Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.377
Filtrar
1.
J Hazard Mater ; 479: 135700, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241365

RESUMEN

The study of antibiotic resistance in the silage microbiome has attracted initial attention. However, the influences of lactic acid bacteria inoculants and dry matter (DM) content on antibiotic resistance genes (ARGs) reduction in whole-plant corn silage remain poorly studied. This study accessed the ARGs' risk and transmission mechanism in whole-plant corn silage with different DM levels and treated with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. The macrolide and tetracycline were the main ARGs in corn silage. The dominant species (Lent. buchneri and Lactobacillus acetotolerans) were the main ARGs carriers in whole-plant corn silage. The application of Lent. buchneri increased total ARGs abundance regardless of corn DM. Whole-plant corn silage with 30 % DM reduced the abundances of integrase and plasmid compared with 40 % DM. The correlation and structural equation model analysis demonstrated that bacterial community succession, resulting from changes in DM content, was the primary driving factor influencing the ARGs distribution in whole-plant corn silage. Interestingly, whole-plant corn silage inoculated with Lent. buchneri reduced abundances of high-risk ARGs (mdtG, mepA, tetM, mecA, vatE and tetW) by regulating pathogens (Escherichia coli), mobile genetic elements (MGEs) genes (IS3 and IS1182), and this effect was more pronounced at 30 % DM level. In summary, although whole-plant corn silage inoculated with Lent. buchneri increased the total ARGs abundance at both DM levels, it decreased the abundance of high-risk ARGs by reducing the abundances of the pathogens and MGEs, and this effect was more noticeable at 30 % DM level.


Asunto(s)
Ensilaje , Zea mays , Zea mays/microbiología , Ensilaje/microbiología , Genes Bacterianos , Secuencias Repetitivas Esparcidas , Farmacorresistencia Microbiana/genética , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Lactobacillus/genética , Lactobacillus/efectos de los fármacos , Fermentación
2.
Appl Environ Microbiol ; : e0098624, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324818

RESUMEN

High-throughput metagenomic sequence technology was employed to evaluate changes in microbial community composition and carbohydrate-active enzymes encoding gene enrichment status in Elymus nutans silages to altitudinal gradients in the world's highest alpine region of Qinghai-Tibetan Plateau (QTP). E. nutans were collected from three different altitudes in QTP: 2,600 m (low altitude), 3600 m (moderate altitude), and 4,600 m [high (H) altitude], and ensiled for 7, 14, 30, and 60 d. Results indicated an improvement in silage quality with the increasing altitude, although the acetic acid concentration and dry matter loss were greater in H altitude silages after 30 d of ensiling. Harmful bacteria or potential pathogens predominated in the microbial community on d 7 and 14 of fermentation, while genera belonging to lactic acid bacteria gradually became the main microorganisms with the increasing altitude on d 30 and 60 of ensiling. The abundance of carbohydrate-active enzymes genes responsible for macromolecular carbohydrate degradation in silage increased with increasing altitude, and those genes were mainly carried by Lactiplantibacillus and Pediococcus at 30 and 60 d of ensiling. The abundance of key enzymatic genes associated with glycolysis and organic acid production in carbohydrate metabolism pathway was higher in H altitude silages, and Lactiplantibacillus and Pediococcus were also the main hosts after 30 d of silage fermentation, except for the fact that acetic acid production was also related to genera Leuconostoc, Latilactobacillus, and Levilactobacillus. IMPORTANCE: The fermentation quality of Elymus nutans silage was getting better with the increase of altitude in the Qinghai-Tibetan Plateau. The abundance of hosts carrying carbohydrate-active enzymes genes and key enzyme genes related to organic acid production increased with increasing altitude during the later stages of fermentation. Lactiplantibacillus and Pediococcus were the core microorganisms responsible for both polysaccharide hydrolysis and silage fermentation in the late stage of ensiling. This study provided insights on the influence of different altitudes on the composition and function of silage microbiome in the Qinghai-Tibetan Plateau, and provided a reference approach for improving the quality and controllability of silage production in high altitude areas of the Qinghai-Tibetan Plateau.

