Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.110
Filtrar
1.
J Environ Sci (China) ; 147: 189-199, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003039

RESUMEN

China's lowland rural rivers are facing severe eutrophication problems due to excessive phosphorus (P) from anthropogenic activities. However, quantifying P dynamics in a lowland rural river is challenging due to its complex interaction with surrounding areas. A P dynamic model (River-P) was specifically designed for lowland rural rivers to address this challenge. This model was coupled with the Environmental Fluid Dynamics Code (EFDC) and the Phosphorus Dynamic Model for lowland Polder systems (PDP) to characterize P dynamics under the impact of dredging in a lowland rural river. Based on a two-year (2020-2021) dataset from a representative lowland rural river in the Lake Taihu Basin, China, the coupled model was calibrated and achieved a model performance (R2>0.59, RMSE<0.04 mg/L) for total P (TP) concentrations. Our research in the study river revealed that (1) the time scale for the effectiveness of sediment dredging for P control was ∼300 days, with an increase in P retention capacity by 74.8 kg/year and a decrease in TP concentrations of 23% after dredging. (2) Dredging significantly reduced P release from sediment by 98%, while increased P resuspension and settling capacities by 16% and 46%, respectively. (3) The sediment-water interface (SWI) plays a critical role in P transfer within the river, as resuspension accounts for 16% of TP imports, and settling accounts for 47% of TP exports. Given the large P retention capacity of lowland rural rivers, drainage ditches and ponds with macrophytes are promising approaches to enhance P retention capacity. Our study provides valuable insights for local environmental departments, allowing a comprehensive understanding of P dynamics in lowland rural rivers. This enable the evaluation of the efficacy of sediment dredging in P control and the implementation of corresponding P control measures.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Fósforo , Ríos , Contaminantes Químicos del Agua , Fósforo/análisis , Ríos/química , Sedimentos Geológicos/química , China , Contaminantes Químicos del Agua/análisis , Eutrofización
2.
J Environ Sci (China) ; 149: 278-287, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181642

RESUMEN

The arsenic (As) release from sediments in great lakes is affected by various factors. In this study, the characteristics of As release from sediments was investigated, and the As sources and sinks with the strengths in sediments from different areas (grass-type, algae-type, and grass-algae alternation areas) in great shallow lakes (Taihu Lake, China) were analyzed, and the influence of P competition in the process of As release was also studied. The results showed that changing trend of the values of equilibrium As concentration in sediments were consistent with the regional changes (0 to 28.12 µg/L), and the sediments from algae-type areas had the higher values. The sediments from western lake and northwest lake bay were a strong As and a weak P source, and the north lake bay had the opposite trend of these two regions. Intense P source competition with As from the sediments occurred in algae-type areas. The grass-type areas had strong As and P retention capacities, indicating a sink role of sediment with high As and P sorption capacities. The degree of As and P saturation had similar trend in sediments, and the grass-type areas had the higher values, 18.3%-21.4% and 15.31%-20.34%, respectively. Contribution analysis results showed that most of As release contribution was from the bottom (30-50 cm) sediments, and the surface (0-10 cm) sediments from algae-type areas contributed more to the overlying water than other region.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Fósforo , Contaminantes Químicos del Agua , Lagos/química , Fósforo/análisis , Arsénico/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , China , Poaceae
3.
Environ Geochem Health ; 46(10): 414, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230752

