We evaluated the sensitivity of both models on missed cancers retrospectively identified by a panel of three radiologists who reviewed prior examinations of 729 cancer cases detected in a screening program with double reading practice. Two of these experts annotated the lesions, and based on their concordance levels, cases were categorized as 'almost perfect,' 'substantial,' 'moderate,' and 'poor.' We employed Similarity or Histogram Intersection (SIM) and Kullback-Leibler Divergence (KLD) metrics to compare saliency maps of malignant cases from the AI model with annotations from radiologists in each category. In total, 24.82% of cancers were labeled as "missed." The performance of GMIC and GLAM on the missed cancer cases was 82.98% and 79.79%, respectively, while for the true screen-detected cancers, the performances were 89.54% and 87.25%, respectively (p-values for the difference in sensitivity < 0.05). As anticipated, SIM and KLD from saliency maps were best in 'almost perfect,' followed by 'substantial,' 'moderate,' and 'poor.' Both GMIC and GLAM (p-values < 0.05) exhibited greater sensitivity at higher concordance. Even in a screening program with independent double reading, adding AI could potentially identify missed cancers. However, the challenging-to-locate lesions for radiologists impose a similar challenge for AI.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Detección Precoz del Cáncer , Mamografía , Humanos , Mamografía/métodos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Estudios Retrospectivos , Detección Precoz del Cáncer/métodos , Persona de Mediana Edad , Anciano , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Sensibilidad y Especificidad
9.
J Imaging Inform Med ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710971

RESUMEN

Saliency maps are popularly used to "explain" decisions made by modern machine learning models, including deep convolutional neural networks (DCNNs). While the resulting heatmaps purportedly indicate important image features, their "trustworthiness," i.e., utility and robustness, has not been evaluated for musculoskeletal imaging. The purpose of this study was to systematically evaluate the trustworthiness of saliency maps used in disease diagnosis on upper extremity X-ray images. The underlying DCNNs were trained using the Stanford MURA dataset. We studied four trustworthiness criteria-(1) localization accuracy of abnormalities, (2) repeatability, (3) reproducibility, and (4) sensitivity to underlying DCNN weights-across six different gradient-based saliency methods (Grad-CAM (GCAM), gradient explanation (GRAD), integrated gradients (IG), Smoothgrad (SG), smooth IG (SIG), and XRAI). Ground-truth was defined by the consensus of three fellowship-trained musculoskeletal radiologists who each placed bounding boxes around abnormalities on a holdout saliency test set. Compared to radiologists, all saliency methods showed inferior localization (AUPRCs: 0.438 (SG)-0.590 (XRAI); average radiologist AUPRC: 0.816), repeatability (IoUs: 0.427 (SG)-0.551 (IG); average radiologist IOU: 0.613), and reproducibility (IoUs: 0.250 (SG)-0.502 (XRAI); average radiologist IOU: 0.613) on abnormalities such as fractures, orthopedic hardware insertions, and arthritis. Five methods (GCAM, GRAD, IG, SG, XRAI) passed the sensitivity test. Ultimately, no saliency method met all four trustworthiness criteria; therefore, we recommend caution and rigorous evaluation of saliency maps prior to their clinical use.

10.
Entropy (Basel) ; 26(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785632

RESUMEN

Finding the most interesting areas of an image is the aim of saliency detection. Conventional methods based on low-level features rely on biological cues like texture and color. These methods, however, have trouble with processing complicated or low-contrast images. In this paper, we introduce a deep neural network-based saliency detection method. First, using semantic segmentation, we construct a pixel-level model that gives each pixel a saliency value depending on its semantic category. Next, we create a region feature model by combining both hand-crafted and deep features, which extracts and fuses the local and global information of each superpixel region. Third, we combine the results from the previous two steps, along with the over-segmented superpixel images and the original images, to construct a multi-level feature model. We feed the model into a deep convolutional network, which generates the final saliency map by learning to integrate the macro and micro information based on the pixels and superpixels. We assess our method on five benchmark datasets and contrast it against 14 state-of-the-art saliency detection algorithms. According to the experimental results, our method performs better than the other methods in terms of F-measure, precision, recall, and runtime. Additionally, we analyze the limitations of our method and propose potential future developments.