3.
BMC Microbiol ; 24(1): 340, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266945

RESUMEN

BACKGROUND: Along bacteria, yeasts are common in forages and forage fermentations as spoilage microbes or as additives, yet few studies exist with species-level data on these fungi's occurrence in feedstuff. Active dry yeast and other yeast-based products are also common feed additives in animal husbandry. Here, we aimed to characterize both fermented and non-fermented milking cow feedstuff samples from Hungary to assess their microbial diversity in the first such study from Central Europe. RESULTS: We applied long-read bacterial metabarcoding to 10 fermented and 25 non-fermented types of samples to assess bacterial communities and their characteristics, surveyed culturable mold and yeast abundance, and identified culturable yeast species. Fermented forages showed the abundance of Aerococcaceae, Bacillaceae, Brucellaceae, Lactobacillaceae, Staphylococcaceae, and Thermoactinomycetaceae, non-fermented ones had Cyanothecaceae, Enterobacteriaceae, Erwiniaceae, Gomontiellaceae, Oxalobacteraceae, Rhodobiaceae, Rickettsiaceae, and Staphylococcaceae. Abundances of bacterial families showed mostly weak correlation with yeast CFU numbers, only Microcoleaceae (positive) and Enterococcaceae and Alcaligenaceae (negative correlation) showed moderate correlation. We identified 14 yeast species, most commonly Diutina rugosa, Pichia fermentans, P. kudriavzevii, and Wickerhahomyces anomalus. We recorded S. cerevisiae isolates only from animal feed mixes with added active dry yeast, while the species was completely absent from fermented forages. The S. cerevisiae isolates showed high genetic uniformity. CONCLUSION: Our results show that both fermented and non-fermented forages harbor diverse bacterial microbiota, with higher alpha diversity in the latter. The bacterial microbiome had an overall weak correlation with yeast abundance, but yeasts were present in the majority of the samples, including four new records for forages as a habitat for yeasts. Yeasts in forages mostly represented common species including opportunistic pathogens, along with a single strain of Saccharomyces used as a feed mix additive.


Asunto(s)
Alimentación Animal , Bacterias , Fermentación , Ganado , Levaduras , Animales , Hungría , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Alimentación Animal/microbiología , Alimentación Animal/análisis , Ganado/microbiología , Bovinos/microbiología , Microbiota/genética , Biodiversidad
4.
Front Plant Sci ; 15: 1412759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280944

RESUMEN

Background: Paper mulberry is a promising alternative fodder source due to its high protein and the abundance of active components. However, paper mulberry often faces susceptibility to contamination during silage fermentation, and there is a need to improve the quality of silage fermentation of paper mulberry through exotic additives. Sea buckthorn pomace (BP) is a feed additive containing antimicrobial and antioxidant substances that help to enhance silage fermentation. Therefore, the objective of this study was to evaluate the effects of BP and Lactiplantibacillus as additives on silage fermentation and bacterial community of paper mulberry. Results: The results showed that BP and Lactiplantibacillus significantly reduced the pH and ammonium nitrogen content of paper mulberry silage (P < 0.05) and significantly increased the content of lactic acid and acetic acid (P < 0.05), resulting in more residual water-soluble carbohydrate and crude protein contents and less fiber content relative to the control. The key microorganisms in paper mulberry silage fermentation are Lactiplantibacillus pentosus and Weissella cibaria. Among these, Lactiplantibacillus favored a rapid increase in Lactiplantibacillus pentosus abundance during the pre-silage fermentation period, whereas BP favored the promotion of Lactiplantibacillus pentosus growth, resulting in higher contents of lactic and acetic acid than those of the control. Conclusions: Simultaneously adding Lactiplantibacillus and BP can effectively improve the quality of paper mulberry silage and increase the abundance of beneficial microorganisms in paper mulberry silage.

