Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurosci Res ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537682

RESUMEN

Sleep is homeostatically regulated by sleep pressure, which increases during wakefulness and dissipates during sleep. Recent studies have suggested that the cerebral neocortex, a six-layered structure composed of various layer- and projection-specific neuronal subtypes, is involved in the representation of sleep pressure governed by transcriptional regulation. Here, we examined the transcriptomic changes in neuronal subtypes in the neocortex upon increased sleep pressure using single-nucleus RNA sequencing datasets and predicted the putative intracellular and intercellular molecules involved in transcriptome alterations. We revealed that sleep deprivation (SD) had the greatest effect on the transcriptome of layer 2 and 3 intratelencephalic (L2/3 IT) neurons among the neocortical glutamatergic neuronal subtypes. The expression of mutant SIK3 (SLP), which is known to increase sleep pressure, also induced profound changes in the transcriptome of L2/3 IT neurons. We identified Junb as a candidate transcription factor involved in the alteration of the L2/3 IT neuronal transcriptome by SD and SIK3 (SLP) expression. Finally, we inferred putative intercellular ligands, including BDNF, LSAMP, and PRNP, which may be involved in SD-induced alteration of the transcriptome of L2/3 IT neurons. We suggest that the transcriptome of L2/3 IT neurons is most impacted by increased sleep pressure among neocortical glutamatergic neuronal subtypes and identify putative molecules involved in such transcriptional alterations.

2.
J Sleep Res ; : e14146, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253863

RESUMEN

We aim to identify genetic markers associated with idiopathic hypersomnia, a disabling orphan central nervous system disorder of hypersomnolence that is still poorly understood. In our study, DNA was extracted from 79 unrelated patients diagnosed with idiopathic hypersomnia with long sleep time at the National Reference Center for Narcolepsy-France according to very stringent diagnostic criteria. Whole exome sequencing on the first 30 patients with idiopathic hypersomnia (25 females and 5 males) allowed the single nucleotide variants to be compared with a control population of 574 healthy subjects from the French Exome project database. We focused on the identification of genetic variants among 182 genes related to the regulation of sleep and circadian rhythm. Candidate variants obtained by exome sequencing analysis were then validated in a second sample of 49 patients with idiopathic hypersomnia (37 females and 12 males). Our study characterised seven variants from six genes significantly associated with idiopathic hypersomnia compared with controls. A targeted sequencing analysis of these seven variants on 49 other patients with idiopathic hypersomnia confirmed the relative over-representation of the A➔C variant of rs2859390, located in a potential splicing-site of PER3 gene. Our findings support a genetic predisposition and identify pathways involved in the pathogeny of idiopathic hypersomnia. A variant of the PER3 gene may predispose to idiopathic hypersomnia with long sleep time.

3.
Mol Neurobiol ; 61(3): 1404-1416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37715891

RESUMEN

Imbalance between excitation and inhibition is an important cause of epilepsy. Salt-inducible kinase 1 (SIK1) gene mutation can cause epilepsy. In this study, we first found that the expression of SIK3 is increased after epilepsy. Furthermore, the role of SIK3 in epilepsy was explored. In cultured hippocampal neurons, we used Pterosin B, a selective SIK3 inhibitor that can inhibit epileptiform discharges induced by the convulsant drug cyclothiazide (a positive allosteric modulator of AMPA receptors, CTZ). Knockdown of SIK3 inhibited epileptiform discharges and increased the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). In mice, knockdown of SIK3 reduced epilepsy susceptibility in a pentylenetetrazole (a GABAA receptor antagonist, PTZ) acute kindling experiment and increased the expression of GABAA receptor α1. In conclusion, our results suggest that blockade or knockdown of SIK3 can inhibit epileptiform discharges and that SIK3 has the potential to be a novel target for epilepsy treatment.