11.
Bioengineering (Basel) ; 11(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38790320

RESUMEN

In recent years, deep convolutional neural networks (DCNNs) have shown promising performance in medical image analysis, including breast lesion classification in 2D ultrasound (US) images. Despite the outstanding performance of DCNN solutions, explaining their decisions remains an open investigation. Yet, the explainability of DCNN models has become essential for healthcare systems to accept and trust the models. This paper presents a novel framework for explaining DCNN classification decisions of lesions in ultrasound images using the saliency maps linking the DCNN decisions to known cancer characteristics in the medical domain. The proposed framework consists of three main phases. First, DCNN models for classification in ultrasound images are built. Next, selected methods for visualization are applied to obtain saliency maps on the input images of the DCNN models. In the final phase, the visualization outputs and domain-known cancer characteristics are mapped. The paper then demonstrates the use of the framework for breast lesion classification from ultrasound images. We first follow the transfer learning approach and build two DCNN models. We then analyze the visualization outputs of the trained DCNN models using the EGrad-CAM and Ablation-CAM methods. We map the DCNN model decisions of benign and malignant lesions through the visualization outputs to the characteristics such as echogenicity, calcification, shape, and margin. A retrospective dataset of 1298 US images collected from different hospitals is used to evaluate the effectiveness of the framework. The test results show that these characteristics contribute differently to the benign and malignant lesions' decisions. Our study provides the foundation for other researchers to explain the DCNN classification decisions of other cancer types.

12.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38670806

RESUMEN

Visual crowding refers to the phenomenon where a target object that is easily identifiable in isolation becomes difficult to recognize when surrounded by other stimuli (distractors). Many psychophysical studies have investigated this phenomenon and proposed alternative models for the underlying mechanisms. One prominent hypothesis, albeit with mixed psychophysical support, posits that crowding arises from the loss of information due to pooled encoding of features from target and distractor stimuli in the early stages of cortical visual processing. However, neurophysiological studies have not rigorously tested this hypothesis. We studied the responses of single neurons in macaque (one male, one female) area V4, an intermediate stage of the object-processing pathway, to parametrically designed crowded displays and texture statistics-matched metameric counterparts. Our investigations reveal striking parallels between how crowding parameters-number, distance, and position of distractors-influence human psychophysical performance and V4 shape selectivity. Importantly, we also found that enhancing the salience of a target stimulus could alleviate crowding effects in highly cluttered scenes, and this could be temporally protracted reflecting a dynamical process. Thus, a pooled encoding of nearby stimuli cannot explain the observed responses, and we propose an alternative model where V4 neurons preferentially encode salient stimuli in crowded displays. Overall, we conclude that the magnitude of crowding effects is determined not just by the number of distractors and target-distractor separation but also by the relative salience of targets versus distractors based on their feature attributes-the similarity of distractors and the contrast between target and distractor stimuli.


Asunto(s)
Macaca mulatta , Neuronas , Estimulación Luminosa , Corteza Visual , Animales , Masculino , Femenino , Corteza Visual/fisiología , Estimulación Luminosa/métodos , Neuronas/fisiología , Humanos , Reconocimiento Visual de Modelos/fisiología , Psicofísica
13.
Artif Intell Med ; 151: 102862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579437

RESUMEN

We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models. The aim is two-fold: to improve the predictive power while maintaining the interpretability of the models. To go beyond the black box paradigm of artificial neural networks, we propose a parsimonious and robust semi-parametric approach (i.e., a landmarking competing risks model) that combines routinely collected low-resolution data with predictive features extracted from a convolutional neural network, that was trained on high resolution time-dependent information. We then use saliency maps to analyze and explain the extra predictive power of this model. To illustrate our methodology, we focus on healthcare-associated infections in patients admitted to an intensive care unit.


Asunto(s)
Unidades de Cuidados Intensivos , Redes Neurales de la Computación , Humanos , Unidades de Cuidados Intensivos/organización & administración , Infección Hospitalaria
14.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679483

RESUMEN

Prior research has yet to fully elucidate the impact of varying relative saliency between target and distractor on attentional capture and suppression, along with their underlying neural mechanisms, especially when social (e.g. face) and perceptual (e.g. color) information interchangeably serve as singleton targets or distractors, competing for attention in a search array. Here, we employed an additional singleton paradigm to investigate the effects of relative saliency on attentional capture (as assessed by N2pc) and suppression (as assessed by PD) of color or face singleton distractors in a visual search task by recording event-related potentials. We found that face singleton distractors with higher relative saliency induced stronger attentional processing. Furthermore, enhancing the physical salience of colors using a bold color ring could enhance attentional processing toward color singleton distractors. Reducing the physical salience of facial stimuli by blurring weakened attentional processing toward face singleton distractors; however, blurring enhanced attentional processing toward color singleton distractors because of the change in relative saliency. In conclusion, the attentional processes of singleton distractors are affected by their relative saliency to singleton targets, with higher relative saliency of singleton distractors resulting in stronger attentional capture and suppression; faces, however, exhibit some specificity in attentional capture and suppression due to high social saliency.


