RESUMEN
Structure-based drug discovery methods, such as molecular docking and virtual screening, have become invaluable tools in developing novel drugs. At the core of these methods are Scoring Functions (SFs), which predict the binding affinity between ligands and protein targets. This study aims to review and contextualize the challenges and best practices in training novel scoring functions to improve their accuracy and generalizability in predicting protein-ligand binding affinities. Effective training of scoring functions requires careful attention to the quality of training data and methodologies. We emphasize the need for robust training strategies to produce consistent and generalizable SFs. Key considerations include addressing hidden biases and overfitting in machine-learning models, as well as ensuring the use of high-quality, unbiased datasets for both training and evaluation of SFs. Innovative hybrid methods, combining the advantages of empirical and machine-learning approaches, hold promise for outperforming current scoring functions while displaying greater generalizability and versatility.
RESUMEN
We introduce an advanced model for predicting protein-ligand interactions. Our approach combines the strengths of graph neural networks with physics-based scoring methods. Existing structure-based machine-learning models for protein-ligand binding prediction often fall short in practical virtual screening scenarios, hindered by the intricacies of binding poses, the chemical diversity of drug-like molecules, and the scarcity of crystallographic data for protein-ligand complexes. To overcome the limitations of existing machine learning-based prediction models, we propose a novel approach that fuses three independent neural network models. One classification model is designed to perform binary prediction of a given protein-ligand complex pose. The other two regression models are trained to predict the binding affinity and root-mean-square deviation of a ligand conformation from an input complex structure. We trained the model to account for both deviations in experimental and predicted binding affinities and pose prediction uncertainties. By effectively integrating the outputs of the triplet neural networks with a physics-based scoring function, our model showed a significantly improved performance in hit identification. The benchmark results with three independent decoy sets demonstrate that our model outperformed existing models in forward screening. Our model achieved top 1% enrichment factors of 32.7 and 23.1 with the CASF2016 and DUD-E benchmark sets, respectively. The benchmark results using the LIT-PCBA set further confirmed its higher average enrichment factors, emphasizing the model's efficiency and generalizability. The model's efficiency was further validated by identifying 23 active compounds from 63 candidates in experimental screening for autotaxin inhibitors, demonstrating its practical applicability in hit discovery.Scientific contributionOur work introduces a novel training strategy for a protein-ligand binding affinity prediction model by integrating the outputs of three independent sub-models and utilizing expertly crafted decoy sets. The model showcases exceptional performance across multiple benchmarks. The high enrichment factors in the LIT-PCBA benchmark demonstrate its potential to accelerate hit discovery.
RESUMEN
MOTIVATION: Protein-protein interactions are essential for a variety of biological phenomena including mediating bio-chemical reactions, cell signaling, and the immune response. Proteins seek to form interfaces which reduce overall system energy. Although determination of single polypeptide chain protein structures has been revolutionized by deep learning techniques, complex prediction has still not been perfected. Additionally, experimentally determining structures is incredibly resource and time expensive. An alternative is the technique of computational docking, which takes the solved individual structures of proteins to produce candidate interfaces (decoys). Decoys are then scored using a mathematical function that assess the quality of the system, know as a scoring functions. Beyond docking, scoring functions are a critical component of assessing structures produced by many protein generative models. Scoring models are also used as a final filtering in many generative deep learning models including those that generate antibody binders, and those which perform docking. RESULTS: In this work we present improved scoring functions for protein-protein interactions which utilizes cutting-edge euclidean graph neural network architectures, to assess protein-protein interfaces. These euclidean docking score models are known as EuDockScore, and EuDockScore-Ab with the latter being antibody-antigen dock specific. Finally, we provided EuDockScore-AFM a model trained on antibody-antigen outputs from AlphaFold-Multimer which proves useful in re-ranking large numbers of AlphaFold-Multimer outputs. AVAILABILITY: The code for these models is available at https://gitlab.com/mcfeemat/eudockscore.
RESUMEN
RNA-protein complexes play a crucial role in cellular functions, providing insights into cellular mechanisms and potential therapeutic targets. However, experimental determination of these complex structures is often time-consuming and resource-intensive, and it rarely yields high-resolution data. Many computational approaches have been developed to predict RNA-protein complex structures in recent years. Despite these advances, achieving accurate and high-resolution predictions remains a formidable challenge, primarily due to the limitations inherent in current RNA-protein scoring functions. These scoring functions are critical tools for evaluating and interpreting RNA-protein interactions. This review comprehensively explores the latest advancements in scoring functions for RNA-protein docking, delving into the fundamental principles underlying various approaches, including coarse-grained knowledge-based, all-atom knowledge-based, and machine-learning-based methods. We critically evaluate the strengths and limitations of existing scoring functions, providing a detailed performance assessment. Considering the significant progress demonstrated by machine learning techniques, we discuss emerging trends and propose future research directions to enhance the accuracy and efficiency of scoring functions in RNA-protein complex prediction. We aim to inspire the development of more sophisticated and reliable computational tools in this rapidly evolving field.