5.
Front Vet Sci ; 11: 1416695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323873

RESUMEN

Several medium chain fatty acids and different chemical forms of these acids were evaluated in vitro as treatments of aerobically-exposed corn silage against spoilage and pathogenic microbes and for effects on rumen fermentation. Treatments were control (no additive), myristate (MY), laurate (LA), monolaurin (MLA), methyl ester laurate (MELA), a blend of mono-, di- and triglycerides of laurate (BLA), and monocaprylate (MC). After 24 h of aerobic incubation (37°C), yeast and mold growth were not influenced (P > 0.05) by treatments, while the net growth of lactic acid bacteria was decreased, albeit slightly, compared to that by untreated controls (P < 0.01) by all treatments of the air-exposed corn silage. Compared with controls, wild-type enterococci were decreased (P < 0.01) in MLA, MELA, and BLA. Staphylococcus aureus was reduced (P < 0.01) with MLA, MELA, BLA, and MC. Total aerobes showed reductions (P < 0.01) with MLA, BLA, and MC. Listeria monocytogenes numbers were reduced (P < 0.01) with MELA. Anaerobic incubation (24 h; 39°C) of ruminal fluid (10 mL) with 0.2 g air-exposed and MCFA-treated corn silage revealed higher hydrogen accumulations (P < 0.01) with MLA and MC over the control treatment. Methane was decreased (P < 0.01) solely by MLA. There was an increase (P < 0.01) of acetate with MELA and MC; of propionate with MELA or by BLA; and of butyrate with MLA, MELA, BLA, and MC. Total VFA, hexose fermented, and ammonia were increased (P < 0.01) with MELA, BLA, and MC. The acetate:propionate ratio was increased (P < 0.01) with MC. The results showed that treatment of air-exposed corn silage with esterified MCFA had no effect on yeasts and molds but prevented propagation or reduced populations of some unwanted and potentially desirable bacteria. Modest methane reduction was seen during in vitro incubation of rumen fluid suspensions with MLA-treated silage and ammonia accumulations were increased in esterified MCFA-treated silage. Little, if any, other detrimental effects on beneficial ruminal fermentation characteristics were observed.

6.
Front Microbiol ; 15: 1473238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323883

RESUMEN

Introduction: Weak aerobic stability is a notable challenge for whole-plant corn silage, particularly in hot and humid regions. Acetobacter is commonly regarded as an indicator of aerobic deterioration in silage, yet its precise role in fermentation and during aerobic exposure, as well as the factors that promote its growth, remain insufficiently understood. Methods: In this study, whole-plant corn silage was prepared using a bagged method with controlled dry matter (DM) content at 20%, 25%, and 30%, and initial concentrations of A. pasteurianus at 40%, 50%, and 60%. The silage was stored for 60 days under varying temperatures (20°C, 30°C, and 40°C). Following the anaerobic storage phase, the silage was exposed to air at room temperature (20-25°C) for 7 days, both with and without A. pasteurianus inoculation. Results: The results demonstrated that A. pasteurianus did not impact the nutritional value of the silage during anaerobic fermentation, maintaining a low pH (< 3.80). However, during aerobic exposure, the presence of A. pasteurianus significantly reduced the aerobic stability of the silage. The microbial community shifted from primarily Klebsiella species initially to Lactobacillus and Acetobacter species post-ensiling. During the aerobic exposure phase, A. pasteurianus and A. fabarum became the dominant species. Response Surface Methodology (RSM) analysis identified optimal conditions for the proliferation of A. pasteurianus during the aerobic phase, which occurred at 28°C, 25% DM, and 52% initial concentration at 3 ml/kg. Discussion: These findings confirm that A. pasteurianus plays a critical role in reducing the aerobic stability of whole-plant corn silage. Additionally, the study identifies the optimal conditions that favor the proliferation of A. pasteurianus, offering valuable insights for the development of strategies to prevent and control this bacterium, thereby improving the aerobic stability of silage in hot and humid regions.