Asunto(s)
Epilepsia , Receptores de GABA-A , Animales , Ratones , Ratas , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Ácido gamma-Aminobutírico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/inducido químicamente
4.
Front Neurosci ; 17: 1181555, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662102

RESUMEN

Sleep behavior has been observed from non-vertebrates to humans. Sleepy mutation in mice resulted in a notable increase in sleep and was identified as an exon-skipping mutation of the salt-inducible kinase 3 (Sik3) gene, conserved among animals. The skipped exon includes a serine residue that is phosphorylated by protein kinase A. Overexpression of a mutant gene with the conversion of this serine into alanine (Sik3-SA) increased sleep in both mice and the fruit fly Drosophila melanogaster. However, the mechanism by which Sik3-SA increases sleep remains unclear. Here, we found that Sik3-SA overexpression in all neurons increased sleep under both light-dark (LD) conditions and constant dark (DD) conditions in Drosophila. Additionally, overexpression of Sik3-SA only in PDF neurons, which are a cluster of clock neurons regulating the circadian rhythm, increased sleep during subjective daytime while decreasing the amplitude of circadian rhythm. Furthermore, suppressing Sik3-SA overexpression specifically in PDF neurons in flies overexpressing Sik3-SA in all neurons reversed the sleep increase during subjective daytime. These results indicate that Sik3-SA alters the circadian function of PDF neurons and leads to an increase in sleep during subjective daytime under constant dark conditions.

5.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37477881

RESUMEN

Sleep need drives sleep and plays a key role in homeostatic regulation of sleep. So far sleep need can only be inferred by animal behaviors and indicated by electroencephalography (EEG). Here we report that phosphorylation of threonine (T) 221 of the salt-inducible kinase 3 (SIK3) increased the catalytic activity and stability of SIK3. T221 phosphorylation in the mouse brain indicates sleep need: more sleep resulting in less phosphorylation and less sleep more phosphorylation during daily sleep/wake cycle and after sleep deprivation (SD). Sleep need was reduced in SIK3 loss of function (LOF) mutants and by T221 mutation to alanine (T221A). Rebound after SD was also decreased in SIK3 LOF and T221A mutant mice. By contrast, SIK1 and SIK2 do not satisfy criteria to be both an indicator and a controller of sleep need. Our results reveal SIK3-T221 phosphorylation as a chemical modification which indicates and controls sleep need.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Sueño , Ratones , Animales , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Sueño/fisiología , Privación de Sueño , Homeostasis
6.
Mol Metab ; 74: 101753, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321371

RESUMEN

OBJECTIVE: Norepinephrine stimulates the adipose tissue thermogenic program through a ß-adrenergic receptor (ßAR)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. We discovered that a noncanonical activation of the mechanistic target of rapamycin complex 1 (mTORC1) by PKA is required for the ßAR-stimulation of adipose tissue browning. However, the downstream events triggered by PKA-phosphorylated mTORC1 activation that drive this thermogenic response are not well understood. METHODS: We used a proteomic approach of Stable Isotope Labeling by/with Amino acids in Cell culture (SILAC) to characterize the global protein phosphorylation profile in brown adipocytes treated with the ßAR agonist. We identified salt-inducible kinase 3 (SIK3) as a candidate mTORC1 substrate and further tested the effect of SIK3 deficiency or SIK inhibition on the thermogenic gene expression program in brown adipocytes and in mouse adipose tissue. RESULTS: SIK3 interacts with RAPTOR, the defining component of the mTORC1 complex, and is phosphorylated at Ser884 in a rapamycin-sensitive manner. Pharmacological SIK inhibition by a pan-SIK inhibitor (HG-9-91-01) in brown adipocytes increases basal Ucp1 gene expression and restores its expression upon blockade of either mTORC1 or PKA. Short-hairpin RNA (shRNA) knockdown of Sik3 augments, while overexpression of SIK3 suppresses, Ucp1 gene expression in brown adipocytes. The regulatory PKA phosphorylation domain of SIK3 is essential for its inhibition. CRISPR-mediated Sik3 deletion in brown adipocytes increases type IIa histone deacetylase (HDAC) activity and enhances the expression of genes involved in thermogenesis such as Ucp1, Pgc1α, and mitochondrial OXPHOS complex protein. We further show that HDAC4 interacts with PGC1α after ßAR stimulation and reduces lysine acetylation in PGC1α. Finally, a SIK inhibitor well-tolerated in vivo (YKL-05-099) can stimulate the expression of thermogenesis-related genes and browning of mouse subcutaneous adipose tissue. CONCLUSIONS: Taken together, our data reveal that SIK3, with the possible contribution of other SIKs, functions as a phosphorylation switch for ß-adrenergic activation to drive the adipose tissue thermogenic program and indicates that more work to understand the role of the SIKs is warranted. Our findings also suggest that maneuvers targeting SIKs could be beneficial for obesity and related cardiometabolic disease.