Asunto(s)
Aprendizaje Automático , Proteínas de Unión al ARN , ARN , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Proteínas/química , Proteínas/metabolismo , Humanos , Unión Proteica , Conformación de Ácido NucleicoRESUMEN
Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking structures of complexes generated by AutoDock Vina, we integrate interaction features and ligand features, and employ support vector regression to develop a target-specific scoring function for hDHODH (TSSF-hDHODH). The Pearson correlation coefficient values of TSSF-hDHODH in the cross-validation and external validation are 0.86 and 0.74, respectively, both of which are far superior to those of classic scoring function AutoDock Vina and random forest (RF) based generic scoring function RF-Score. TSSF-hDHODH is further used for the virtual screening of potential inhibitors in the FDA-Approved & Pharmacopeia Drug Library. In conjunction with the results from molecular dynamics simulations, crizotinib is identified as a candidate for subsequent structural optimization. This study can be useful for the discovery of hDHODH inhibitors and the development of scoring functions for additional targets.
RESUMEN
Predicting protein-ligand binding affinity is a crucial and challenging task in structure-based drug discovery. With the accumulation of complex structures and binding affinity data, various machine-learning scoring functions, particularly those based on deep learning, have been developed for this task, exhibiting superiority over their traditional counterparts. A fusion model sequentially connecting a graph neural network (GNN) and a convolutional neural network (CNN) to predict protein-ligand binding affinity is proposed in this work. In this model, the intermediate outputs of the GNN layers, as supplementary descriptors of atomic chemical environments at different levels, are concatenated with the input features of CNN. The model demonstrates a noticeable improvement in performance on CASF-2016 benchmark compared to its constituent CNN models. The generalization ability of the model is evaluated by setting a series of thresholds for ligand extended-connectivity fingerprint similarity or protein sequence similarity between the training and test sets. Masking experiment reveals that model can capture key interaction regions. Furthermore, the fusion model is applied to a virtual screening task for a novel target, PI5P4Kα. The fusion strategy significantly improves the ability of the constituent CNN model to identify active compounds. This work offers a novel approach to enhancing the accuracy of deep learning models in predicting binding affinity through fusion strategies.
RESUMEN
CDK2 plays a pivotal role in controlling the progression of the cell cycle and is a target for anticancer drugs. The last 30 years of structural studies focused on CDK2 provided the basis for understanding its inhibition and furnished the data to develop machine-learning models to study intermolecular interactions. This review addresses the application of computational models to estimate the inhibition of CDK2. It focuses on machine-learning models developed to predict binding affinity against CDK2 using the program SAnDReS. A search of previously published articles on PubMed showed machine-learning models built to evaluate CDK2 inhibition. BindingDB information for CDK2 furnished the data to generate updated machine-learning models to predict the inhibition of this enzyme. The application of SAnDReS to model CDK2-inhibitor interactions showed that this approach can build machine-learning models with superior predictive performance compared with classical and deep-learning scoring functions. Also, the innovative DOME analysis of the predictive performance of machine learning and universal scoring function indicates that this method is adequate to select computational models to address protein-ligand interactions. The available structural and functional data about CDK2 is a rich source of information to build machine-learning models to predict the inhibition of this protein target. SAnDReS can build superior models to predict pKi and outperform universal scoring functions, including one developed using deep learning.
RESUMEN
Polarization and charge-transfer interactions play an important role in ligand-receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)-an important druggable target containing a Zn2+ ion in the active site-as a case study to predict the binding free energy in metalloprotein-ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP. The main advantage of the FG approach is that it can find nonlinear relations between the energy terms used to predict the binding free energy, explicitly showing their mathematical relation. This work showed the effectiveness of the FG approach, and therefore, it might represent an important tool for the development of new scoring functions. Indeed, our scoring function showed a high correlation with the experimental binding free energy (R2 = 0.76-0.95, RMSE = 0.34-0.18), revealing a nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic contacts. These results, along with the FMO characterization of ligand-receptor interactions, represent important information to support the design of new and potent hCA II inhibitors.