7.
Data Brief ; 56: 110842, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39257684

RESUMEN

The presented set of data brings results of the experimental production of biogas and methane from silages of alternative substrates consisting of maize and three leguminous species with a potential to make the production of biogas more friendly to the environment because the cultivation of legumes is generally considered to be more environment friendly than the cultivation of maize: white sweet clover (Melilotus albus Medik.), fodder vetch (Vicia villosa Roth.) and white lupin (Lupinus albus L.). Obtained data allow to compare the composition of experimental substrates and their important parameters (VS, DM, NDF, ADF, CF, starch, cellulose, hemicellulose, CP, lipids and ADL) as well as the yield of biogas, methane and methane in biogas from silage produced as a monosubstrate from the biomass of maize shreddings on the one side with silages produced from the mixture of biomass from maize and diverse legumes on the other side. This set of data can contribute to awareness about possibilities for reducing environmental risks connected with the cultivation of maize in growers of energy crops and operators of biogas plants. The reason is that a considerable number of farmers do not use new technologies of growing biomass for the production of biogas as they cannot quantify the potential impact on biogas yield and hence on the profitability of biogas plant operation. The measured values demonstrate that silages made from the mixed culture were reaching at least the same production of biogas and its quality as the monocultural maize silage.

8.
Animals (Basel) ; 14(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272241

RESUMEN

Guizotia abyssinica is currently being used for soil improvement; however, owing to its rapid growth and high productivity, it may have value as feed for ruminants, although this has not been well studied. Thus, this research aimed to evaluate the silage quality of Guizotia abyssinica grown during the short season (July-October) as a catch crop in northern Europe when harvested 58, 68, and 90 days after sowing (DAS) over two production years. Ensiled material was analyzed to compare silage quality for the three different DAS. Two factors were analyzed factorially in the experiment: the silage preparation year (2018 or 2019) and the form of the ensiled material (fresh or wilted). We used 36 replications, 18 for each variant of the experimental factor. Harvesting at 58 DAS resulted in unsatisfactory forage fermentability, even after wilting. At 68 DAS, silage quality was satisfactory, but the dry matter content before ensiling was below 20% for both fresh and wilted forage, indicating limitations for silage use without additional wilting for that DAS harvest time. Dry matter content and water-soluble carbohydrates consistently increased as harvest was delayed. Thus, the highest silage quality was obtained from forage harvested 90 DAS regardless of differences in dry matter content. Therefore, it is possible to prepare silage at lower temperatures when the wilting process is limited by environmental conditions.

9.
Sci Total Environ ; 952: 175955, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222819

RESUMEN

The study assessed the impacts of aquatic plant silages on feeding efficiency and dairy cattle health as an alternative to conventional corn silage under high altitude conditions. Mid-lactation Holstein cows were assigned to treatment groups according to a randomized complete block design of parity, previous 105-d milk yield, and body weight. Cows (n = 8 per group) were fed with aquatic plant silage inoculated with Bacillus subtilis (BS), Yeast (YS), or conventional corn silage without inoculants (control) in addition to [standard grain feed] for 75 consecutive days. BS and YS had higher protein contents than control silage (111.20 ± 7.68, 112.10 ± 6.83 vs 76.94 ± 3.48 g/kg DM), while feeding efficiency was comparable between treatments (1.07, 0.99, and 0.90, respectively). In addition, the addition of aquatic plant silage in ruminant diets enhanced immunity and antioxidant capacity when compared with control group. Metagenomic analysis showed similar composition in rumen microbiota between YS and control groups, with higher enrichment for energy and nitrogen utilization pathways in YS-treated cows. This study highlights the use of aquatic plant silage as an alternative feed for dairy cattle with higher protein than corn silage. Our results suggest YS or BS could potentially boost immune and antioxidant functions, improving adaptation to high-altitudes and reducing demand for high input corn production on the Qinghai-Tibetan Plateau.