RESUMEN

Angqu, positioned in the eastern expanse of the Tibet Plateau, claims the title of the largest tributary to the Lancang River. In October and December of 2018, in the sediment of Angqu, a comprehensive investigation was conducted on nine heavy metals-arsenic (As), manganese (Mn), chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), copper (Cu), zinc (Zn), and nickel (Ni). This investigation aimed to scrutinize the spatial and temporal distribution patterns of these metals, assess the pollution status and ecological risks associated with the sediments, and delve into the sources contributing to their presence. The research results indicate that the average concentrations of As, Hg, and Cd in Angqu sediments exceed the soil background values of Tibet, while the concentrations of other heavy metals are below the soil background values of Tibet. Notably, arsenic poses potential ecological risks. In Angqu sediments, the concentrations of Mn, Cu, Ni, and Pb are generally higher in the wet season, but the seasonal variations of heavy metals in Angqu sediments are not significant. The sediments in the Angqu Basin are predominantly affected by mercury Hg, Cd, and As, with varying degrees of pollution at different sampling points. In the main stream of Angqu (City section), Hg pollution has reached above a moderate level, whereas As pollution near the tributary is only slightly polluted. The analysis of heavy metal sources reveals that there are five primary contributors to heavy metals in surface sediments of Angqu: parent material, agricultural activities, groundwater, atmospheric deposition, and other unidentified sources. Mn, Cr, Pb, and Ni are mainly derived from soil parent material, accounting for more than 50%. About 60.82% of As comes primarily from groundwater. Zn and Cd are mainly sourced from agricultural activities, accounting for 41.25% and 34.33%, respectively. Additionally, 20.6% of Hg originates from atmospheric deposition.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Ríos , Contaminantes Químicos del Agua , Metales Pesados/análisis , Sedimentos Geológicos/química , Medición de Riesgo , Tibet , Contaminantes Químicos del Agua/análisis , Ríos/química , Monitoreo del Ambiente/métodos
4.
Mar Pollut Bull ; 207: 116716, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222553

RESUMEN

Ship ballast residual sediments are an important vector of introduction for non-indigenous species. We evaluated the proportion of residual sediments and associated organisms released during de-ballasting operations of a commercial bulk carrier and estimated a total residual sediment accumulation of ∼13 t, with accumulations of up to 20 cm in some tank areas that had accumulated over 11 years. We observed interior hull-fouling (anemones, hydrozoans, and bryozoans) and high abundances of viable invertebrate resting stages and dinoflagellate cysts in sediments. Although we determined that <1 % of residual sediments and associated resting stages were resuspended and released into the environment during individual de-ballasting events, this represents a substantial inoculum of 21 × 107 viable dinoflagellate cysts and 7.5 × 105 invertebrate resting stages with many taxa being nonindigenous, cryptogenic, or toxic/harmful species. The methods used and results will help estimate propagule pressure associated with this pathway and will be relevant for residual sediments and nonindigenous species management.

5.
Water Res ; 266: 122316, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39222603

RESUMEN

Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions. A refined dynamic chamber method was utilized to concurrently collect and quantify methane emission fluxes arising from ebullition and diffusion processes. Significant correlations were found between methane flux and variations in the physiological activities of V. nantas by the fluorescence imaging system. Our results show that exceeding tolerance thresholds of ammonia in the water significantly interfered with the photosynthetic systems in submerged leaves and the radial oxygen loss in adventitious roots. The recovery process of V. natans accelerated the consumption of dissolved oxygen, leading to increase in the populations of methanogen (153.3 % increase of mcrA genes) and subsequently elevating CH4 emission fluxes (23.7 %) under high nutrient concentrations. Conversely, V. natans increased the available organic carbon under low nutrient conditions by radial oxygen loss, further increasing CH4 emission fluxes (94.7 %). Quantitative genetic and modeling analyses revealed that plant restoration processes drive ecological niche differentiation of methanogenic and methane oxidation microorganisms, affecting methane release fluxes within the restored area. The speciation process of V. natans is incapable of simultaneously meeting improved water purification and reduced methane emissions goals.

6.
J Hazard Mater ; 480: 135760, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39259999

RESUMEN

Chlorinated paraffins (CPs) and microplastics (MPs) are commonly found in deep-sea cold seep sediments, where nitrogen cycling processes frequently occur. However, little is known about their combined effects on sedimentary microbial communities and nitrogen cycling in these environments. This study aimed to investigate the synergistic impacts of CPs and MPs on microbial communities and nitrogen cycling in deep-sea cold seep sediments through microcosm experiments. Our results demonstrated that the presence of CPs and MPs induced significant alterations in microbial community composition, promoting the growth of Halomonas. Furthermore, CPs and MPs were found to enhance nitrification, denitrification and anammox processes, which was evidenced by the higher abundance of genes associated with nitrification and denitrification, as well as increased activity of denitrification and anammox in the CPs and MPs-treatment groups compared to the control group. Additionally, the enhanced influence of CPs and MPs on denitrification was expected to promote nitrate-dependent and sulfate-dependent anaerobic oxidation of methane, thereby resulting in less methane released into the environment. These findings shed light on the potential consequences of simultaneous exposure to CPs and MPs on biogeochemical nitrogen cycling in deep-sea cold seep sediments.