Asunto(s)
Anhidrasa Carbónica II , Inhibidores de Anhidrasa Carbónica , Unión Proteica , Ligandos , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Humanos , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Termodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Sulfonamidas/química , Sulfonamidas/farmacología , Metaloproteínas/química , Metaloproteínas/antagonistas & inhibidores , Metaloproteínas/metabolismo , Modelos Moleculares , Aprendizaje Automático , Bencenosulfonamidas , Sitios de UniónRESUMEN
Recent advances in molecular modeling using deep learning can revolutionize our understanding of dynamic protein structures. NMR is particularly well-suited for determining dynamic features of biomolecular structures. The conventional process for determining biomolecular structures from experimental NMR data involves its representation as conformation-dependent restraints, followed by generation of structural models guided by these spatial restraints. Here we describe an alternative approach: generating a distribution of realistic protein conformational models using artificial intelligence-(AI-) based methods and then selecting the sets of conformers that best explain the experimental data. We applied this conformational selection approach to redetermine the solution NMR structure of the enzyme Gaussia luciferase. First, we generated a diverse set of conformer models using AlphaFold2 (AF2) with an enhanced sampling protocol. The models that best-fit NOESY and chemical shift data were then selected with a Bayesian scoring metric. The resulting models include features of both the published NMR structure and the standard AF2 model generated without enhanced sampling. This "AlphaFold-NMR" protocol also generated an alternative "open" conformational state that fits nearly as well to the overall NMR data but accounts for some NOESY data that is not consistent with first "closed" conformational state; while other NOESY data consistent with this second state are not consistent with the first conformational state. The structure of this "open" structural state differs from that of the "closed" state primarily by the position of a thumb-shaped loop between α-helices H5 and H6, revealing a cryptic surface pocket. These alternative conformational states of Gluc are supported by "double recall" analysis of NOESY data and AF2 models. Additional structural states are also indicated by backbone chemical shift data indicating partially-disordered conformations for the C-terminal segment. Considered as a multistate ensemble, these multiple states of Gluc together fit the NOESY and chemical shift data better than the "restraint-based" NMR structure and provide novel insights into its structure-dynamic-function relationships. This study demonstrates the potential of AI-based modeling with enhanced sampling to generate conformational ensembles followed by conformer selection with experimental data as an alternative to conventional restraint satisfaction protocols for protein NMR structure determination.
RESUMEN
Protein-protein docking is considered one of the most important techniques supporting experimental proteomics. Recent developments in the field of computer science helped to improve this computational technique so that it better handles the complexity of protein nature. Sampling algorithms are responsible for the generation of numerous protein-protein ensembles. Unfortunately, a primary docking output comprises a set of both near-native poses and decoys. Application of the efficient scoring function helps to differentiate poses with the most favorable properties from those that are very unlikely to represent a natural state of the complex. This chapter explains the importance of sampling and scoring in the process of protein-protein docking. Moreover, it summarizes advances in the field.
Asunto(s)
Algoritmos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas , Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Biología Computacional/métodos , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos , Proteómica/métodosRESUMEN
Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein-ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein-ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.
Asunto(s)
Aprendizaje Automático , Proteínas , Proteínas/química , Proteínas/metabolismo , Ligandos , Programas Informáticos , Simulación del Acoplamiento MolecularRESUMEN
Protein-ligand interaction prediction presents a significant challenge in drug design. Numerous machine learning and deep learning (DL) models have been developed to accurately identify docking poses of ligands and active compounds against specific targets. However, current models often suffer from inadequate accuracy or lack practical physical significance in their scoring systems. In this research paper, we introduce IGModel, a novel approach that utilizes the geometric information of protein-ligand complexes as input for predicting the root mean square deviation of docking poses and the binding strength (pKd, the negative value of the logarithm of binding affinity) within the same prediction framework. This ensures that the output scores carry intuitive meaning. We extensively evaluate the performance of IGModel on various docking power test sets, including the CASF-2016 benchmark, PDBbind-CrossDocked-Core and DISCO set, consistently achieving state-of-the-art accuracies. Furthermore, we assess IGModel's generalizability and robustness by evaluating it on unbiased test sets and sets containing target structures generated by AlphaFold2. The exceptional performance of IGModel on these sets demonstrates its efficacy. Additionally, we visualize the latent space of protein-ligand interactions encoded by IGModel and conduct interpretability analysis, providing valuable insights. This study presents a novel framework for DL-based prediction of protein-ligand interactions, contributing to the advancement of this field. The IGModel is available at GitHub repository https://github.com/zchwang/IGModel.