Asunto(s)
Tejido Adiposo , Proteómica , Ratones , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Tejido Adiposo/metabolismo , Adipocitos Marrones/metabolismo , Receptores Adrenérgicos beta/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Termogénesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(11): e2218209120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877841

RESUMEN

Mammals exhibit circadian cycles of sleep and wakefulness under the control of the suprachiasmatic nucleus (SCN), such as the strong arousal phase-locked to the beginning of the dark phase in laboratory mice. Here, we demonstrate that salt-inducible kinase 3 (SIK3) deficiency in gamma-aminobutyric acid (GABA)-ergic neurons or neuromedin S (NMS)-producing neurons delayed the arousal peak phase and lengthened the behavioral circadian cycle under both 12-h light:12-h dark condition (LD) and constant dark condition (DD) without changing daily sleep amounts. In contrast, the induction of a gain-of-function mutant allele of Sik3 in GABAergic neurons exhibited advanced activity onset and a shorter circadian period. Loss of SIK3 in arginine vasopressin (AVP)-producing neurons lengthened the circadian cycle, but the arousal peak phase was similar to that in control mice. Heterozygous deficiency of histone deacetylase (HDAC) 4, a SIK3 substrate, shortened the circadian cycle, whereas mice with HDAC4 S245A, which is resistant to phosphorylation by SIK3, delayed the arousal peak phase. Phase-delayed core clock gene expressions were detected in the liver of mice lacking SIK3 in GABAergic neurons. These results suggest that the SIK3-HDAC4 pathway regulates the circadian period length and the timing of arousal through NMS-positive neurons in the SCN.


Asunto(s)
Nivel de Alerta , Histona Desacetilasas , Proteínas Serina-Treonina Quinasas , Vigilia , Animales , Ratones , Alelos , Arginina Vasopresina , Proteínas Serina-Treonina Quinasas/genética , Núcleo Supraquiasmático , Histona Desacetilasas/genética
8.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203391

RESUMEN

Preeclampsia (PE) remains one of the leading causes of maternal and perinatal morbidity and mortality. However, the exact pathophysiology of PE is still unclear. The recent widely accepted notion that successful pregnancy relies on maternal immunological adaptation is of utmost importance. Moreover, salt-inducible kinase 3 (SIK3) is an AMP-activated protein kinase-related kinase, and it has reported a novel regulator of energy and inflammation, and its expression related with some diseases. To explore whether SIK3 expression correlated with PE, we analyzed SIK3 gene expression and its association with PE through GEO datasets. We identified that SIK3 was significantly downregulated in PE across four datasets (p < 0.05), suggesting that SIK3 participated in the pathogenesis of PE. We initially demonstrated the significant downregulation of SIK3 in trophoblast cells of PE. SIK3 downregulation was positively correlated with the increased number of CD204(+) cells in in vivo and in vitro experiments. The increased number of CD204(+) cells could inhibit the migration and invasion of trophoblast cells. We then clarified the potential mechanism of PE with SIK3 downregulation: M2 skewing was triggered by trophoblast cells derived via the CCL24/CCR3 axis, leading to an increase in CD204(+) cells, a decrease in phagocytosis, and the production of IL-10 at the maternal-fetal interface of the placenta with PE. IL-10 further contributed to a reduction in the migration and invasion of trophoblast cells. It also established a feedback loop wherein trophoblast cells increased CCL24 production to maintain M2 dominance in the placental environments of PE.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Preeclampsia/genética , Interleucina-10 , Regulación hacia Abajo , Quinasas de la Proteína-Quinasa Activada por el AMP , Quimiocina CCL24
9.
J Biol Chem ; 298(12): 102644, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309093

RESUMEN

Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Animales , Ratones , Bleomicina , Fibrosis , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Modelos Animales de Enfermedad
10.
Sleep ; 45(11)2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-35997995