7.
Mar Pollut Bull ; 208: 116954, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260143

RESUMEN

The influx of microplastics (MPs) into the Arctic Ocean poses a collective risk, particularly with pronounced sea ice depletion due to global warming. A total of 73 replicate sediment samples were collected at different depths (38 to 79 m) from Chukchi and the Beaufort Seas at 8 stations in the Arctic region during the R/V Mirai cruise (MR22-06C) from August to September 2022. The average concentration of MPs is 79.25 ± 31.08 items/kg d.w. Fibrous MPs of 0-1 mm size range are predominant, with blue being the most prevalent colour. Polymer characterization identified polyethylene (PE) as the predominant polymer. Arctic Ocean regions face heightened health risks from the coexistence of MPs and harmful additives, amplifying concerns over plastic pollution. The alarming surge in MPs within Arctic sediment underscores the urgent need for a proactive, collaborative approach to mitigate this environmental threat and its far-reaching impacts.

8.
Sci Total Environ ; : 176138, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260476

RESUMEN

In an era marked by unprecedented anthropogenic change, marine systems are increasingly subjected to interconnected and dynamic external stressors, which profoundly reshape the behavior and resilience of marine ecological components. Nevertheless, despite widespread recognition of the significance of stressor interactions, there persist notable knowledge deficits in quantifying their interactions and the specific biological consequences that result. To bridge this crucial gap, this research detected and examined the causal relationships between five key exogenous stressors in a complex estuarine ecosystem. Furthermore, a Bayesian Hierarchical Spatio-temporal modeling framework was proposed to quantitatively evaluate the distinct, interactive, and globally sensitive effects of multiple stressors on the population dynamics of a crucial fish species: Harpadon nehereus. The results showed that interactions were detected between fisheries pressure (FP), the Pacific Decadal Oscillation index (PDO), runoff volume (RV), and sediment load (SL), with five of these interactions producing significant synergistic effects on H. nehereus biomass. The SL*PDO and RV*PDO interactions had positive synergistic effects, albeit through differing mechanisms. The former interaction amplified the individual effects of each stressor, while the latter reversed the direction of the original impact. Indeed overall, the synergistic effect of multiple stressors was not favorable, with FP in particular posing the greatest threat to H. nehereus population. This threat was more pronounced at high SL or negative PDO phases. Therefore, local management efforts aimed at addressing multiple stressors and protecting resources should consider the findings. Additionally, although the velocity of climate change (VoCC) failed to produce significant interactions, changes in this stressor had the most sensitive impacts on the response of H. nehereus population. This research strives to enhance the dimensionality, generalizability, and flexibility of the quantification framework for marine multi-stressor interactions, aiming to foster broader research collaboration and jointly tackle the intricate pressures facing marine ecosystems.

9.
Environ Res ; : 119936, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260720

RESUMEN

In this study, we conducted an analysis of the heavy metal concentrations, health risk assessment, fraction and source interpretation in surface and core sediments from main stream of the Pearl River and Pearl River Estuary (RRE) area. Results showed that the higher deposited heavy metal concentrations in sediments occur at the Pearl River. The concentrations of heavy metals in surface sediments from the studied locations are in a descending order: Zn>Cr>Cu>Ni>Pb>Cd. Regarding chemical fractions, Cd showed the highest proportion of acid soluble fraction (F1) among all studied heavy metals. The high mobility of Cd poses a significant threat to water bodies and the surrounding environment. The potential ecological risk index (RI) showed the Pearl River sediments exhibited significantly higher values than the estuary sediments. Cd was found to be the primary contributor to potential ecological risk, accounting for 74% of RI. The health risk assessment showed the total hazard index (HI) for child was exceeded 1 mainly driven by Zn, indicating that the child population was at risk of non-carcinogenic effects. Besides, unacceptable carcinogenic risk in both Pearl River and estuary area were observed for children. The positive matrix factorization (PMF) model was used to ascertain sources of six heavy metals and apportion their contributions in sediments. The results showed that the source contributions of natural, industrial, and mixed sources from coal combustion and traffic emissions accounted for 39.81%, 34.10%, 26.10%.