Asunto(s)
Atención , Percepción de Color , Electroencefalografía , Potenciales Evocados , Humanos , Atención/fisiología , Femenino , Masculino , Adulto Joven , Potenciales Evocados/fisiología , Adulto , Percepción de Color/fisiología , Estimulación Luminosa/métodos , Reconocimiento Facial/fisiología , Reconocimiento Visual de Modelos/fisiología , Encéfalo/fisiología
15.
IEEE Open J Eng Med Biol ; 5: 191-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606397

RESUMEN

Goal: To predict physician fixations specifically on ophthalmology optical coherence tomography (OCT) reports from eye tracking data using CNN based saliency prediction methods in order to aid in the education of ophthalmologists and ophthalmologists-in-training. Methods: Fifteen ophthalmologists were recruited to each examine 20 randomly selected OCT reports and evaluate the likelihood of glaucoma for each report on a scale of 0-100. Eye movements were collected using a Pupil Labs Core eye-tracker. Fixation heat maps were generated using fixation data. Results: A model trained with traditional saliency mapping resulted in a correlation coefficient (CC) value of 0.208, a Normalized Scanpath Saliency (NSS) value of 0.8172, a Kullback-Leibler (KLD) value of 2.573, and a Structural Similarity Index (SSIM) of 0.169. Conclusions: The TranSalNet model was able to predict fixations within certain regions of the OCT report with reasonable accuracy, but more data is needed to improve model accuracy. Future steps include increasing data collection, improving quality of data, and modifying the model architecture.

16.
Front Neurosci ; 18: 1333894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646608

RESUMEN

Background: Alzheimer's disease (AD) and Lewy body disease (LBD), the two most common causes of neurodegenerative dementia with similar clinical manifestations, both show impaired visual attention and altered eye movements. However, prior studies have used structured tasks or restricted stimuli, limiting the insights into how eye movements alter and differ between AD and LBD in daily life. Objective: We aimed to comprehensively characterize eye movements of AD and LBD patients on naturalistic complex scenes with broad categories of objects, which would provide a context closer to real-world free viewing, and to identify disease-specific patterns of altered eye movements. Methods: We collected spontaneous viewing behaviors to 200 naturalistic complex scenes from patients with AD or LBD at the prodromal or dementia stage, as well as matched control participants. We then investigated eye movement patterns using a computational visual attention model with high-level image features of object properties and semantic information. Results: Compared with matched controls, we identified two disease-specific altered patterns of eye movements: diminished visual exploration, which differentially correlates with cognitive impairment in AD and with motor impairment in LBD; and reduced gaze allocation to objects, attributed to a weaker attention bias toward high-level image features in AD and attributed to a greater image-center bias in LBD. Conclusion: Our findings may help differentiate AD and LBD patients and comprehend their real-world visual behaviors to mitigate the widespread impact of impaired visual attention on daily activities.

17.
Neuroscience ; 545: 86-110, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38484836

RESUMEN

Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.


Asunto(s)
Primates , Colículos Superiores , Colículos Superiores/fisiología , Animales , Primates/fisiología , Humanos , Vías Visuales/fisiología , Atención/fisiología , Fijación Ocular/fisiología
18.
Sensors (Basel) ; 24(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38475188

RESUMEN

Hyperspectral anomaly detection is used to recognize unusual patterns or anomalies in hyperspectral data. Currently, many spectral-spatial detection methods have been proposed with a cascaded manner; however, they often neglect the complementary characteristics between the spectral and spatial dimensions, which easily leads to yield high false alarm rate. To alleviate this issue, a spectral-spatial information fusion (SSIF) method is designed for hyperspectral anomaly detection. First, an isolation forest is exploited to obtain spectral anomaly map, in which the object-level feature is constructed with an entropy rate segmentation algorithm. Then, a local spatial saliency detection scheme is proposed to produce the spatial anomaly result. Finally, the spectral and spatial anomaly scores are integrated together followed by a domain transform recursive filtering to generate the final detection result. Experiments on five hyperspectral datasets covering ocean and airport scenes prove that the proposed SSIF produces superior detection results over other state-of-the-art detection techniques.