RESUMEN

In Sleepy (Sik3Slp) or Sik3S551A mice, deletion or mutation of inhibitory phosphorylation site serine551 from salt-inducible kinase 3 (SIK3) markedly increases daily non-rapid eye movement sleep (NREMS) amount, accompanied with constitutively elevated NREMS delta power density-a measure of sleep intensity. Multiple SLP/SIK3 isoforms are expressed in mouse brain neurons, however, their respective roles in sleep regulation remain to be elucidated. Here, we identified a new and most abundant short isoform of SLP/SIK3 and examined sleep phenotypes resulted from isoform-specific expression of SLP-short (S) and long (L) isoforms. Adeno-associated virus (AAV)-mediated adult brain chimeric (ABC)-expression of SLP-S in neurons, but not in astrocytes, significantly and constitutively elevates NREMS delta power, whereas slightly increases NREMS amount. The ability of SLP-S to regulate sleep quantity/intensity is abrogated by kinase-inactivating mutations, suggesting that the sleep-promoting activity of SLP-S is dependent on its kinase activity. In Sik3S551A-L knock-in mice, isoform-specific expression of SIK3S551A-L (or SLP-L) significantly increases NREMS amount with a modest effect on NREMS delta power. ABC-expression of SLP-S complements the sleep phenotypes of heterozygous Sik3S551A-L mice by further increasing NREMS amount and NREMS delta power to levels of Sik3Slp or Sik3S551A mice. Taken together, these results indicate that both SLP-L and SLP-S isoforms contribute critically to the increases of sleep quantity and intensity in Sik3Slp or Sik3S551A mice.


Asunto(s)
Sueño de Onda Lenta , Vigilia , Animales , Ratones , Electroencefalografía , Fosforilación , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Sueño/fisiología , Vigilia/fisiología
11.
Cell Mol Life Sci ; 79(8): 439, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864266

RESUMEN

Previous studies suggested that anti-inflammatory microglia/macrophages (Mi/MΦ) play a role in "normal phagocytosis," which promoted the rapid clearance of necrotic substances and apoptotic cells. More recently, a few studies have found that Mi/MΦ also play a role in "pathological phagocytosis" in the form of excessive or reduced phagocytosis, thereby worsening damage induced by CNS diseases. However, the underlying mechanisms and the Mi/MΦ subtypes related to this pathological phagocytosis are still unknown. Salt-inducible kinase 3 (SIK3), a member of the 5' adenosine monophosphate-activated protein kinase (AMPK) family, has been shown to regulate inflammation in several peripheral diseases. Whether SIK3 also regulates the inflammatory response in CNS diseases is currently unknown. Therefore, in this study, we created a transgenic tamoxifen-induced Mi/MΦ-specific SIK3 conditional knockout (SIK3-cKO) mouse to examine SIK3's role in phagocytotic function induced by transient focal cerebral ischemia (tFCI). By single-cell RNA-seq, we found the pro-inflammatory Mi/MΦ phenotype performed an excessive phagocytotic function, but the anti-inflammatory Mi/MΦ phenotype performed a normal phagocytotic function. We found that SIK3-cKO caused Mi/MΦ heterogenization from the transitional phenotype to the anti-inflammatory phenotype after tFCI. This phenotypic shift corresponded with enhanced phagocytosis of both apoptotic and live neurons. Interestingly, SIK3-cKO enhanced normal phagocytosis of myelin debris but attenuating excessive phagocytosis of non-damaged myelin sheath, thereby protecting white matter integrity after tFCI. CD16, a pro-inflammation marker, was decreased significantly by SIK3-cKO and correlated with "excessive phagocytosis." SIK3-cKO promoted long-term recovery of white matter function and neurological function as assessed with electrophysiological compound action potential (CAPs) and behavioral analysis. This study is the first to show a role of SIK3 in Mi/MΦ phagocytosis in CNS diseases, and reveals that promoting Mi/MΦ anti-inflammatory heterogenization inhibits "excessive phagocytosis" of live cells and facilitates "normal phagocytosis" of apoptotic cells. Therefore, inhibition of SIK3 in Mi/MΦ may be a potential therapeutic target in stroke and other CNS diseases with accompanying white matter destruction. In the acute stage of tFCI, Mi/MΦ polarized into different phenotypes. The pro-inflammatory Mi/MΦ phenotype performed an excessive phagocytotic function. In contrast, the anti-inflammatory Mi/MΦ phenotype performed a normal phagocytotic function. After tFCI, SIK3-cKO promoted anti-inflammatory phenotypic heterogenization of Mi/MΦ. SIK3-cKO promoted Mi/MΦ phagocytosis of apoptotic (normal phagocytosis) and living neuronal cell bodies (excessive phagocytosis) in gray matter. Interestingly, SIK3-cKO specifically increased normal phagocytosis of myelin debris concurrent with an attenuation of excessive phagocytosis of myelin sheath in white matter. These changes induced by SIK3-cKO were associated with protection of white matter integrity and long-term neurofunctional recovery after tFCI.