10.
Environ Res ; 262(Pt 2): 119963, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251176

RESUMEN

The significance of intermittent streams in nutrient loss within forest ecosystems is becoming increasingly critical due to changes in precipitation patterns associated with global climate change. However, few studies have focused on nutrient export from intermittent streams. We conducted continuous sediment collection from intermittent streams from March 2022 to February 2023 to investigate the export pattern and mechanism of sediment-associated nitrogen (N) from intermittent streams of different forest types (composed forest of Castanopsis carlesii (Cas. carlesii) and Cunninghamia lanceolata (C. lanceolata) forests, compared to Cas. carlesii forests). We measured the N concentrations and calculated the export amounts of four common forms of N associated with sediments: total N (TN), dissolved N (DN), nitrate, and ammonia. Our results showed that (1) the annual average exports of TN, DN, nitrate, and ammonia associated with sediments from intermittent streams from both forest types were 273, 1.62, 0.26, and 0.84 kg ha-1, respectively; (2) N export was significantly higher in composite forests of Cas. carlesii and C. lanceolata, compared to Cas. carlesii forests; (3) stream sediment export amount positively affected N export both in composite forests and Cas. carlesii forests; and (4) N export was also controlled by rainfall amount and stream characteristics. Our study quantified sediment-associated N export from intermittent streams among different subtropical forest types, which will enhance our understanding of N dynamics associated with stream hydrological processes in subtropical forests.

11.
Sci Rep ; 14(1): 21048, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251684

RESUMEN

Controlled sediment flushing operations (CSFOs) allow to recover reservoirs storage loss while rebalancing the sediment flux interrupted by dams but, at the same time, may cause unacceptable ecological impact. In this study, we investigated the responses of the food web of an upland stream to a CSFO, focusing on the effects of fine sediment deposition detected in three different mesohabitats, i.e., a pool, a riffle, and a step-pool. The field campaign lasted two years and included repeated measurements of fine sediment deposits, and sampling of periphyton, benthic macroinvertebrates and fishes. A moderate and patchy deposition occurred due to the CSFO with short and medium-term ecological impact on the lower trophic levels of the food web, which may affect the whole ecosystem functioning. The monitoring of all available mesohabitats in the investigated stream allowed to detect variations in the ecological response to CSFO, providing a more adequate assessment of the impact. As expected, sedimentation was larger in the pool but, in contrast to our hypotheses, the impact was lower and the recovery was longer for the benthic organisms inhabiting the riffle. In the case of fishes, no lethal impact of both brown trout and bullhead was recorded in the short term but the occurrence of longer lasting effects could not be excluded. To date, this is one of the few studies dealing with a detailed integrative assessment of the downstream impact of sediment management from reservoir on both abiotic and biotic components of stream ecosystem.


Asunto(s)
Biota , Ecosistema , Sedimentos Geológicos , Ríos , Sedimentos Geológicos/análisis , Animales , Ríos/química , Peces/fisiología , Cadena Alimentaria , Monitoreo del Ambiente/métodos
12.
Heliyon ; 10(17): e36315, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263136

RESUMEN

Soil erosion and sediment buildup are the factors that speed up the decline in capacity and function of reservoirs, agricultural products, and water resources. In order to simulate sediment and runoff and map high sediment-yielding sub-basins in the Gibe Gojeb catchment in southwest Ethiopia, this study used the Soil and Water Assessment Tool (SWAT) model. Using data on sediment and river flow, calibration and validation were carried out. Between 2003 and 2016, the catchment produced an average annual sediment loading of 62.5 tons ha-1 yr-1, with loading fluctuations ranging from 0.2 to 108.4 tons ha-1 yr-1. The acceptable sediment yield threshold value ranges from 12.3 to 108.4 tons ha-1 yr-1 for 56 sub-basins, and from 0.2 to 10 tons ha-1 yr-1 for 5 sub-basins. The most significant sub-basins with very high to extremely severe sediment yields were sub-basins 1 to 30, 32 to 44, 47, 48, 50, 51, and 53 to 61. After thirteen years of operation, the yearly amount of 58,802 tons of sediment transferred from the catchment and deposited into Gibe One reservoir has decreased the capacity by 5.7 %. The accumulation of sediment in a reservoir has an impact on its functionality, power production, and capacity, affecting the safety of dams and the environment. The study's findings enhanced our comprehension of sediment accumulation in reservoirs and furnished us with the necessary information regarding reservoir safety, integrated soil, and water management.