Asunto(s)
Aprendizaje Profundo , Proteínas , Proteínas/química , Unión Proteica , Ligandos , Diseño de FármacosRESUMEN
Here, we introduce the use of ANI-ML potentials as a rescoring function in the host-guest interaction in molecular docking. Our results show that the "docking power" of ANI potentials can compete with the current scoring functions at the same level of computational cost. Benchmarking studies on CASF-2016 dataset showed that ANI is ranked in the top 5 scoring functions among the other 34 tested. In particular, the ANI predicted interaction energies when used in conjunction with GOLD-PLP scoring function can boost the top ranked solution to be the closest to the x-ray structure. Rapid and accurate calculation of interaction energies between ligand and protein also enables screening of millions of drug candidates/docking poses. Using a unique protocol in which docking by GOLD-PLP, rescoring by ANI-ML potentials and extensive MD simulations along with end state free energy methods are combined, we have screened FDA approved drugs against the SARS-CoV-2 main protease (Mpro). The top six drug molecules suggested by the consensus of these free energy methods have already been in clinical trials or proposed as potential drug molecules in previous theoretical and experimental studies, approving the validity and the power of accuracy in our screening method.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Benchmarking , Inhibidores de ProteasasRESUMEN
BACKGROUND: The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA (ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology, RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D structure of protein-ssRNA complexes with any degree of accuracy is ssRNA'TTRACT, an ssRNA fragment-based docking approach using ATTRACT. However, since ATTRACT parameters are not ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement. RESULTS: Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from contact frequencies in near-native versus non-native docking models. HIPPO consists of a consensus of four distinct potentials, each extracted from a distinct reference pool of protein-trinucleotide docking decoys. To score a docking pose with one potential, for each pair of RNA-protein coarse-grained bead types, each contact is awarded or penalised according to the relative frequencies of this contact distance range among the correct and incorrect poses of the reference pool. Validated on a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a threefold or higher enrichment for half of the fragments, versus only a quarter with the ATTRACT scoring function. In particular, HIPPO drastically improved the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it directly practically applicable. Regardless, our approach already improves upon the state of the art in RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.
Asunto(s)
Proteínas , ARN , Humanos , Unión Proteica , Proteínas/química , ARN/química , Simulación del Acoplamiento Molecular , Conformación ProteicaRESUMEN
RNA is a complex macromolecule that plays central roles in the cell. While it is well known that its structure is directly related to its functions, understanding and predicting RNA structures is challenging. Assessing the real or predictive quality of a structure is also at stake with the complex 3D possible conformations of RNAs. Metrics have been developed to measure model quality while scoring functions aim at assigning quality to guide the discrimination of structures without a known and solved reference. Throughout the years, many metrics and scoring functions have been developed, and no unique assessment is used nowadays. Each developed assessment method has its specificity and might be complementary to understanding structure quality. Therefore, to evaluate RNA 3D structure predictions, it would be important to calculate different metrics and/or scoring functions. For this purpose, we developed RNAdvisor, a comprehensive automated software that integrates and enhances the accessibility of existing metrics and scoring functions. In this paper, we present our RNAdvisor tool, as well as state-of-the-art existing metrics, scoring functions and a set of benchmarks we conducted for evaluating them. Source code is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr.
Asunto(s)
Benchmarking , ARN , Modelos Estructurales , ARN/genética , Programas InformáticosRESUMEN
When designing a machine learning-based scoring function, we access a limited number of protein-ligand complexes with experimentally determined binding affinity values, representing only a fraction of all possible protein-ligand complexes. Consequently, it is crucial to report a measure of confidence and quantify the uncertainty in the model's predictions during test time. Here, we adopt the conformal prediction technique to evaluate the confidence of a prediction for each member of the core set of the CASF 2016 benchmark. The conformal prediction technique requires a diverse ensemble of predictors for uncertainty estimation. To this end, we introduce ENS-Score as an ensemble predictor, which includes 30 models with different protein-ligand representation approaches and achieves Pearson's correlation of 0.842 on the core set of the CASF 2016 benchmark. Also, we comprehensively investigate the residual error of each data point to assess the normality behavior of the distribution of the residual errors and their correlation to the structural features of the ligands, such as hydrophobic interactions and halogen bonding. In the end, we provide a local host web application to facilitate the usage of ENS-Score. All codes to repeat results are provided at https://github.com/miladrayka/ENS_Score.