19.
Eur Heart J Digit Health ; 5(2): 134-143, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505490

RESUMEN

Aims: The spatiotemporal deep convolutional neural network (DCNN) helps reduce echocardiographic readers' erroneous 'judgement calls' on Takotsubo syndrome (TTS). The aim of this study was to improve the interpretability of the spatiotemporal DCNN to discover latent imaging features associated with causative TTS pathophysiology. Methods and results: We applied gradient-weighted class activation mapping analysis to visualize an established spatiotemporal DCNN based on the echocardiographic videos to differentiate TTS (150 patients) from anterior wall ST-segment elevation myocardial infarction (STEMI, 150 patients). Forty-eight human expert readers interpreted the same echocardiographic videos and prioritized the regions of interest on myocardium for the differentiation. Based on visualization results, we completed optical flow measurement, myocardial strain, and Doppler/tissue Doppler echocardiography studies to investigate regional myocardial temporal dynamics and diastology. While human readers' visualization predominantly focused on the apex of the heart in TTS patients, the DCNN temporal arm's saliency visualization was attentive on the base of the heart, particularly at the atrioventricular (AV) plane. Compared with STEMI patients, TTS patients consistently showed weaker peak longitudinal displacement (in pixels) in the basal inferoseptal (systolic: 2.15 ± 1.41 vs. 3.10 ± 1.66, P < 0.001; diastolic: 2.36 ± 1.71 vs. 2.97 ± 1.69, P = 0.004) and basal anterolateral (systolic: 2.70 ± 1.96 vs. 3.44 ± 2.13, P = 0.003; diastolic: 2.73 ± 1.70 vs. 3.45 ± 2.20, P = 0.002) segments, and worse longitudinal myocardial strain in the basal inferoseptal (-8.5 ± 3.8% vs. -9.9 ± 4.1%, P = 0.013) and basal anterolateral (-8.6 ± 4.2% vs. -10.4 ± 4.1%, P = 0.006) segments. Meanwhile, TTS patients showed worse diastolic mechanics than STEMI patients (E'/septal: 5.1 ± 1.2 cm/s vs. 6.3 ± 1.5 cm/s, P < 0.001; S'/septal: 5.8 ± 1.3 cm/s vs. 6.8 ± 1.4 cm/s, P < 0.001; E'/lateral: 6.0 ± 1.4 cm/s vs. 7.9 ± 1.6 cm/s, P < 0.001; S'/lateral: 6.3 ± 1.4 cm/s vs. 7.3 ± 1.5 cm/s, P < 0.001; E/E': 15.5 ± 5.6 vs. 12.5 ± 3.5, P < 0.001). Conclusion: The spatiotemporal DCNN saliency visualization helps identify the pattern of myocardial temporal dynamics and navigates the quantification of regional myocardial mechanics. Reduced AV plane displacement in TTS patients likely correlates with impaired diastolic mechanics.

20.
J Biophotonics ; 17(6): e202400004, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531622

RESUMEN

Photoacoustic molecular imaging technology has a wide range of applications in biomedical research. In practical scenarios, both the probes and blood generate signals, resulting in the saliency of the probes in the blood environment being diminished, impacting imaging quality. Although several methods have been proposed for saliency enhancement, they inevitably suffer from moderate generality and detection speed. The Grüneisen relaxation (GR) nonlinear effect offers an alternative for enhancing saliency and can improve generality and speed. In this article, the excitation and detection efficiencies are optimized to enhance the GR signal amplitude. Experimental studies show that the saliency of the probe is enhanced. Moreover, the issue of signal aliasing is studied to ensure the accuracy of enhancement results in the tissues. In a word, the feasibility of the GR-based imaging method in saliency enhancement is successfully demonstrated in the study, showing the superiorities of good generality and detection speed.


Asunto(s)
Imagen Molecular , Dinámicas no Lineales , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Imagen Molecular/métodos , Animales , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...