13.
Environ Monit Assess ; 196(10): 925, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264478

RESUMEN

This is the first report on high pesticide tolerance displayed by the microbiota isolated from the sediments of two high-altitude lakes, located in the Singalila National Park, Singalila Ridge of the Himalayas. Given the remote location of these lakes, direct exposure to chemical pesticides is highly unlikely. However, the high tolerance to commonly used pesticides exhibited, i.e. up to 250 mg/ml, suggests repeated exposure and contamination of the lakes. Microbial growth in the presence of varying concentrations of the pesticides, namely, emamectin benzoate, thiamethoxam, quinalphos, deltamethrin, spiromesifen, flubendiamide, monocrotophos, fipronil, fenazaquin and phorate, was tested. Results showed resistance to all pesticides except fenazaquin and fipronil, up to 250 mg/ml. For the latter two, tolerance was displayed up to a concentration of 40 mg/ml. Tolerance may potentially result from the transport and deposition of pesticides from nearby locations, particularly the tea plantations of Darjeeling and Eastern Nepal. This may create great ecological risks as these lakes are an important water source for endemic wildlife of this protected area. They also hold great significance to the religious sentiment of the local tribes who worship these lakes as sacred. The study highlights the need for monitoring pesticide contamination in such pristine high-altitude environments and the mechanisms of long-range pollutant transport.


Asunto(s)
Altitud , Monitoreo del Ambiente , Lagos , Plaguicidas , Contaminantes Químicos del Agua , Lagos/microbiología , Lagos/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Nepal , Nitrilos/toxicidad , Microbiota/efectos de los fármacos , Piretrinas , Himalayas , Ivermectina/análogos & derivados
14.
Water (Basel) ; 16(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219624

RESUMEN

A portable toilet manufacturer in northwest Indiana (USA) released polyethylene microplastic (MP) pollution into a protected wetland for at least three years. To assess the loads, movement, and fate of the MPs in the wetland from this point source, water and sediment samples were collected in the fall and spring of 2021-2023. Additional samples, including sediment cores and atmospheric particulates, were collected during the summer of 2023 from select areas of the wetland. The MPs were isolated from the field samples using density separation, filtration, and chemical oxidation. Infrared and Raman spectroscopy analyses identified the MPs as polyethylene, which were quantified visually using a stereomicroscope. The numbers of MPs in 100 mL of the marsh water closest to the source ranged from several hundred to over 400,000, while the open water samples contained few microplastics. Marsh surface sediments were highly contaminated with MPs, up to 18,800 per 30.0 g dry mass (dm), compared to core samples in the lower depths (>15 cm) that contained only smaller MPs (<200 µm), numbering 0-480 per 30.0 g (dm). The wide variations in loads of MP contaminants indicate the influence of numerous factors, such as proximity to the point source pollution, weather conditions, natural matter, and pollution sinks, namely sediment deposition. As proof of concept, we demonstrated a novel remediation method using these real-world samples to effectively agglomerate and remove MPs from contaminated waters.

15.
J Hazard Mater ; 479: 135667, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39226682

RESUMEN

Cadmium (Cd) pollution has gained significant attention in mangrove sediments due to its high toxicity and mobility. However, the sources of Cd and the factors influencing its accumulation in these sediments have remained elusive. In this study, we utilized lead (Pb) isotopic signatures for the first time to assess Cd contamination in mangrove sediments from the northern region of the Beibu Gulf. A strong correlation was observed between Cd and Pb concentrations in the mangrove sediments, suggesting a shared source that can be estimated using Pb isotopic signatures. By employing a Bayesian mixing model, we determined that 70.1 ± 8.2 % of Cd originated from natural sources, while 12.9 ± 4.9 %, 9.8 ± 3.7 %, and 7.1 ± 3.4 % were attributed to agricultural activities, non-ferrous metal smelting, and coal combustion, respectively. Our study clearly suggests that natural Cd could also dominate the high Cd content. Agricultural activities were the most important anthropogenic Cd sources, and the increased anthropogenic Cd accumulation in mangrove sediment was related to organic matter. This study introduces a novel approach for assessing Cd contamination in mangrove sediment, providing useful insights into Cd pollution in coastal wetlands.