Asunto(s)
Isquemia Encefálica , Enfermedades del Sistema Nervioso Central , Animales , Isquemia Encefálica/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Inflamación/patología , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Fagocitosis , Proteínas Serina-Treonina Quinasas/genética
12.
J Biol Chem ; 298(5): 101929, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413286

RESUMEN

The AMP-activated protein kinase (AMPK) and AMPK-related kinase salt-inducible kinase 3 (SIK3) regulate many important biological processes ranging from metabolism to sleep. Liver kinase B1 is known to phosphorylate and activate both AMPK and SIK3, but the existence of other upstream kinases was unclear. In this study, we detected liver kinase B1-independent AMPK-related kinase phosphorylation activities in human embryonic kidney cells as well as in mouse brains. Biochemical purification of this phosphorylation activity uncovered mammalian sterile 20-like kinase 3 (MST3). We demonstrate that MST3 from human embryonic kidney cells could phosphorylate AMPK and SIK3 in vivo. In addition, recombinant MST3 expressed in and purified from Escherichia coli could directly phosphorylate AMPK and SIK3 in vitro. Moreover, four other members of the MST kinase family could also phosphorylate AMPK or SIK3. Our results have revealed new kinases able to phosphorylate and activate AMPK and SIK3.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo
13.
HGG Adv ; 3(1): 100078, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047863

RESUMEN

Pancreatic cancer is a deadly disease that accounts for approximately 5% of cancer deaths worldwide, with a dismal 5-year survival rate of 10%. Known genetic risk factors explain only a modest proportion of the heritable risk of pancreatic cancer. We conducted a whole-exome case-control sequencing study in 1,591 pancreatic cancer cases and 2,134 cancer-free controls of European ancestry. In our gene-based analysis, ATM ranked first, with a genome-wide significant p value of 1 × 10-8. The odds ratio for protein-truncating variants in ATM was 24, which is substantially higher than prior estimates, although ours includes a broad 95% confidence interval (4.0-1000). SIK3 was the second highest ranking gene (p = 3.84 × 10-6, false discovery rate or FDR = 0.032). We observed nominally significant association signals in several genes of a priori interest, including BRCA2 (p = 4.3 × 10-4), STK11 (p = 0.003), PALB2 (p = 0.019), and TP53 (p = 0.037), and reported risk estimates for known pathogenic variants and variants of uncertain significance (VUS) in these genes. The rare variants in established susceptibility genes explain approximately 24% of log familial relative risk, which is comparable to the contribution from established common susceptibility variants (17%). In conclusion, this study provides new insights into the genetic susceptibility of pancreatic cancer, refining rare variant risk estimates in known pancreatic cancer susceptibility genes and identifying SIK3 as a novel candidate susceptibility gene. This study highlights the prominent importance of ATM truncating variants and the underappreciated role of VUS in pancreatic cancer etiology.