Asunto(s)
Alimentación Animal , Ensilaje , Animales , Bovinos , Alimentación Animal/análisis , Industria Lechera , Dieta/veterinaria , Femenino , Zea mays , Bacillus subtilis , Fermentación , Rumen/metabolismo
10.
PeerJ ; 12: e17920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247542

RESUMEN

This study was performed to evaluate the effects of rye silage treated with sodium formate (Na-Fa) and lactic acid bacteria (LAB) inoculants on the ruminal fermentation characteristics, methane yield and energy balance in Hanwoo steers. Forage rye was harvested in May 2019 and ensiled without additives (control) or with either a LAB inoculant or Na-Fa. The LAB (Lactobacillus plantarum) were inoculated at 1.5 × 1010 CFU/g fresh matter, and the inoculant was sprayed onto the forage rye during wrapping at a rate of 4 L/ton of fresh rye forage. Sixteen percent of the Na-Fa solution was sprayed at a rate of approximately 6.6 L/ton. Hanwoo steers (body weight 275 ± 8.4 kg (n = 3, group 1); average body weight 360 ± 32.1 kg (n = 3, group 2)) were allocated into two pens equipped with individual feeding gates and used in duplicated 3 × 3 Latin square design. The experimental diet was fed twice daily (09:00 and 18:00) during the experimental period. Each period comprised 10 days for adaptation to the pen and 9 days for measurements in a direct respiratory chamber. The body weights of the steers were measured at the beginning and at the end of the experiment. Feces and urine were collected for 5 days after 1 day of adaptation to the chamber, methane production was measured for 2 days, and ruminal fluid was collected on the final day. In the LAB group, the ratio of acetic acid in the rumen fluid was significantly lower (p = 0.044) and the ratio of propionic acid in the rumen fluid was significantly higher (p = 0.017). Methane production per DDMI of the Na-FA treatment group was lower than that of the other groups (p = 0.052), and methane production per DNDFI of the LAB treatment group was higher than that of the other groups (p = 0.056). The use of an acid-based additive in silage production has a positive effect on net energy and has the potential to reduce enteric methane emissions in ruminants.


Asunto(s)
Metabolismo Energético , Fermentación , Formiatos , Metano , Rumen , Secale , Ensilaje , Animales , Bovinos , Metano/biosíntesis , Metano/metabolismo , Ensilaje/análisis , Ensilaje/microbiología , Formiatos/farmacología , Formiatos/metabolismo , Rumen/microbiología , Rumen/metabolismo , Masculino , Fermentación/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Lactobacillus plantarum/metabolismo , Alimentación Animal/análisis
11.
EFSA J ; 22(8): e8904, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099612

RESUMEN

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on Loigolactobacillus coryniformis DSM 34345 when used as a technological additive to improve ensiling of fresh plant material. The additive is intended for use with all fresh plant material for all animal species at a proposed minimum concentration of 1 × 108 colony forming units (CFU)/kg fresh plant material. The bacterial species L. coryniformis is considered by EFSA to be suitable for the qualified presumption of safety approach to safety assessment. The identity of the strain was established and no acquired antimicrobial resistance genes of concern were detected. Therefore, the FEEDAP Panel concluded that the use of the strain as a silage additive is considered safe for all the animal species, for consumers of products from animals fed the treated silage and for the environment. Regarding user safety, the additive containing Loigolactobacillus coryniformis DSM 34345 should be considered as a potential skin and respiratory sensitiser, and any exposure through skin and respiratory tract is considered a risk. One preparation was shown not to be irritant to skin or eyes. However, the Panel cannot assess the irritation potential of other possible preparations. The FEEDAP Panel concluded that Loigolactobacillus coryniformis DSM 34345 has the potential to improve the production of silages prepared from all fresh plant materials at a minimum concentration of 1 × 108 CFU/kg fresh material.

12.
EFSA J ; 22(8): e8934, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099618

RESUMEN

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the assessment of the application of renewal of Levilactobacillus brevis DSM 16680 as a technological feed additive (functional group: silage additives) for all animal species. The applicant has provided evidence that the additive currently on the market complies with the existing terms of the authorisation. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the additive remains safe for all animal species, consumers and the environment. Regarding user safety, the additive should be considered as an eye irritant and a skin and respiratory sensitiser. There is no need for assessing the efficacy of the additive in the context of the renewal of the authorisation.