16.
Mar Pollut Bull ; 207: 116897, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236491

RESUMEN

The research, focusing on the analysis of nine trace elements, namely As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn, completely analyzed their quantities in both water and sediment inside the Rabnabad Channel. Samples were collected during the post-monsoon and analyzed by ICP-OES following acid digestion. The mean concentrations of elements in water and sediments are as follows: Fe > Mn > Pb > Cu > Ni > Zn > Cr > As>Cd, and Zn > Fe > Pb > Mn > As>Cu > Cr > Ni > Cd. To understand the state of ecological and human health risk, several indices were incorporated. Health risk assessment revealed that children posed higher risk than adults. PERI, TRI, and Igeo indices for water sediment indicate a significant ecological risk. Moreover, Mn and Pb exhibit elevated HPI values and contribute substantially to contamination factors. Correlation and PCA implicate both anthropogenic and geogenic sources, such as agricultural practices, coal-based power plants, and the Payra seaport, in the elevated concentrations of Cd, Cr, Mn, and Fe in both water and sediment samples.

17.
Environ Monit Assess ; 196(10): 887, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230772

RESUMEN

To estimate a watershed's response to climate change, it is crucial to understand how human activities and climatic extremes have interacted over time. Over the last century, the Zarivar Lake watershed, Iran, has been subjected to various anthropogenic activates, including deforestation and inappropriate land-management practices alongside the implementation of conservation measures like check dams. To understand the effects of these changes on the magnitude of sediment, organic carbon (OC), and phosphorus supplies in a small sub-watershed connected to the lake over the last century, a lake sediment core was dated using 210Pbex and 137Cs as geochronometers. The average mass accumulation rate (MAR), organic carbon accumulation rates (OCAR), and particulate phosphorus accumulation rates (PPAR) of the sediment core were determined to be 6498 ± 2475, 205 ± 85, and 8.9 ± 3.3 g m-2 year-1, respectively. Between the late 1970s and early 1980s, accumulation rates were significantly higher than their averages at 7940 ± 3120, 220 ± 60, and 12.0 ± 2.8 g m-2 year-1 respectively. During this period, the watershed underwent extensive deforestation (12%) on steep slopes, coinciding with higher mean annual precipitations (more than double). Conversely, after 2009, when check dams were installed in the sub-watershed, the sediment load to the lake became negligible. The results of this research indicate that anthropogenic activities had a pronounced effect on MAR, OCAR, and PPAR, causing them to fluctuate from negligible amounts to values twice the averages over the last century, amplified by climatic factors. These results imply that implementing climate-smart watershed management strategies, such as constructing additional check dams and terraces, reinforcing restrictions on deforestation, and minimum tillage practices, can facilitate protection of lacustrine ecosystems under accelerating climate change conditions.


Asunto(s)
Carbono , Radioisótopos de Cesio , Cambio Climático , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Radioisótopos de Plomo , Fósforo , Irán , Lagos/química , Sedimentos Geológicos/química , Radioisótopos de Cesio/análisis , Fósforo/análisis , Radioisótopos de Plomo/análisis , Carbono/análisis , Contaminantes Químicos del Agua/análisis , Efectos Antropogénicos
18.
Sci Rep ; 14(1): 20462, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227672