14.
Neurosci Res ; 177: 16-24, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34856199

RESUMEN

Sleep pressure, the driving force of the homeostatic sleep regulation, is accumulated during wakefulness and dissipated during sleep. Sleep deprivation (SD) has been used as a method to acutely increase animal's sleep pressure for investigating the molecular changes under high sleep pressure. However, SD induces changes not only reflecting increased sleep pressure but also inevitable stresses and prolonged wake state itself. The Sik3Sleepy mutant mice (Sleepy) exhibit constitutively high sleep pressure despite sleeping longer, and have been useful as a model of increased sleep pressure. Here we conducted a cross-comparison of brain metabolomic profiles between SD versus ad lib slept mice, as well as Sleepy mutant versus littermate wild-type mice. Targeted metabolome analyses of whole brains quantified 203 metabolites in total, of which 43 metabolites showed significant changes in SD, whereas three did in Sleepy mutant mice. The large difference in the number of differential metabolites highlighted limitations of SD as methodology. The cross-comparison revealed that a decrease in betaine and an increase in imidazole dipeptides are associated with high sleep pressure in both models. These metabolites may be novel markers of sleep pressure at the whole-brain level. Furthermore, we found that intracerebroventricular injection of imidazole dipeptides increased subsequent NREM sleep time, suggesting the possibility that imidazole dipeptides may participate in the regulation of sleep in mice.


Asunto(s)
Sueño , Vigilia , Animales , Encéfalo/metabolismo , Dipéptidos/metabolismo , Electroencefalografía , Ratones , Proteínas Serina-Treonina Quinasas , Sueño/fisiología , Privación de Sueño , Vigilia/fisiología
15.
J Neurosci ; 41(12): 2733-2746, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33558433

RESUMEN

Sleep is regulated in a homeostatic manner. Sleep deprivation increases sleep need, which is compensated mainly by increased EEG δ power during non-rapid eye movement sleep (NREMS) and, to a lesser extent, by increased sleep amount. Although genetic factors determine the constitutive level of sleep need and sleep amount in mice and humans, the molecular entity behind sleep need remains unknown. Recently, we found that a gain-of-function Sleepy (Slp) mutation in the salt-inducible kinase 3 (Sik3) gene, which produces the mutant SIK3(SLP) protein, leads to an increase in NREMS EEG δ power and sleep amount. Since Sik3Slp mice express SIK3(SLP) in various types of cells in the brain as well as multiple peripheral tissues from the embryonic stage, the cell type and developmental stage responsible for the sleep phenotype in Sik3Slp mice remain to be elucidated. Here, we generated two mouse lines, synapsin1CreERT2 and Sik3ex13flox mice, which enable inducible Cre-mediated, conditional expression of SIK3(SLP) in neurons on tamoxifen administration. Administration of tamoxifen to synapsin1CreERT2 mice during late infancy resulted in higher recombination efficiency than administration during adolescence. SIK3(SLP) expression after late infancy increased NREMS and NREMS δ power in male synapsin1CreERT2; Sik3ex13flox/+ mice. The expression of SIK3(SLP) after adolescence led to a higher NREMS δ power without a significant change in NREMS amounts. Thus, neuron-specific expression of SIK3(SLP) after late infancy is sufficient to increase sleep.SIGNIFICANCE STATEMENT The propensity to accumulate sleep need during wakefulness and to dissipate it during sleep underlies the homeostatic regulation of sleep. However, little is known about the developmental stage and cell types involved in determining the homeostatic regulation of sleep. Here, we show that Sik3Slp allele induction in mature neurons in late infancy is sufficient to increase non-rapid eye movement sleep amount and non-rapid eye movement sleep δ power. SIK3 signaling in neurons constitutes an intracellular mechanism to increase sleep.


Asunto(s)
Alelos , Mutación/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Sueño/fisiología , Vigilia/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética
16.
Biochim Biophys Acta Mol Cell Res ; 1868(5): 118975, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545220