13.
Animals (Basel) ; 14(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39123783

RESUMEN

This study evaluates the effects of substituting cassava pulp with broken rice and cassava chips in the total mixed ration silage diets of beef cattle on feed composition, ensiling quality, digestibility, and energy utilization. Fifteen Holstein Thai native crossbred (89% Bos taurus × 11% Bos indicus) steers in the fattening phase, with an average age of 2.5 ± 0.1 years and an initial body weight of 603.7 ± 14.3 kg, were used in the energy balance trial. Using a randomized complete block design with five replications, the steers received one of three treatments. The three dietary treatments included substituting cassava pulp with cassava chips and broken rice on a dry matter basis with ratios of 50:0:0, 30:20:0, or 10:20:20. The results show that broken rice is a superior nutrient source and provides greater energy balance (p < 0.01). Despite the cost implications, substituting cassava pulp and chips positively impacts the ensilage pH and reduces the acetic acid concentration (p < 0.01). There was an increase in the lactic acid bacteria count (p < 0.05) and a reduction in the rumen ammonia, propionate, and butyrate concentrations (p < 0.05) without adverse effects (p > 0.05) on digestibility, blood metabolites, or enteric methane emissions. These findings suggest that broken rice is a promising alternative grain-rich ruminant feed. Future research should explore on-farm long-term feeding and economic evaluations to provide a more comprehensive understanding of the practical implications.

14.
J Anim Sci Biotechnol ; 15(1): 107, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107819

RESUMEN

BACKGROUND: Silage is widely used to formulate dairy cattle rations, and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production systems. Bacteriocin has received considerable attention because of its potential as an alternative to antibiotics in animal husbandry. However, the impact of bacteriocin-producing lactic acid bacteria on the microbiological conversion process of whole-plant corn silage and rumen fermentation remains limited. The purpose of this study was to assess the effect of 2 class IIa bacteriocin-producing strains Lactiplantibacillus plantarum ATCC14917 and CICC24194 on bacterial community composition and ensiling profiles of whole-plant corn silage and its in vitro rumen fermentation, microbiota, and CH4 emissions. RESULTS: Both bacteriocin-producing strains increased the lactic acid concentration in silage fermented for 7 d, whereas the lowest lactic acid was observed in the ATCC14917 inoculated silage fermented for 90 d (P < 0.05). The highest DM content was observed in the CICC24194 treatment (P < 0.05), and the silages treated with both strains had the lowest DM loss (P < 0.05). Bacteriocin-producing strains promoted the growth of Levilactobacillus brevis on d 60 of ensiling. In addition, treatment with bacteriocin-producing strains increased the in vitro DM digestibility (P < 0.05) and decreased the CH4 production (P < 0.05). The results of random forest and clustering analyses at the genus level showed that ATCC14917 increased the relative abundance of the influential variable Bacillus compared to that in the control group, whereas CICC24194 decreased the relative abundance of the influential variable Ruminococcaceae UCG-005. The CICC24194 treatment had the lowest total bacterial, fungal, protozoan, and methanogen populations (P < 0.05). CONCLUSIONS: Both class IIa bacteriocin-producing L. plantarum strains improved the fermentation quality of whole-plant corn silage by regulating the bacterial community composition during ensiling, with CICC24194 being the most effective. Both bacteriocin-producing strains mitigated CH4 production and improved digestibility by modulating the interactions among rumen bacteria, protozoa, methanogens, and the composition of fibrolytic bacteria.

15.
EFSA J ; 22(8): e8938, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114323

RESUMEN

Sodium propionate is authorised containing at least 98.5% of sodium propionate. The applicants requested for the renewal of the authorisation of sodium propionate when used as a feed additive for all terrestrial animal species. The applicant has provided evidence that the additive in the market complies with the conditions of the authorisation. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP Panel) confirms that the use of sodium propionate under the current authorised conditions of use is safe for the target species, the consumers and the environment. Considering the user safety, the additive is corrosive to skin, eyes and respiratory tract, but is not a skin sensitiser. There is no need for assessing the efficacy of the additive in the context of the renewal of the authorisation.