RESUMEN

Seabird colonies with long-term monitoring records, i.e., > 50 years, are rare. The population data for northern gannets (Morus bassanus) in Cape St. Mary's (CSM) Ecological Reserve (Newfoundland and Labrador, Canada) is robust, extending back to 1883 when the colony was presumed established. We inferred the colony's historical population shifts by measuring ornithogenic proxies in a dated sediment record collected from a nearby pond. Our record extended to the early eighteenth century, but the proxy data only began to show significant signs of seabird presence between ca. 1832 and 1910, aligning with the period gannets were first observed at CSM. Through the twentieth century, we observed significant increases in δ15N, P, Zn, Cd, and chlorophyll a, coeval with a shift in the dominant diatom species, indicating rapid colony growth. The proxies were overall highest in ca. 2005, corresponding to the reported historical maximum of the gannet colony in 2009. Our results validate that paleo-reconstructions using ornithogenic proxies can accurately reflect population trends and provide a stronger understanding of the colony's establishment and growth. This study highlights the value of applying paleolimnological methods in seabird population studies to frame the history of a colony's dynamics and inform conservation efforts.


Asunto(s)
Aves , Animales , Terranova y Labrador , Censos , Diatomeas/crecimiento & desarrollo , Dinámica Poblacional , Clorofila A/análisis , Sedimentos Geológicos/análisis , Historia del Siglo XX
19.
Heliyon ; 10(16): e36447, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247265

RESUMEN

This environmental assessment focuses on the coastal sediments of the Al-Khafji area in the Saudi Arabian Gulf, with an analysis of the human health risks posed by lead (Pb) and cadmium (Cd) contamination. Single and integrated indices were used to detect contamination and evaluate these metals' non-carcinogenic and carcinogenic impacts on adults and children through ingestion, dermal contact, and inhalation pathways. Sediment quality guidelines and contamination indices indicated the absence of significant contamination levels. The moderate contamination observed in scattered samples did not imply adverse biological effects due to the presence of these two metals in Al-Khafji sediments. The average values of the chronic daily intake (CDI) for both Pb and Cd were higher in children than adults across all three pathways, with ratios of 9.4, 4.7, and 4.7 folds, respectively. The hazard index (HI) values for Pb and Cd were below 1, confirming that the sediments of Al-Khafji are considered acceptable and safe in terms of these potentially toxic elements (PTEs). The average lifetime cancer risk (LCR) values for Pb and Cd were higher in children compared to adults, with ratios of 9.3 and 9.4 folds, respectively. However, all detected LCR levels do not represent a potential carcinogenic health hazard. Nevertheless, a regular monitoring program aimed at detecting early signals of environmental health depletion is recommended.

20.
Sci Total Environ ; : 176123, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250967

RESUMEN

p-Phenylenediamines (PPDs) and PPD-derived quinones (PPD-Qs) have been considered emerging pollutants recently. Their available data on sediment and sewage sludge are limited, especially the ecological risks. Here, typical PPDs and PPD-Qs were measured in the sludge of wastewater treatment plants and surface sediment of a developed river basin (including reservoirs, estuaries, and rivers) and deep-sea troughs. The total concentrations of PPDs (∑PPD) were highest in sludge (range: 9.06-248 ng g-1), followed by surface sediment of the Dongjiang River basin, China (3.33-85.3 ng g-1), and lowest in sediment of the Okinawa Trough (0.01-7.46 ng g-1). The median value of ∑PPD in surface sediment of rivers (9.54 ng g-1) was higher than those in reservoirs (4.28 ng g-1) and estuaries (5.26 ng g-1). N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) was the major congener in all samples, accounting for over 60 % of ∑PPD. For quinones, 6PPD-Q and IPPD-Q were frequently detected in sludge, only trace 6PPD-Q was detected in the sediment of estuaries (nd-0.62 ng g-1) and rivers (nd-5.24 ng g-1), and both of them were absent from the sediment of the Okinawa Trough. The occurrence of PPDs in the trough may be the in-situ release of microplastics, and due to the low-light and weak alkaline conditions of deep-sea water, quinones may hardly photodegrade from PPDs. The PPD concentrations in sludge were positively correlated with local GDP, and the annual PPD emission from sludge will exceed 1370 kg in China. The results of ecological risk assessments indicated low risks for PPDs in sludge-amended soil, median risks for several PPDs in river sediment, but median to high risks for 6PPD-Q contamination sludge-amended soil. For the first time, we reported the occurrence of PPDs and related quinones in the sludge of WWTPs and found a potential environmental risk from 6PPD-Q in sludge used as a soil conditioner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...