RESUMEN

The Salt-inducible kinase (SIKs) belongs to an AMPK-related family kinase, an isoform of the SIK family, SIK1 gets frequently downregulated in various types of cancer contribute to tumorigenesis. However, its precise role in breast cancer and the relevant molecular mechanism remains unclear. Herein, analysis of the clinical data reveals that SIK1 expression was significantly downregulated in breast cancer tissues, and closely associated with poor survival rate in breast cancer. SIK1 is functionally stimulating oxidative phosphorylation, which in turn inhibits aerobic glycolysis and cell proliferation in breast cancer cells. Mechanistically, SIK1 directly interacted with p53 and positively regulates its transcriptional activity, thereby facilitates oxidative phosphorylation in breast cancer cells. The knockdown of SIK1 downregulates p53 transcriptional activity, leading to stimulation of aerobic glycolysis and cell proliferation. Moreover, high expression of SIK3 stimulates mTOR-mediated aerobic glycolysis and cell proliferation of breast cancer cells. These findings suggest that SIK isoforms plays distinct role in aerobic glycolysis and cell growth of breast cancer, attenuated SIK1/p53 signaling suppresses oxidative phosphorylation and growth inhibitory effect in breast cancer cells, while enhanced SIK3/mTOR signaling potentiates aerobic glycolysis mediated cell growth in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética , Aerobiosis , Neoplasias de la Mama/genética , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Regulación hacia Abajo , Femenino , Glucólisis , Humanos , Células MCF-7 , Estadificación de Neoplasias , Fosforilación Oxidativa , Transducción de Señal , Transcripción Genética
17.
Bone ; 142: 115709, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148508

RESUMEN

Hypertrophy of chondrocytes is a crucial step in the endochondral bone formation process that drives bone lengthening and the transition to endochondral bone formation. Both Parathyroid hormone-related protein (PTHrP) and Histone deacetylase 4 (HDAC4) inhibit chondrocyte hypertrophy. Use of multiple mouse genetics models reveals how PTHrP and HDAC4 participate in a pathway that regulates chondrocyte hypertrophy. PTHrP/cAMP/protein kinase A (PKA) signaling pathway phosphorylates the PKA-target sites on salt-inducible kinase 3 (Sik3), which leads to inhibition of Sik3 kinase activity. Inhibition of Sik3 kinase activity decreases phosphorylation of HDAC4 by Sik3 at binding sites for 14-3-3; lower levels of HDAC4 phosphorylation then allow HDAC4 nuclear translocation. In the nucleus, the transcription factor, Myocyte Enhancer Factor 2 (Mef2), activates Runt-related transcription factor 2 (Runx2), and together these two transcription factors drive the hypertrophic process. HDAC4 binds both Mef2 and Runx2 and blocks their activities. There are genetic redundancies in this pathway. Sik1 and Sik2 also mediate PTHrP/cAMP/PKA signaling when Sik3 activity is low. HDAC5 also mediates PTHrP signaling when HDAC4 expression is low. Thus, PTHrP triggers a kinase cascade that leads to inhibition of the key transcription factors (Mef2 and Runx2) that promote chondrocyte hypertrophy.


Asunto(s)
Placa de Crecimiento , Proteína Relacionada con la Hormona Paratiroidea , Animales , Condrocitos , Histona Desacetilasas , Hipertrofia , Ratones , Proteínas Serina-Treonina Quinasas
18.
Biochim Biophys Acta Mol Basis Dis ; 1866(11): 165897, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682817

RESUMEN

Salt-inducible kinases 3 (SIK3) belong to the AMPK-related family of kinases, which have been implicated in the regulation of cell metabolism, cell polarity remodelling, and epithelial-mesenchymal transition. Elevated SIK3 expressions in breast cancer cells are shown to contribute to tumorigenesis; however, the underlying mechanism remains to be elucidated. In this study, we demonstrate that SIK3 expression is upregulated and concurrently high expression of SIK3 is associated with poor survival in breast cancer. Specifically, SIK3 knockdown revealed that SIK3 is required for the mTOR/Akt signaling pathway and proliferation of breast cancer cells. Furthermore, our findings showed that Emodin (EMO) combined with Berberine (BBR) significantly inhibited SIK3 activity, leading to reduced cell growth, increased cell cycle arrest and apoptosis in breast cancer cells, but not in non-malignant breast epithelial cell line. Mechanistic studies further reveal that EMO and BBR in combined treatment inhibited SIK3-potentiated mTOR-mediated aerobic glycolysis and cell growth in breast cancer cells. Moreover, combination treatments attenuate Akt signaling, thereby inducing G0/G1 phase cell cycle arrest and apoptosis of breast cancer cells in a SIK3-dependent manner. CRISPR/Cas9 or siRNA-mediated SIK3 knockout/knockdown showed an opposite trend in both the luminal and basal-like breast cancer. Collectively, our findings reveal that combination of EMO and BBR attenuates SIK3-driven tumor growth in breast cancer, and thus, EMO and BBR might be a novel SIK3 inhibitor explored into the prevention of breast cancer.