16.
Sci Total Environ ; 950: 175325, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117229

RESUMEN

Silage is an excellent method of feed preservation; however, carbon dioxide, methane and nitrous oxide produced during fermentation are significant sources of agricultural greenhouse gases. Therefore, determining a specific production method is crucial for reducing global warming. The effects of four temperatures (10 °C, 20 °C, 30 °C, and 40 °C) on silage quality, greenhouse gas yield and microbial community composition of forage sorghum were investigated. At 20 °C and 30 °C, the silage has a lower pH value and a higher lactic acid content, resulting in higher silage quality and higher total gas production. In the first five days of ensiling, there was a significant increase in the production of carbon dioxide, methane, and nitrous oxide. After that, the output remained relatively stable, and their production at 20 °C and 30 °C was significantly higher than that at 10 °C and 40 °C. Firmicutes and Proteobacteria were the predominant silage microorganisms at the phylum level. Under the treatment of 20 °C, 30 °C, and 40 °C, Lactobacillus had already dominated on the second day of silage. However, low temperatures under 10 °C slowed down the microbial community succession, allowing, bad microorganisms such as Chryseobacterium, Pantoea and Pseudomonas dominate the fermentation, in the early stage of ensiling, which also resulted in the highest bacterial network complexity. According to random forest and structural equation model analysis, the production of carbon dioxide, methane and nitrous oxide is mainly affected by microorganisms such as Lactobacillus, Klebsiella and Enterobacter, and temperature influences the activity of these microorganisms to mediate gas production in silage. This study helps reveal the relationship between temperature, microbial community and greenhouse gas production during silage fermentation, providing a reference for clean silage fermentation.


Asunto(s)
Fermentación , Gases de Efecto Invernadero , Microbiota , Ensilaje , Sorghum , Temperatura , Ensilaje/análisis , Gases de Efecto Invernadero/análisis , Metano/metabolismo , Metano/análisis , Dióxido de Carbono/análisis , Óxido Nitroso/análisis
17.
Arch Anim Nutr ; : 1-12, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192735

RESUMEN

Hemp (Cannabis sativa L.) is an important source of fibre and seed oil and protein. By-products of industrial hemp fibre production, like hemp seeds and cakes, can be used as feed for all animal species as fat and protein source and the whole hemp plant (including stalk and leaves) might be a suitable fibre source for ruminants. However, a previous feeding experiment with leaf-flower-seed hemp silage, made from an industrial hemp variety, demonstrated detrimental effects on cow health parameters and a significant transfer of several cannabinoids, including the psychoactive tetrahydrocannabinol (∆9-THC), into cow's milk, posing a potential risk to the safety of consumers. Based on those observations, the present study tested the hypothesis that anaerobic fermentation, as during ensiling, increases the content of ∆9-THC in hemp. Therefore, silages of whole plants from the industrial hemp Cannabis sativa L. var. Ivory were prepared in a multifactorial design, with the four treatments 1) untreated control (CON), 2) addition of 10 mL per kg fresh weight homofermentative lactobacilli at 105 cfu/mL (LBAC), 3) addition of 10 mL per kg fresh weight homofermentative lactobacilli at 105 cfu/mL plus 30 g molasses (LBACmol) and 4) addition of propionic acid (10 mL/kg fresh weight) (PRO). Ultra high performance liquid chromatography coupled with tandem mass spectrometry with electrospray ionisation (UHPLC-MS/MS) was performed for analysis of cannabinoids in fresh hemp material and after 10 and 90 days of ensiling. The study revealed that ensiling decreased all acid forms of analysed cannabinoids in hemp at about 40-65% of the initial values after 90 days of storage, with the exception of cannabinolic acid (CBNA), and CBGA, the acidic form of cannabigerol (CBG). This decrease in most acidic forms was accompanied by an increase of the corresponding non-acidic forms of all cannabinoids, including the psychoactive ∆9-THC. Thus, although ensiling decreases the total cannabinoid content, psychoactive compounds like ∆9-THC can increase, enhancing the risk for animal health and a transfer of these substances into animal derived products.


Industrial hemp can be ensiled with different additives, despite its high buffering capacityUltra high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used for analysis of cannabinoidsEnsiling decreased total cannabinoid content in industrial hemp, but increased individual compounds like ∆9-THC, likely through decarboxylation of the precursor ∆9-THCA.