Asunto(s)
Aprendizaje Automático , Unión Proteica , Proteínas , Ligandos , Proteínas/química , Proteínas/metabolismoRESUMEN
Dysregulation of MAPK pathway receptors are crucial in causing uncontrolled cell proliferation in many cancer types including non-small cell lung cancer. Due to the complications in targeting the upstream components, MEK is an appealing target to diminish this pathway activity. Hence, we have aimed to discover potent MEK inhibitors by integrating virtual screening and machine learning-based strategies. Preliminary screening was conducted on 11,808 compounds using the cavity-based pharmacophore model AADDRRR. Further, seven ML models were accessed to predict the MEK active compounds using six molecular representations. The LGB model with morgan2 fingerprints surpasses other models ensuing 0.92 accuracy and 0.83 MCC value versus test set and 0.85 accuracy and 0.70 MCC value with external set. Further, the binding ability of screened hits were examined using glide XP docking and prime-MM/GBSA calculations. Note that we have utilized three ML-based scoring functions to predict the various biological properties of the compounds. The two hit compounds such as DB06920 and DB08010 resulted excellent binding mechanism with acceptable toxicity properties against MEK. Further, 200 ns of MD simulation combined with MM-GBSA/PBSA calculations confirms that DB06920 may have stable binding conformations with MEK thus step forwarded to the experimental studies in the near future.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Simulación de Dinámica Molecular , Unión Proteica , Simulación del Acoplamiento Molecular , Detección Precoz del Cáncer , Neoplasias Pulmonares/tratamiento farmacológico , Aprendizaje Automático , Quinasas de Proteína Quinasa Activadas por MitógenosRESUMEN
Ligand docking (LD), a technology for predicting protein-ligand (PL)-binding conformations and strengths, plays key roles in virtual screening (VS). However, the accuracy and speed of current LD methodologies remain suboptimal. Here, we discuss how deep learning (DL) could help to bridge this gap by examining recent advancements and projecting future trends.
Asunto(s)
Aprendizaje Profundo , Proteínas , Humanos , Ligandos , Proteínas/metabolismo , Unión Proteica , Conformación Proteica , Simulación del Acoplamiento MolecularRESUMEN
The "Long-COVID syndrome" has posed significant challenges due to a lack of validated therapeutic options. We developed a novel multi-step virtual screening strategy to reliably identify inhibitors against 3-chymotrypsin-like protease of SARS-CoV-2 from abundant flavonoids, which represents a promising source of antiviral and immune-boosting nutrients. We identified 57 interacting residues as contributors to the protein-ligand binding pocket. Their energy interaction profiles constituted the input features for Machine Learning (ML) models. The consensus of 25 classifiers trained using various ML algorithms attained 93.9% accuracy and a 6.4% false-positive-rate. The consensus of 10 regression models for binding energy prediction also achieved a low root-mean-square error of 1.18 kcal/mol. We screened out 120 flavonoid hits first and retained 50 drug-like hits after predefined ADMET filtering to ensure bioavailability and safety profiles. Furthermore, molecular dynamics simulations prioritized nine bioactive flavonoids as promising anti-SARS-CoV-2 agents exhibiting both high structural stability (root-mean-square deviation < 5 Å for 218 ns) and low MM/PBSA binding free energy (<-6 kcal/mol). Among them, KB-2 (PubChem-CID, 14630497) and 9-O-Methylglyceofuran (PubChem-CID, 44257401) displayed excellent binding affinity and desirable pharmacokinetic capabilities. These compounds have great potential to serve as oral nutraceuticals with therapeutic and prophylactic properties as care strategies for patients with long-COVID syndrome.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Quimasas , Síndrome Post Agudo de COVID-19 , Simulación de Dinámica Molecular , Flavonoides/farmacología , Aprendizaje Automático , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento MolecularRESUMEN
A scoring function that can reliably assess the accuracy of a 3D RNA structural model in the absence of experimental structure is not only important for model evaluation and selection but also useful for scoring-guided conformational sampling. However, high-fidelity RNA scoring has proven to be difficult using conventional knowledge-based statistical potentials and currently-available machine learning-based approaches. Here we present lociPARSE, a locality-aware invariant point attention architecture for scoring RNA 3D structures. Unlike existing machine learning methods that estimate superposition-based root mean square deviation (RMSD), lociPARSE estimates Local Distance Difference Test (lDDT) scores capturing the accuracy of each nucleotide and its surrounding local atomic environment in a superposition-free manner, before aggregating information to predict global structural accuracy. Tested on multiple datasets including CASP15, lociPARSE significantly outperforms existing statistical potentials (rsRNASP, cgRNASP, DFIRE-RNA, and RASP) and machine learning methods (ARES and RNA3DCNN) across complementary assessment metrics. lociPARSE is freely available at https://github.com/Bhattacharya-Lab/lociPARSE.