Asunto(s)
Berberina/farmacología , Neoplasias de la Mama/metabolismo , Emodina/farmacología , Proteínas Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Neoplasias de la Mama/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Proteínas Quinasas/genética , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
19.
J Nanobiotechnology ; 18(1): 66, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345321

RESUMEN

BACKGROUND: Osteoblast differentiation is a vital process for fracture healing, and exosomes are nanosized membrane vesicles that can deliver therapeutic drugs easily and safely. Macrophages participate in the regulation of various biological processes in vivo, and macrophage-derived exosomes (MD-Exos) have recently been a topic of increasing research interest. However, few study has explored the link between MD-Exos and osteoblast differentiation. Herein, we sought to identify miRNAs differentially expressed between M1 and M2 macrophage-derived exosomes, and to evaluate their roles in the context of osteoblast differentiation. RESULTS: We found that microRNA-5106 (miR-5106) was significantly overexpressed in M2 macrophage-derived exosomes (M2D-Exos), while its expression was decreased in M1 macrophage-derived exosomes (M1D-Exos), and we found that this exosomal miRNA can induce bone mesenchymal stem cell (BMSC) osteogenic differentiation via directly targeting the Salt-inducible kinase 2 and 3 (SIK2 and SIK3) genes. In addition, the local injection of both a miR-5106 agonist or M2D-Exos to fracture sites was sufficient to accelerate healing in vivo. CONCLUSIONS: Our study demonstrates that miR-5106 is highly enriched in M2D-Exos, and that it can be transferred to BMSCs wherein it targets SIK2 and SIK3 genes to promote osteoblast differentiation.


Asunto(s)
Diferenciación Celular , Exosomas/metabolismo , MicroARNs/metabolismo , Osteogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Técnicas de Cocultivo , Exosomas/trasplante , Fracturas del Fémur/patología , Fracturas del Fémur/terapia , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
20.
Audiol Neurootol ; 25(4): 200-208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32126566

RESUMEN

INTRODUCTION: Noise-induced hearing loss (NIHL) is a common occupational disease that represents an irreversible hearing damage to the auditory system. It has been identified as a complicated disease involving both environmental and genetic factors. More efforts need to be made to explore the genes associated with susceptibility to NIHL. The main aim of this research is to detect the associations between SIK3 polymorphisms and NIHL susceptibility in Han people in China. METHODS: A case-control study was performed in 586 cases and 639 controls in a textile factory matched for sex, age, smoking, drinking, work time with noise, and intensity of noise exposure. Three single nucleotide polymorphisms (SNPs) (rs493134, rs6589574, and rs7121898) of SIK3 were genotyped in the participants. Then, the main influences of the SNPs on and their interactions with NIHL were assessed. RESULTS: Under the allelic model, distributions of rs493134 T, rs6589574 G, and rs7121898 A in the NIHL group are statistically different from those of the normal group (p = 0.001, p < 0.001, and p = 0.019, respectively). The following haplotype analysis shows that TAA (rs493134-rs6589574-rs7121898) may have a protective effect, while TGA (rs493134-rs6589574-rs7121898) (OR = 1.49, 95% CI = 1.25-1.79) may be a risk factor for NIHL. Multifactor dimensionality reduction analysis shows that the interaction of the 3 selected SNPs is associated with NIHL susceptibility (OR = 1.88, 95% CI = 1.50-2.36). CONCLUSION: The results suggest that 3 SNPs (rs493134, rs6589574, and rs7121898) of SIK3 may be an important part of NIHL susceptibility and can be applied in the prevention, early diagnosis, and treatment of NIHL in noise-exposed Chinese workers.


Asunto(s)
Pérdida Auditiva Provocada por Ruido/genética , Ruido en el Ambiente de Trabajo/estadística & datos numéricos , Proteínas Quinasas/genética , Industria Textil , Adulto , Factores de Edad , Consumo de Bebidas Alcohólicas/epidemiología , Pueblo Asiatico/genética , Estudios de Casos y Controles , China/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Pérdida Auditiva Provocada por Ruido/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Ruido en el Ambiente de Trabajo/efectos adversos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Factores Sexuales , Fumar/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...