18.
Front Plant Sci ; 15: 1434926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104846

RESUMEN

Introduction: High-yield and high-quality production of silage maize in cold regions is crucial for ensuring the sustainable development of livestock industry. Methods: This study first conducted an experiment to select the optimized silage maize varieties and densities using a split-plot design. The tested maize varieties were Xuntian 3171, Xuntian 16, Xunqing 858, and Fengtian 12, with each variety planted at densities of 67,500, 79,500, and 90,000 plants ha-1. Following the variety and density selection, another experiment on optimizing nitrogen management for silage maize was carried out using a completely randomized design: no nitrogen fertilizer (T1), applying urea-N 320 kg ha-1 (T2), applying urea-N 240 kg ha-1 (T3), applying polymer-coated urea-N 240 kg N ha-1 (T4), and ratios of polymer-coated urea-N to urea-N at 9:1 (T5), 8:2 (T6), 7:3 (T7), and 6:4 (T8). T5-T8 all applied 240 kg N ha-1. The yield and quality of silage maize, nitrogen use efficiency and balance, and economic benefits were evaluated. Results: Results showed that Xunqing 858 had significantly higher plant height (8.7%-22.6% taller than the other three varieties) and leaf area (30.9% larger than Xuntian 3171), resulting in yield 11.5%-51.6% higher than the other three varieties. All varieties achieved maximum yields at a planting density of 79,500 plants ha-1. Integrated management strategy 7 (T7: Xunqing 858, 79,500 plants ha-1, polymer-coated urea-N to urea-N ratio of 7:3) achieved the highest yield of 73.1 t ha-1, a 6.1%-58.1% increase over other treatments. This strategy also produced the highest crude protein (11.1%) and starch (19.1%) contents, and the lowest neutral detergent fiber content (50.6%), with economic benefits improved by 10.3%-97.8% compared to other strategies. Additionally, T7 improved nitrogen use efficiency by 15.4%-94.5%, reduced soil nitrate leaching by 4.4%-36.5%, and decreased nitrogen surplus by 7.0%-46.6%. Conclusion and discussion: Comprehensive analysis revealed that the integrated management strategy 7 significantly improved silage maize yield and quality in cold regions while enhancing nitrogen use efficiency and reducing the risk of nitrate leaching, aligning with green agriculture development requirements. These findings will provide vital theoretical insights and practical guidance for high-yield and high-quality silage maize production in cold regions worldwide.

19.
J Anim Sci Technol ; 66(4): 749-792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39165736

RESUMEN

The aim of this study was to evaluate the chemical composition, in vitro digestibility, and palatability of dried persimmon byproducts (persimmon peel [PP] and damaged whole persimmons [WP]) ensiled with rice straw in different mixing ratios. PP and WP were ensiled with rice straw at ratios of 3:7 (PP3R7, WP3R7), 5:5 (PP5R5, WP5R5), 7:3 (PP7R3, WP7R3), and 8:2 (PP8R2, WP8R2) for 70 d. WP3R7 had the highest (p < 0.05) crude protein and lactate contents compared to the other combinations. On the other hand, PP3R7 and PP8R2 had lower concentrations of neutral and acid-detergent fibers (p < 0.05) and produced lower amounts of ammonia-N (p < 0.05). The silages were compared to rice straw silage (RS), maize silage (MS), whole-crop rye silage (WCRS), and sorghum-sudangrass silage (SSGS) during an in vitro study. The results showed that PP8R2 and WP7R3 had higher (p < 0.05) dry matter digestibility values than RS, MS, WCRS, and SSGS in a 6 h incubation period. In addition, a palatability test of the silages was conducted on Hanwoo cattle, goats, and deer, using the cafeteria method. The palatability index rate of PP7R3 was the highest (p < 0.05) for the goats and the Hanwoo cattle, whereas PP8R2 had the highest (p < 0.05) rate for the deer and the Hanwoo cattle. In conclusion, dried persimmon byproducts in the form of PP and WPs can be used as ruminant feed when ensiled with RS at ratios of 7:3 and 8:2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...